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Abstract. A unified treatment of integral representations of conditional ex-
pectations, in terms of Bochner integrals, with specializations to Gaussian
conditioning, is given. The integrals in the latter have deterministic ker-
nels. Difficulties in actual calculations of (even regular) conditional proba-
bilities, and the inadequacy of methods related to L’Hospital’s procedures,
are exemplified. Limitations of the methods used and some new problems
for investigation are indicated.
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1. Introduction

A conditional mean is a linear “smoothing” or averaging operation on a
topological vector space of measurable functions based on a probability space
(Ω, Σ, P ), although P here can be replaced by a σ-finite measure without much
difficulty. It is then of interest to define and represent it as an integral, generally
using vector measures. Different types of these means, related to conditioning,
will be presented in what follows. For convenience, all the (probability) mea-
sures are taken to be complete throughout.

Thus if L1(P ) is the Lebesgue space of real integrable functions on (Ω, Σ, P )
and f ∈ L1(P ), consider νf : B 7→ ∫

B f dP, B ∈ B, a σ-subalgebra of Σ.
Evidently νf is σ-additive and PB-continuous where PB = P |B, the restriction
which is finite. Hence by the classical (scalar) Radon–Nikodým theorem, there

is a PB-unique B-measurable gf =
dνf

dPB
∈ L1(PB). The mapping EB : f 7→ gf is

a well-defined positive linear operator, called conditional mean or expectation.
It satisfies the set of equations:

∫

B

f dP =
∫

B

gf dPB =
∫

B

EB(f) dPB, B ∈ B, f ∈ L1(Σ). (1)

Letting f = χA, A ∈ Σ, and PB(A) = EB(χA), one has PB : Σ → L1(Ω,B, PB)
(= L1(PB) to be a vector measure, i.e., PB is a (non-negative) σ-additive func-
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tion in the norm topology of L1(PB). However, PB(·)(ω) : Σ → R+, ω ∈ Ω, is
not necessarily a measure, in that it can fail to be σ-additive. [For an example
of this pathology, see Loève [8], p. 370.] It is called a regular conditional prob-
ability measure if PB(·)(ω) : Σ → R+ is σ-additive and PB(A)(·) : Ω → R
is B-measurable, A ∈ Σ. However, one can define, for a simple function
h =

∑n
i=1 aiχAi

, Ai ∈ Σ, disjoint, an integral as:

EB(h) =
n∑

i=1

aiP
B(Ai) =

∫

Ω

h dPB. (2)

A standard computation shows that the integral here is well-defined for all
simple functions, and it does not depend on the representation of such h. Next
an extension for all measurable non-negative functions and then for all elements
of L1(P ) is easily obtained, using the Dunford–Schwartz (or DS)-integral. This
and an integral representation of EB on L1(P ), relative to the scalar measure
P , as a Bochner integral, is given in the next section. It will then be specialized
and refined further. As an application, a vector Radon–Nikodým theorem is
presented for a pair of conditional measures on Σ. Difficulties for evaluating
conditional expectations and measures of such operators are also illustrated,
with the resulting paradoxes. This and some specialized integral representations
for Gaussian processes in terms of deterministic kernels relative to (Gaussian)
martingale measures form the content of Section 3. Moreover, limitations of the
special method employed are noted.

2. An Integral Representation of Conditional Means

Recall that for a vector measure ν : Σ → X , a Banach space, there is a positive
finite dominating measure µ in terms of which integrals of scalar functions
relative to ν can be defined following the procedure of Dunford and Schwartz
([3], Sec. IV.10). If X = L1(P ) and ν = PB, one can explicitly calculate the
desired µ. This is used in the following work, and is stated here as:

Lemma 2.1. The variation of PB : Σ → L1(PB) is P .

Proof. By definition of variation, for each A ∈ Σ, if Σ(A) = {A ∩ B : B ∈ Σ},
then

|PB|(A) = sup

{
n∑

i=1

‖PB(Ai)‖1 : Ai ∈ Σ(A), disjoint

}

= sup

{
n∑

i=1

∫

Ω

EB(χAi
) dPB : Ai as above

}

= P (A). (1)

Thus its variation measure in the Banach space L1(PB)is P . This can also be
obtained from ([3], III.2.20, p. 114) easily.



