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Abstract. Set-parametric Brownian motion b in a star-shaped set G is con-
sidered when the values of b on the boundary of G are given. Under the
conditional distribution given these boundary values the process b becomes
some set-parametrics Gaussian process and not Brownian motion. We define
the transformation of this Gaussian process into another Brownian motion
which can be considered as “martingale part” of the conditional Brownian
motion b and the transformation itself can be considered as Doob–Meyer
decomposition of b. Some other boundary conditions and, in particular, the
case of conditional Brownian motion on the unit square given its values on
the whole of its boundary are considered.
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1. Introduction. A Heuristic Description of the Problem

Let G be a bounded star-shaped set in Rd containing some open neighborhood
of 0. Suppose b(x), x ∈ Rd, is Brownian motion in Rm and consider its restriction
to G. More precisely, let BG denote σ-algebra of Borel measurable subsets of
G. For every C ∈ BG, define b(C) =

∫
C b(dx) and call b = {b(C), C ∈ BG} set-

parametric Brownian motion on G. In other words, b is the family of 0-mean
Gaussian random variables with covariance function

Eb(C)b(C ′) = µ(C ∧ C ′), C, C ′ ∈ BG,

where µ(·) denotes d-dimensional Lebesgue measure. In particular, the variance
of b(C) is equal to Eb2(C) = µ(C) while if C and C ′ are disjoint, then b(C) and
b(C ′) are independent.

Suppose the value of b(x) on the boundary Γ of G is given. The conditional
distribution of the process {b(x), x ∈ G} given {b(x), x ∈ Γ} is very different
from the distribution of Brownian motion and can be very complicated. What
we would like to obtain is the transformation of {b(x), x ∈ G} into some other
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process, say, {w(x), x ∈ G} which under this conditional distribution still re-
mains Brownian motion and which can “reasonably” be called an “innovation
process” of {b(x), x ∈ G} given {b(x), x ∈ Γ}. We believe, however, that the
boundary conditions assume much more natural form for the set parametric
Brownian motion b and below we will consider this problem for b rather than
for {b(x), x ∈ G}.

The innovation problem as it was formulated, e.g., by Crameŕ in [2] consists
in the following. Let H be the Hilbert space of all Gaussian random variables
ξ given on some probability space {Ω,F ,P} such that Eξ = 0 and Eξ2 < ∞
with an inner product in H defined as 〈ξ, ξ′〉 = Eξξ′. Let {ξt, t ∈ [0, 1]} be
a family of random variables from H with ξ0 = 0, which can be regarded as
a Gaussian process in t or, alternatively, as a curve in H. (In [2] random
variables ξ are not assumed Gaussian but only of finite variances and t ranges
from −∞ to ∞, but these are insignificant changes as far as the aims of the
present paper are concerned.) With each t we can associate the linear subspace
Ht = L{ξs, 0 ≤ s ≤ t} so that H1 is the smallest linear subspace of H which
contains the curve {ξt, t ∈ [0, 1]}. Here we have denoted by L{. . . } the linear
space of random variables shown in the curly brackets. Assume that ξt is a.s.
continuous in t (and {Ω,F ,P} is rich enough to support it) and denote πt

projection operator in H which projects on Ht. Since ξt is continuous, the
chain of orthoprojectors {πt, 0 ≤ t ≤ 1} is continuous resolution of unity, that
is, it is continuous and increasing family of projectors, πtπt+4 = πt, and such
that π0 is the null operator and π1 is the identity operator on H1. For any
random variable ζ ∈ H the process

wt = πtζ, 0 ≤ t ≤ 1, (1.1)

is a Gaussian one with independent increments,

Ewt(wt+4 − wt) = 〈πtζ, (πt+4 − πt)ζ〉 = 〈ζ, πt(πt+4 − πt)ζ〉 = 0.

With this process we can associate its own continuous chain {Hw
t , 0 ≤ t ≤ 1}.