REPRESENTATIONS OF CONDITIONAL MEANS 365

It follows that PB is P -continuous and let the DS-integral for simple functions
be as in (2) of the preceding section. If f ∈ L1(P ) is arbitrary, then there exists
a sequence of simple functions {fn, n ≥ 1} such that fn → f pointwise (or in
P -measure), and if {∫A fn dPB, n ≥ 1} ⊂ L1(PB) is Cauchy for each A ∈ Σ, the
limit is P -uniquely defined. It is denoted as

∫
A f dPB, so that

∫

A

f dPB = lim
n

∫

A

fn dPB, A ∈ Σ, f ∈ L1(P ). (2)

One can verify that the DS-integral above is defined for all elements of L1(P ),
and the dominated convergence statements are also shown in [3] to hold for
these integrals. From this and (2) of Section 1 one has the representation:

EB(f) =
∫

Ω

f dPB, f ∈ L1(P ). (3)

The next result yields a useful refinement of (3), implying that the DS-integral
may be replaced by the more familiar Bochner integral. First a technical con-
dition will be restated. Let Σ+(A) = {B ⊂ A : B ∈ Σ+} where Σ+ = {A ∈
Σ : P (A) > 0}. Then the mean direction set of a vector measure ν : Σ → X , a

Banach space, on A ∈ Σ+ is the collection Aν(A) = { ν(B)
P (B)

: B ∈ Σ+(A)} ⊂ X .

Motivated by a corresponding property in the classical fundamental theorem of
calculus, and following Kelley and Srinivasan [6], one says that a vector measure
ν : Σ → X of finite variation |ν|(·) has locally small mean direction sets if for
each ε > 0 there is an A(= Aε) ∈ Σ+ such that the diameter diam(Aν(A)) ≤ ε.

This condition abstracts a relative weak compactness hypothesis, originally
formulated by Phillips [14], which was generalized and perfected by Rieffel [20]
and refined further by Kupka [8]. In the context of conditional measures, all
these generalizations coincide. The important consequence, when X is an arbi-
trary Banach space, is that a vector measure ν : Σ → X of finite variation has
a Bochner integrable RN-derivative iff ν satisfies the above diameter condition.
This is of use for us since PB : Σ → L1(PB) and the range space does not
generally have the so-called Radon–Nikodým property. The above condition on
PB thus implies (and in fact is equivalent to having) the Bochner integrable
bounded density. Let us state this specialization for PB, without repeating the
details, and then discuss several consequences and applications of interest in
the present work.

Theorem 2.2. For any σ-algebra B ⊂ Σ of (Ω, Σ, P ), let PB : Σ → L1(PB)
be a conditional measure. Suppose that PB satisfies the locally small mean diam-
eter condition introduced above. Then there is a P -unique strongly measurable
and P -integrable g : Ω → L1(PB) such that

PB(A) =
∫

A

g dP, A ∈ Σ, (4)

where the integral of the (vector valued) function g is in Bochner’s sense.
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Discussion of the result. The traditional (relative) weak compactness con-
dition, used by Phillips, for ν into L1(P ) of finite variation is equivalent to
(relative) compactness in our case by ([3], VI.8.13, on p. 510), since PB(A) =
EB(χA), A ∈ Σ and the operator EB is a projection. Since the mean diameter
condition is not easy to verify in applications, the following classes of measures
will help understand its significance better. In case (Ω, Σ, P ) is a standard Borel
space, or a Polish (probability) space, then for each B ⊂ Σ, PB is a regular con-
ditional measure (cf., e.g., [18], Sec. 5.3), and taking B as a σ-subalgebra of Σ
generated by a random variable or vector, one concludes that the representation
(4) above is valid (and thus the diameter condition is automatically satisfied as
is the case for scalar measures). If (Ω, Σ, P ) is a perfect probability space then
Sazonov [20] shows that PB is regular and also perfect, admitting special meth-
ods. In fact Doob ([2], Example 2.7, on p. 617) has directly established the
representation (4), using a classical construction from (scalar) differentiation
theory, when Ω = R2. Several applications with extensions of the (saclar) case
have also been discussed by Meyer [12]. An interesting aspect of the abstract
theory is that one can clearly see the underlying structure of the problem, and
the regularity of PB is not postulated at the outset. The significance of the
representation (4) is revealed if one considers (Ω, Σ, P ) as the Lebesgue unit
interval and B = Σ, so that PB(A) = χA, A ∈ Σ, and it is known that for
this case there is no Bochner integrable g for which (4) is valid. This case and
the ramifications of the abstract Banach space as well as more general locally
convex spaces were given in [20], [8], and [11], with some elegant simplifications
in [13]. Also an aspect of the above, using Phillips’ criterion with boundedness
and uniform integrability, was indicated in [15] without a detailed discussion
as here. It must be noted, however, that in applications a verification of an
abstract condition such as the locally small mean diameter above, is not easy
and sometimes one has to find methods amounting to establishing the result
individually.

As a consequence of the above theorem, the following refinement of a result
due to Loève ([8], p. 344), who termed it a “relative conditional expectation”,
can be obtained:

Theorem 2.3. Let B ⊂ Σ be a σ-algebra from (Ω, Σ, P ) and 0 ≤ Z ∈ L1(P ).
If µZ : A 7→ ∫

A Z dP, A ∈ Σ, (so µZ is a finite measure), and X is a µZ-
integrable random variable, then the (new) conditional measure µBZ : Σ →
L1(PB) admits representations as:

∫

Ω

f dµBZ =
EB

P (fZ)

EB
P (Z)

, ∀f ∈ L∞(P ), (5)

=

∫
Ω fgZ dP∫
Ω gZ dP

, ∀f ∈ L∞(P ), (6)

where the left side (and (5)) is the DS (vector) integral, and the right side of
(6), when PB satisfies the locally small mean diameter condition, is a standard
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Bochner integral for a P -unique g : Ω → L∞(P ). In particular, if Z = 1 = f
a.e., then (5) and (6) reduce to (4).

Remark. This extension of Theorem 2.2 is of interest in filtering theory as
seen from [12]. [In the proof, let µ stand for µZ for simplicity.]

Proof. By definition, µ is a finite measure and dµ = Z dP . So µB = µ|B is given
by

µB(A) =
∫

A

Z dP =
∫

A

EB
P (Z) dPB, A ∈ B. (7)

Hence dµB = EB
P (Z) dPB, and for the signed measure ν : A 7→ ∫

A X dµ, A ∈ Σ,
with EB

µ denoting the conditional expectation operator for µ, one has similarly

νB(B) =
∫

B

X dµ =
∫

B

EB
µ (X) dµB, B ∈ B,

=
∫

B

EB
µ (X)EB

P (Z) dPB, by (7). (8)

Combining (7) and (8), it follows that
∫

A

EB
µ (X)EB

P (Z) dPB = νB(A) =
∫

A

XZ dP

=
∫

A

EB
P (XZ) dPB, A ∈ B. (9)

The extreme integrands are B-measurable and so can be identified. Thus

EB
µ (X) =

EB
P (XZ)

EB
P (Z)

. (10)

Since the P -null sets are contained in the class of those of µ (because µ ¿ P ),
this is well defined, and by (2) of Section 1, (5) follows.

Finally, under the additional condition on PB one can use Theorem 2.2. So
there is a strongly measurable g : Ω → L∞(P ) such that (10) is representable
as:

EB
µ (X) =

∫
Ω XZg dP∫
Ω Zg dP

, X ∈ L1(P )), (11)

and if Z = 1, since EB
P (1) = 1, a.e., this becomes (4).