It is obvious that Hw
t ⊆ Ht, but the question is whether we can find thus

constructed process {wt, t ∈ [0, 1]} such that Hw
t = Ht for all t ∈ [0, 1]. This

process is then called an innovation process of the process {ξt, t ∈ [0, 1]}.
Alternative formulation of this problem is well known in the theory of semi-

martingales (see, e.g., [9, vol. 1], vol. 1). For a not necessarily Gaussian process

{ξt, 0 ≤ t ≤ 1}, let F ξ
t = σ{ξs, 0 ≤ s ≤ t} denote sub-σ-algebra of F generated

by random variables ξs, s ≤ t. The family F ξ = {F ξ
t , 0 ≤ t ≤ 1} is called natu-

ral filtration of the process {ξt, t ∈ [0, 1]}. Suppose the conditional expectation

value E[ξt+4|F ξ
t ], for all t ∈ [0, 1], is absolutely continuous in ∆ at ∆ = 0 with

derivative α(t, ξ), that is,

E[ξdt|F ξ
t ] = α(t, ξ)dt. (1.2)

Then the process

wdt = ξdt − α(t, ξ)dt (1.3)
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is martingale with respect to the filtration F ξ. If {ξt, t ∈ [0, 1]} is continuous
and Gaussian, then α(t, ξ) is linear functional of ξs, s ≤ t, that is, α(t, ξ) ∈ Ht

and the process {wt, t ∈ [0, 1]} is Brownian motion. It is obvious that all ws for

s ≤ t are F ξ
t measurable, but it may be that Fw

t ⊆ F ξ
t with the proper inclusion

only, where Fw
t = σ{w(s), s ≤ t}. If, however, Fw

t = F ξ
t for all t ∈ [0, 1], then

{wt, t ∈ [0, 1]} is called innovation Brownian motion for ξ.
Compared to our initial problem pertaining to b the above recollection of the

innovation problem raises the following questions:

1. There is no one-dimensional time associated with {b(x), x ∈ G} and even
the less so with b, which was essential for the definition and use of the
chains {Ht, 0 ≤ t ≤ 1} and {Hw

t , 0 ≤ t ≤ 1} and filtrations F ξ and Fw,
2. Even if we introduce an one-dimensional, and hence linearly ordered,

time, why considerations similar to (1.1) or (1.2) with respect to this
time would lead to anything meaningful for b(x) in x ∈ G or for b(C)
in C ∈ BG? That is, why innovations we may construct in t will be
Brownian motions in C?

These are very clear and natural concerns and indeed in probability theory
serious efforts were spent in different directions on the theory of semimartingales
with “truly” multidimensional time – see, e.g., the well known papers Cairoli
and Walsh [1], Wong and Zakai [10], Hajek and Wong [4] and Hajek [3] among
others.

However, parallel to this development, in the papers of Khmaladze ([5], [6],
[7]) alternative approach to the innovation theory for processes with multidi-
mensional time was developed. Its basic idea can be outlined as follows. Let
{η(z), z ∈ Z} be a random process indexed by the parameter z from some
linear space Z (or a subset of this space). Let also {πt, 0 ≤ t ≤ 1} be con-
tinuous resolution of unity acting in Z, and, using it, construct the process
η� = {η(πtz), z ∈ Z, t ∈ [0, 1]} and let Fη

t = σ{η(πtz), z ∈ Z}. Then the
process w� = {wt(z), z ∈ Z, t ∈ [0, 1]} defined as

wdt(z) = η(πdtz)− E[η(πdtz)|Fη
t ] (1.4)

“usually” becomes Brownian motion not only in t but also in z. It also is in
one-to-one correspondence with η� and, for this reason, can be viewed as an
innovation process of {η(z), z ∈ Z} with respect to Fη

π = {Fη
t , 0 ≤ t ≤ 1}.

In our present context of Brownian motion, conditional on the boundary,
we recall that, as it follows from [7], this is exactly the case for Brownian
motion {b(x), x ∈ [0, 1]d} given b(1d), where 1d = (1, . . . , 1) ∈ Rd. It also
follows that the innovation process for this conditional process is the same as
the innovation process for the Brownian bridge {v(x), x ∈ [0, 1]d} defined as
v(x) = b(x) − µ([0, x])b(1d). It is well known that the latter process is the
limit in distribution of the uniform empirical process on [0, 1]d and appears in
large number of statistical problems. As it follows from [8], innovation process
(1.3) can be constructed for conditional Brownian motion {b(x), x ∈ [0, 1]d}
under the condition {b(1k, x

′′
), x

′′ ∈ [0, 1]d−k}, 1 ≤ k < d, which is the same
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as the innovation for the Kiefer process {u(x), x ∈ [0, 1]d}, where u(x) =
b(x) − µ([0, x′] × [0, 1]d−k)b(1k, x

′′
), x = (x′, x

′′
), x′ ∈ [0, 1]k. The Kiefer pro-

cess, say, for k = d − 1 is the limit in distribution of the partial sum process
un(x

′
, x

′′
) = n−1/2 ∑

i≤nx′′ [I{Ui≤x′}−µ([0, (x
′
, 1)]) based on independent uniform

random variables {Ui}n
i=1 in [0, 1]d−1 and appears in large number of sequen-

tial problems of statistics. Intuitively speaking, although in the latter case the
distribution of the process {b(x), x ∈ [0, 1]d} has essentially higher order of
degeneracy, only under the condition b(1d), in x

′′
it is still free and remains

Brownian motion. Our theorem of the next section shows that this “freedom”
in “some direction” is not necessary and the approach can go through for the
process conditioned over the whole boundary.