To emphasize the present point of view, let us include a Radon–Nikodým type
derivative for a pair of conditional (hence vector) measures, as an interesting
application of (4). The following abstract concept, already employed in [15],
will be needed here to state the general result (cf., e.g., [21] for the relevant
Banach space results specifically adapted to this subject).
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Definition 2.4. (1) Let (Ω, Σ) be a measurable space, X ,Y be Banach
spaces and µ : Σ → X , ν : Σ → Y be σ-additive functions. Then ν is termed
absolutely continuous relative to µ (ν ¿ µ) if for A ∈ Σ, |µ|(A) = 0, implies
ν(A) is the zero element of Y ; and ν is singular for µ (ν ⊥ µ) if there is a
B0 ∈ Σ, |µ|(B0) = 0 and ν(B) = ν(B ∩ B0), B ∈ Σ, where |µ|(·) is again the
variation measure of µ.

(2) If f : Ω → X is a strongly measurable Bochner integrable function on
(Ω, Σ, λ) where λ is a finite measure, and T : Ω → B(X ,Y), [the vector space
of bounded linear operators] is a strongly measurable operator function such
that Tf : Ω → Y is Bochner integrable relative to λ, then the vector measure
µf defined by µf : A 7→ ∫

A f dλ, A ∈ Σ, unambiguously gives a bilinear vector
integral by the equation:

∫

A

(Tf) dλ =
∫

A

T dµf , A ∈ Σ. (12)

With these concepts, applied to a pair of (quite general) conditional mea-
sures PBi

i , i = 1, 2, one has the following comprehensive Radon–Nikodým type
theorem as a consequence of the representation (6). The result will then be
specialized to obtain a better understanding of the structure of conditional
measures:

Theorem 2.5. Let (Ω, Σ, µi), i = 1, 2, be probability spaces, Bi ⊂ Σ, i =
1, 2, any σ-algebras, and PBi

i the conditional measures on Σ into L1(Bi, µi),
i = 1, 2, each satisfying a local mean diameter condition. Then there ex-
ists a (usually nonunique) strongly measurable operator function T : Ω →
B(L1(B1, µ1), L1(B2, µ2)) and a set A0 ∈ Σ such that

PB1
1 (A) =

∫

A

T (ω) PB2
2 (dω) + PB1

1 (A ∩ A0), A ∈ Σ, (13)

where |PB1
1 |(A0) = (µ1(A0) =)0, and the first term on the right is a bilinear

(Bochner–Bartle) vector integral.
If µ1 ¿ µ2, then the second term in the decomposition (13) disappears, and

T (·) becomes a scalar (measurable) function when B1 = B2 in addition.

Proof. Since PBi
i : Σ → L1(Bi, µi), i = 1, 2, are (norm) σ-additive (cf., e.g., [18,

Prop. 2.3.1(v) on p. 44), these are vector measures with variations |PBi
i |(·) =

µi(·). Now by Theorem 2.2 above, dPBi = gi dµi, i = 1, 2, so that the hypothe-
sis of [15, Theorem 3.8(I)] is satisfied. So by the latter, there exists a strongly
measurable operator function T satisfying (13), the second term being a conse-
quence of the Lebesgue type decomposition for vector measures. [The existence
of such a T was again established by a different argument in [16], Theorem 2.]
Further the nonuniqueness in the general case was illustrated with an example
in [15]. If µ1 ¿ µ2 so that PB1

1 ¿ PB2
2 by Definition 2.4(1), it follows that the

second term on the right of (15) vanishes.
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It remains to establish the last part when µ1 ¿ µ2. Let h = dµ1

dµ2
, the RN-

derivative. Now using a change of variables in the Bochner integral, (4) can be
written as:

(a) dPB1
1 = g1 dµ1 = g1h dµ2; (b) dPB2

2 = g2 dµ2, a.e. [µ2]. (14)

Hence for each bounded measurable f one has when B = Bi, i = 1, 2,
∫

A

f dPB
1 =

∫

A

fg1h dµ2, A ∈ B,

=
∫

A

EB
2 (fg1h) dµ2B, EB

2 is c. exp. for µ2,

=
∫

A

EB
2 (fg1h)

1

g2

dPB
2 , by (14)(b),

=
∫

A

EB
2

(
EB(fg1h)

g2

)
dPB

2 .

This holds since the support of g1 is contained in that of g2. Taking f = χA, A ∈
B, one obtains from the above

PB
1 (A) =

∫

A

EB
2 ( ) dPB

2 =
∫

A

T dPB
2 , A ∈ B, (15)

defining T by this equation. So the integrand in (15) is a nonnegative measur-
able function giving the RN-derivative as a scalar function in this case.

Remarks. 1. If µ1 = µ2 so that h = 1 a.e., and a related result (reciprocal
to (15)) was obtained in ([16], p. 311) under similar conditions for a slightly
restricted case.

2. Since PBi
i , i = 1, 2 are order preserving vector measures, one can consider a

generalization if L1(B, µ) is replaced by a Stone algebra of continuous functions
and the conditional measures are replaced by certain “modular” vector measures
when the σ-additivity is given using order topology. This generalization and
the resulting RN-theorem with a suitable order integration were developed by
Wright [23]. He also applied that theory for certain averaging operators and
obtained a related martingale convergence theorem.

The last stated aspect will not be discussed here, since it needs several other
preliminaries. In the following section another representation especially for
Gaussian processes, and their conditional means will be considered.

3. Conditional Means and Kernel Representations for Gaussian
Processes

It is appropriate and relevant here to observe a serious difficulty in the evalu-
ation of conditional expectations, (even) for Gaussian processes. This problem
also arises in many applications. To illustrate, let {X i

t , t ∈ [−a, a]}, i = 1, 2,
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be a pair of Gaussian processes such that the X1
t -process is ergodic and has a

pointwise derivative at each time point t, and let X2
t -process denote the derived

process, i.e., (X1
t )′ = X2

t (for simplicity, let E(X1
t ) = 0,∀t). Such a process X1

t

exists on a suitable canonical probability space, using the classical Kolmogorov
representation of a stochastic function [7]. The problem now is to find the con-
ditional probability of the tangent X2

t at t = 0 given that X1
0 = a. This means

that one has to calculate P [X2
0 < y|X1

0 = a], and since the conditioning event
has zero probability, the usual (L’Hospital’s type) approximation to evaluate
this probability leads to ambiguities. But by the Kolmogorov definition, this is
given (a.e. uniquely) by

h(a) = P [X2
0 < y|σ(X1

0 )](a) = Eσ(X1
0 )(χ[X2

0<y])(a),

and the last quantity is defined by the system of functional equations:
∫

A

χ[X2
0<y] dP =

∫

A

Eσ(X1
0 ) dPσ(X1

0 ), A ∈ σ(X1
0 ). (1)

However there is no algorithm to calculate the conditional expectation h(·),
whose value at ‘a′ is the desired result. Kac and Slepian [5] have discussed sev-
eral approximations, usually employed in the literature, for this calculation, and
obtained many distinct solutions for the same problem resulting in a paradox.
This anomaly will be briefly illustrated here because of its significance.

To use a standard computation of the asserted probability, consider the event
Am

δ defined for each δ > 0, m ∈ R, by

Am
δ =

{
ω : X1

t (ω) = a + mt, for some 0 ≤ t ≤ δ√
1 + m2

}
,

so that P (Am
δ ) > 0, and one needs to find P [By|Am

0 ] where By = [X2
0 < y] for

any m. With the usual formula P (B|A) = P (A∩B)
P (A)

for P (A) > 0, one has the

result

P (By|Am
0 ) = lim

δ↘0

P [X2
0 < y, Am

δ , X2
0 > m] + P [X2

0 < y, Am
δ , X2

0 ≤ m]

P [Am
0 , X2

0 > m] + P [Am
δ , X2

0 ≤ m]
. (2)

An elementary but tedious calculation of the right side, carried out in [5] and
detailed in [18], gives, with Am

0 = [X1
0 = a], for any m ∈ R:

P [X2
0 < y|X1

0 = a] =

y∫

−∞

|v −m|e− v2

2α2

2α2e−
m2

2α2 + m
∫ m
−m e

u2

2α2 du
dv

=

y∫

−∞
fm

X2
0
(v|a) dv (say), (3)

where α2 > 0, is the variance of X2
0 . Here one uses the fact that X1

0 and X2
0 are

independent of each other, due to ergodicity, and hence in (3) the end result
does not involve a. But the density fm