2. Exact Formulation and the Basic Result

Let {At, 0 ≤ t ≤ 1} be any collection of Borel subsets of G such that 0 ⊆
At ⊆ At′ for t ≤ t′, µ(A0) = 0, µ(A1) = µ(G) and µ(At) is absolutely continuous
in t with positive density. We call such family of subsets a scanning family. One
natural scanning family for star-shaped G can be constructed as follows. Let
Sd−1 be unit sphere in Rd, and for x ∈ Sd−1 let ρ(x,G) = max{t : tx ∈ G}
be the so-called radial function of G. Then take as At the set A′

t = {y : y =
τρ(x,G)x, 0 ≤ τ ≤ t}.

For x ∈ Sd−1 let α(x) be the ray which passes through x and for a subset
S ⊆ Sd−1 let α(S) be the solid angle passing through S so that α(dx) is solid
angle passing through differential dx ⊂ Sd−1. Most of the time we will use the
notation At,S = At ∩ α(S), Adt = At+dt \ At, Adt,dx = Adt ∩ α(dx), etc. Also
denote ΓS = G∩α(S), Γdx = G∩α(dx), etc., even though these are not subsets
of the boundary Γ. The measure µ(At,S) is absolutely continuous with respect
to µ(ΓS) and the Radon–Nikodým derivative

F (t|x) =
µ(At,dx)

µ(Γdx)

is absolutely continuous distribution function in t. Let us define now the process
on BG as

v(C) =
∫

1{tx∈C}[b(Adt,dx)− F (dt|x)b(Γdx)]

= b(C)−
∫

Sd−1

F (C|x)b(Γdx). (2.1)

Call v = {v(C), C ∈ BG} the total Brownian bridge on G. It follows from the
definition of v that v(ΓS) = 0 for any S ⊆ Sd−1 and in this sense we say that v
is 0 on the boundary Γ.

Remark. With the choice of a scanning family as {A′
t0 ≤ t ≤ 1} and/or
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defining the process on [0, 1]× Sd−1 as

u(t, S) = b(At,S)−
∫

x∈S

F (t|x)b(Γdx),

we could reduce our considerations to the unit ball Bd. We, however, will stay
with general G and the general scanning family.

Consider now Brownian motion b and its conditional distribution given
{b(ΓS), S ⊆ Sd−1}. Obviously under this conditional distribution the process b
is not Brownian motion any more and Theorem 1 below describes b as the sum
of new set-parametric Brownian motion and another “smooth” set-parametric
process. In our view, this representation can be considered as a generalisation
of Doob–Meyer decomposition for b given {b(ΓS), S ⊆ Sd−1} and, as we will see
below, also as that for the total Brownian bridge.

It is interesting and, for some applications important, to consider boundary
condition of a somewhat more general form. Namely, we want to be able to
assume that b(ΓS) may not be known on the total Sd−1 but only on its subset
S0 and also not on the whole σ-algebra of Borel measurable subsets of Sd−1 but
on a “rougher” σ-algebra which may contain “blobs” or “splashes” on Sd−1 as
atoms. Therefore introduce σ-algebra S generated by some collection of Borel
measurable subsets of some S0. For example, S may consist only of S0 and φ.
Concerning S0, we assume that µd−1(S0) > 0, where µd−1(·) is an area measure
on Sd−1. Now consider {b(ΓS), S ∈ S} as the boundary condition. As we have
said, we will write down what seems to us the Doob–Meyer decomposition of
b under the condition {b(ΓS), S ∈ S}. However, let us first define Brownian
bridge similar to (2.1).