X2
0
(·|a) which depends on the auxiliary
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number m ∈ R, gives infinitely many values for the left side probability. Letting
m →∞, so that the limit is taken vertically, called the “vertical window or v.w.
solution”, one finds

f(v|a)|v.w. =
e−

v2

2α2

√
2πα2

. (4)

If, on the other hand, m → 0, so that the limit is through the horizontal
direction, called the “horizontal window or h.w. solution”, it is seen to be

f(v|a)|h.w. =
|v|
2α2

e−
v2

2α2 . (5)

Similarly the other values of m give different functions f(·|a). Alternatively, if
Am

δ above is replaced by Bδ = {(x− a)2 + t2 < δ2,∃t, 0 < t < δ}, then the same
procedure, termed “circular window or c.w. solution” is found to give a value:

f(v|a)|c.w =

√
1 + v2e−

v2

2α2

∫
R
√

1 + v2e−
v2

2α2 dv
. (6)

The difficulty is that the conditioning σ-algebras Bm = σ(Am
δ , δ > 0) and

B̃ = σ(Bδ, δ > 0) are all different from the correct B = σ(X1
0 ) of (1). Note that

all these solutions do not involve a as noted earlier.
The problem in the above considerations is that of differentiation of (prob-

ability) measures, and the systems of sets {Am
δ , Bδ; δ > 0,m ∈ R} used above

do not satisfy the necessary conditions in that theory which is a serious part of
(Lebesgue’s) differentiation. This deeper aspect of analysis (needed here) is not
well-recognized or discussed in the literature. That question and some general
methods for correct solutions are treated in the author’s book ([18], Sections 3.4
and 7.5). In case densities relative to Lebesgue measure exist then it is shown

(nontrivially) that fX|Y (x|y) =
fX,Y (x,y)

fY (y)
will also give a correct solution under

some regularity conditions (cf., e.g., [18], pp. 52–53).
The next result illuminates such a method in some cases of Gaussian mea-

sures. It is based on a special property, and is an extension of certain works
in the literature which is analogous to the “v.w.” definition considered above.
To motivate this, let X,Y be jointly normally distributed vectors. Since the
distributions have densities, using the recalled ratio definition, it is shown clas-
sically that the conditional mean vector E(X|Y ) is a linear function of Y with
a constant covariance matrix (cf., [1], p. 24, or [9], Chapter 13). Since it plays
a rôle below, its basic details will be sketched.

Let E(X) = µx, E(Y ) = µy and Rxy, Ryy be covariance matrices of (X, Y )
and (Y, Y ) respectively. For simplicity, suppose that Ryy is non-singular, and
consider the “Gram–Schmidt orthogonalization” of X − µx and Y − µy. This
entails choosing a suitable matrix A such that Y − µx and Z = (X − µx) −
A(Y − µy) are orthogonal, so that E(Z(Y − µy)

∗) = 0. Here ( )∗ denotes the
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conjugate transpose of a vector (or a matrix). Let us simplify this equation and
determine A as:

0 = E(Z(Y − µy)
∗)

= E((X − µx)(Y − µy)
∗)− AE((Y − µy)(Y − µy)

∗)

= Rxy − ARyy, (7)

so that A = RxyR
−1
yy . Thus with this A, Y − µy and Z are orthogonal and,

being centered Gaussian vectors, they are also independent. This key property
implies [by the “v.w. definition”] that E(Z|Y ) = E(Z) = 0. A simplification
of this equation gives:

0 = E(Z|Y ) = E(X|Y )− µx − A(Y − µy),

or that

E(X|Y ) = µx + A(Y − µy), (8)

showing the linearity of the conditional expectation (also termed “regression
function”), and then Z = X −E(X|Y ). The conditional covariance of X given
Y is now immediately obtained:

E((X − E(X|Y ))(X − E(X|Y )∗) = E(ZZ∗|Y )

= E(ZZ∗), since Y and Z are independent,

= Rxx −RxyR
−1
yy R∗

xy, (9)

which is a constant. It should be observed that these statements are still valid
even if Ryy is singular, if R−1

yy is interpreted as the generalized (or the Moore-
Penrose) inverse of a (singular) matrix, but this will not be needed here. The
above result may be recorded for reference and use.