The measure µ(CS), S ∈ S, is absolutely continuous with respect to the
measure µ(ΓS), S ∈ S, and corresponding Radon-Nikodým derivative

F (C|s) =
µ(Cds)

µ(Γds)
,

where s is an atom of S, is absolutely continuous distribution in C. For any set
C ∈ BG define

v(C) = b(C)−
∫

S0

F (C|s)b(Γds). (2.2)

The process vS = {v(C), C ∈ S} can be naturally called the S-Brownian bridge.
It is convenient to list some of its properties:

a) for S ∈ S , v(ΓS) = 0,
b) if C ∩ α(S0)) = φ, then v(C) = b(C),
c) vS and {b(ΓS), S ∈ S} are independent processes,
d) the covariance function of vS is

Ev(C)v(D) = µ(C ∧D)−
∫

S0

F (C|s)F (D|s)µ(Γds).
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Now we formulate our theorem. Let

Ft = σ{b(C ∩ At), C ∈ BG} ∨ σ{b(ΓS), S ∈ S}
be σ-algebra generated by b on the subsets of At and by the boundary condition.
It is clear that F0 = σ{b(ΓS), S ∈ S}. The filtration {Ft, 0 ≤ t ≤ 1} describes
the “history” of b up to the moment t under the boundary conditions. For any
C ∈ BG and t ∈ [0, 1], define

w(C, t) = b(C ∩ At)−
t∫

0

∫

S0

b(Γds)− b(Aτ,ds)

1− F (Aτ |s) F (C ∩ Adτ |s). (2.3)

Theorem 1. The process on [0, 1] × BG defined by (2.3) has the following
properties:

(1) For any t ∈ [0, 1], the process in C, wt = {w(C, t), C ∈ BG} is Ft-
measurable.

(2) For any C ∈ BG, w(C, t) = w(C ∩ At, 1).
(3) Under the conditional distribution of b given {b(ΓS), S ∈ S} the process

w ≡ w1 is Brownian motion on BG.
(4) Given {b(ΓS), S ∈ S}, there is one-to-one correspondence between the

processes w and b. Moreover, given {b(ΓS), S ∈ S}, there is one-to-one corre-
spondence between wt and the restriction bt of b on At.

The following corollary describes the process wt in a form analogous to (1.1).

Corollary 1. Define the set-parametric process ζ = {ζ(C), C ∈ BG} as

ζ(C) = b(C)−
1∫

0

∫

S0

b(Γds)− b(Aτ,ds)

1− F (Aτ |s) F (C ∩ Adτ |s).

Then

wt = E[ζ|Ft].

The next corollary reformulates (2.3) for the function parametric Brownian
motion in L2(G). Denote b(f) =

∫ 1
0

∫
S0

f(tx)b(Adt,ds), and let w(f) be defined
similarly. The family b = {b(f), f ∈ L2(G)} of 0-mean Gaussian random
variables with covariance Eb(f)b(h) = 〈f, h〉 is called (function-parametric)
Brownian motion on L2(G). Denote by V a linear operator in L2(G):

Vf(tx)=

t∫

0

fS(t′x)

1− F (t′|s) F (dt′|s),

where fS is conditional expectation of the function f given the σ-algebra {ΓS,
S ∈ S}.



INNOVATION THEORY OF SPATIAL BROWNIAN MOTION 303

Corollary 2. The process on L2(G) defined as

w(f) = b(f)− b(Vf)

is Brownian motion on L2(G). This process and the function-parametcir process
bΓ = {∫S0

g(s)b(Γds} are independent.

Proof of Theorem 1. Property (1) is true because b(Γds) is Ft-measurable and
so is b(Aτ,ds) for τ ≤ t.

Property (2) follows from the fact that F (C ∧ At ∧ Adτ |s) = 0 for τ ≥ t and
hence, the integration over τ in w(C ∧ At, 1) will stop at t.

To prove property (3) we notice that w(C, t) can be rewritten as the trans-
formation of vS only:

w(C, t) = v(C ∧ At) +

t∫

0

∫

S0

v(Aτ,ds)

1− F (Aτ |s)F (C ∩ Adτ |s). (2.4)

Since the distribution of vS does not depend on {b(ΓS), S ∈ S} (see (c) above),
the distribution of w under conditional distribution of b given F0 does not
depend on F0 either and, hence, coincides with its unconditional distribution.
Therefore we can derive it from (2.3) assuming b is Brownian motion. Being
linear transformation of b the process w is certainly Gaussian, and we only need
to prove that

Ew(C, 1)w(D, 1) = µ(C ∧D). (2.5)

Then property 2) insures that for w(C, t) and w(D, t′), t ≤ t′, we will have

Ew(C, t) · w(D, t′) = µ(C ∩D ∩ At).