Proposition 3.1. If (X,Y ) is jointly normal where X = (X1, . . . , Xm) and
Y = (Y1, . . . , Yn) with means µx, µy, and covariances Rxy, Ryy, then the re-
gression function E(X|Y ) is linear, which is given by (8), and the conditional
covariance of X−E(X|Y ) is a constant (does not involve the values of Y ) given
by (9).

This finite vector statement admits a generalization for all continuous Gaus-
sian martingale processes, of interest in applications, which will now be derived:

Proposition 3.2. Let Y = {Yt,Ft, t ≥ 0} be a real continuous Gaussian
martingale (not necessarily a diffusion, or adapted to the Brownian filtration),
and X be a random variable which is a function of Y in the sense that for each
finite set (t1, . . . , tn), of time points, the vector (X, Yt1 , . . . , Ytn) is Gaussian
distributed. Then the regression function E(X|Ys, s ≤ t) is representable a.e.
as

E(X|Ys, s ≤ t) = E(X|Y0) +

t∫

0+

K(t, s) dYs, (10)
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where the kernel K(·, ·) is a nonstochastic jointly measurable and locally in-
tegrable function, and the stochastic integral in (10) is well-defined, (by the
Bochner L2,2-boundedness principle, as in [17], p. 170).

Proof. The following proof is similar to that of Lemma 10.1 of [9], extended
to the general Gaussian martingales. This is an extension of the simple case
given in the preceding proposition. It was established in ([9], p. 353), if Y is a
diffusion process, using properties of the Brownian Motion, but the present as-
sertion needs crucial modifications in the stochastic integration for the asserted
generalization. Thus consider the dyadic partition of [0, t] for any t > 0 as fol-
lows: 0 = tn0 < tn1 < · · · < tn2n = t where tnk = kt

2n , k = 0, 1, . . . , 2n, so that there
is a linear ordering (in the refinement) by n. If Fn

t = σ(Ytn
k
, 0 ≤ k ≤ 2n), then

by the (path) continuity of the process, Fn
t ↑ Ft = σ(Ys, 0 ≤ s ≤ t), as n →∞.

Let Xn
t = E(X|Fn

t ), and observe that {Xn
t ,Fn

t , n ≥ 1} is an L2(P )-bounded
martingale. Indeed,

E(Xn+1
t |Fn

t ) = E[E(X|Fn+1
t )|Fn

t ]

= E(X|F n
t ) = Xn

t , a.e.,

and by the conditional Jensen inequality

E((Xn
t )2) ≤ E(X2) < ∞, n ≥ 1.

Hence the Xn
t -process is uniformly integrable and by a standard martingale

convergence theorem Xn
t → E(X|Ft), a.e., as well as in L2(P )-mean.

Since by definition, Fn
t = σ(Ytn

k
−Ytn

k−1
, k = 1, . . . , 2n−1) is true, Proposition

3.1 can be applied to the pair {X, (Y0, Ytn1
− Ytn0

, . . . , Ytn
2n
− Ytn

2n−1
)}, (now A is

a vector cf., (8))

E(X|Fn
t ) = E(X|Y0) +

2n−1∑

j=0

Ln(t, tnj )(Ytnj+1
− Ytnj

), (11)

where Ln(·, ·) is a certain product moment function and is continuous in both
variables jointly, by the continuity of the Y -process. It is to be shown that
(11) tends to (10) as n → ∞, using the fact that (Ytn

k
− Ytn

k−1
) are the L2(P )-

martingale differences and the right side sum in (11) approximates the desired
martingale integral. First consider a simple function Kn(·, ·) as:

Kn(t, s) =
2n−1∑

j=1

Ln(t, tnj )χ[tnj ,tnj+1)
(s),

which is deterministic. Note that by definition of Kn(·, ·), it is a sum of prod-
ucts of jointly measurable functions and hence is jointly measurable, as well as
integrable on each compact rectangle in R2, so that it is locally integrable. Now
(11) can be expressed unambiguously as:

E(X|Fn
t ) = E(X|Y0) +

t∫

0+

Kn(t, s) dYs, a.e. (12)
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But for any simple function f =
∑n

j=1 ajχ[tj ,tj+1)×Aj
, Aj ∈ Ftj , 0 ≤ t0 < · · · <

tn+1 ≤ t and a square integrable martingale {Ys,Fs, s ≥ 0} one has (in [9]
Gaussian martingales adapted to a Brownian filtration are shown to have de-
terministic quadratic variations, but here our filtration is more general and the
variations may be stochastic; so a short argument depending on the Doléans-
Dade measure [20, p. 383], without using a Brownian connection, is included):

E

(∣∣∣∣∣

t∫

0

f(s) dYs

∣∣∣∣∣
2)

=
n∑

j=0

a2
jE(χAj

EFj(Ytj+1
− Ytj)

2)

+ 2
∑

0≤j<k≤n

ajakE[χAj∩Ak
(Ytj+1

− Ytj)E
Ftk (Ytk+1

− Ytk)]

=
n∑

j=0

a2
jE[χAj

(Ytj+1
− Ytj)

2] + 0

=
n∑

j=0

a2
jµ[(tj, tj+1]× Aj]

=
∫

[0,t]×Ω

|f |2 dµ, (13)

where µ is the Doléans-Dade measure determined by the L1(P )-bounded sub-
martingale {Y 2

t ,Ft, t ≥ 0}. The isometry given in (13) can be used to extend
the integral to all locally bounded measurable functions f . Hence (12) and (13)
imply (replacing f with Kn(t, ·) and without demanding that the quadratic
variation be nonstochastic)

E(Xn
t −Xm

t )2 = E

[ t∫

0+

(Kn(t, s)−Km(t, s)) dYs

]2

=
∫

[0,t]×Ω

[Kn(t, s)−Km(t, s)]2 dµ(s, ω), (14)

where µ is the corresponding measure as in (13). If µ̃(0, s] = µ((0, s]× Ω), the
marginal measure, then (14) becomes for each t > 0:

E(Xn
t −Xm

t )2 =

t∫

0+

(Kn(t, s)−Km(t, s))2 dµ̃(s). (15)

But by the first part, {Xn
t , n ≥ 1} is Cauchy and hence Kn(t, ·) ∈ L2(R+, µ̃),

n ≥ 1, is also a Cauchy sequence so that it converges to an element K(t, ·) ∈
L2(µ̃) for each t, and the joint measurability is similar to that of Lemma 4.9 of
[9]. This and (13) imply that as n → ∞ the integral in (12) indeed converges
to that in (10), giving the desired result.

Remarks. 1. It should be noted that the isomorphism appearing in (14) as
well as (13) are critical for the above proof. Note that the Yt-process being con-
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tinuous it has measurable modifications which are used above; but this property
is also available for a right continuous process. However this is not enough for
other computations above. In general, for L2,2-bounded processes there is only a
bounding inequality, and then the same is true in (15). This does not therefore
imply that {Kn(t, ·), n ≥ 1} is Cauchy which is needed for the representation
(10). So the method fails here, and it is not clear that the result extends to non
Gaussian systems perhaps based on another procedure. The contrast between
the general (vector) representation of conditional measures of Section 2 and
that of the above special process case should be recognized.

2. There are cases where conditional expectations can be exactly calculated
using proper differentiation procedures. A wide class of processes for which
this is possible is detailed in ([18], Section 7.5), and some with Fourier analysis
methods is also in ([18], Section 5.6). It should perhaps be observed in passing
that an axiomatic approach, such as the one proposed by Rényi, could not re-
solve the paradoxes discussed early in this section. [For a more detailed analysis
of this “computational problem”, the reader is referred to [18], Chapter 4.]
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