To prove (2.5) we need to show that

I1 = Eb(D)

1∫

0

∫

S0

b(Γds)− b(Aτ,ds)

1− F (Aτ |s) F (C ∩ Adτ |s)

=

1∫

0

∫

S0

µ(Dds)− µ(Dds ∩ Aτ )

1− F (Aτ |s) F (C ∩ Adτ |s)

=

1∫

0

∫

S0

F (D|s)− F (D ∩ Aτ |s)
1− F (Aτ |s) F (C ∩ Adτ |s)µ(Γds) (2.6)

plus similar integral, denoted by I2, with D and C interchanging places, is equal
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to
1∫

0

1∫

0

∫

S0

∫

S0

E
b(Γds)− b(Aτ,ds)

1− F (Aτ |s) · b(Γds′)− b(Aτ ′ds′)

1− F (Aτ ′|s′) F (C ∩ Adτ |s)F (D ∩ Adτ ′|s′)

=

1∫

0

1∫

0

∫

S0

µ(Γds)− µ(Aτ∨τ ′,ds)

[1− F (Aτ |s)][1− F (Aτ ′|s)]F (C ∩ Adτ |s)F (D ∩ Adτ ′|s)

=

1∫

0

1∫

0

∫

S0

1− F (Aτ∨τ ′|s)
[1− F (Aτ |s)][1− F (Aτ ′|s)]F (C ∩ Adτ |s)F (D ∩ Adτ ′|s)µ(Γds).

However, integration over τ ′ ≥ τ leads to

1∫

0

∫

S0

1

1− F (Aτ |s)F (C ∩ Adτ |s)
1∫

τ

F (D ∩ Adτ ′|s) · µ(Γds)

=

1∫

0

∫

s0

F (D|s)− F (D ∩ Aτ |s)
1− F (Aτ |s) F (C ∩ Adτ |s)µ(Γds)

which is equal to (2.6). Similarly, integration over τ ′ < τ leads to I2 and hence
(3) is proved. We only remark that changes of order of integration which we used
can be easily justified using a simple truncation technique in the neighborhood
of 1 (cf. [7], Theorem 3.13) and thus we skip it here.

To prove property (4), we need to show that v can be expressed through w
in a unique way. Consider w(C) ≡ w(C, 1) with C = At,ds. We get

w(At,ds) = v(At,ds) +

t∫

0

v(Aτ,ds)

1− F (Aτ |s)F (Adτ |s)

because F (At,ds ∩ Adτ |s′) = F (Adτ,ds|s) · I(s = s′, τ ≤ t). The above equation
has a unique solution

v(At,ds) = [1− F (At|s)]
t∫

0

w(Adτ,ds)

1− F (Aτ |s)
which being substituted in (2.4) with t = 1 leads to

v(C) = w(C)−
1∫

0

t∫

0

∫

S0

w(Adτ,ds)

1− F (Aτ |s)F (Adt|s).

The reader may already have noticed that what was essential for Theorem 1
to hold was the structure of the boundary condition. It was essential that the
sets in the σ-algebra S were cylindrical with respect to t. If we think about
our Brownian motion restricted to G as a process which “evolves from 0 within
G” and if we consider it as a random measure rather than a random function
in x, then it may not, perhaps, be so natural to associate with a point of the
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boundary the value of our measure on the rectangle [0, x] and to speak about
boundary condition {b(x), x ∈ Γ}. The boundary condition {b(ΓS), S ∈ S}
we have used can, perhaps, be thought of as more natural and adequate. It is
natural to have Brownian motion on the boundary Γ as the boundary condition,
which the latter is but the former is not.

Another feature of conditioning on the boundary is well illustrated by the
following example. Take d = 2 for simplicity and consider Brownian motion
on the square [0, 1]2. Consider two sets of boundary conditions {b(1, τ), τ ∈
[0, 1]} and {b(t, 1), t ∈ [0, 1]}. For each of these conditions we can easily obtain
scanning family and construct corresponding innovation process for Brownian

motion thus conditioned. In particular, we can choose A
(1)
t = {(t′, τ ′) : t′ ≤ t}

and consider σ-algebras F (1)
t = σ{b(t′, τ ′), (t′, τ ′) ∈ A

(1)
t } ∨ σ{b(1, τ), τ ∈ [0, 1]},

which will lead to an innovation process of the form

w(1)(t, τ) = b(t, τ)−
t∫

0

b(1, τ)− b(t′, τ)

1− t′
dt′, (t, τ) ∈ [0, 1]2.

(This is also the innovation process for the Kiefer process defined as v(1)(t, τ) =
b(t, τ) − tb(1, τ), (t, τ) ∈ [0, 1]2.) Similarly, in the second case we can choose

A
(2)
t = {(t′, τ ′) : τ ′ ≤ τ} and derive corresponding w(2). However, it is interest-

ing to consider Brownian motion {b(t, τ), (t, τ) ∈ [0, 1]2} under both conditions
simultaneousely. In this case we do not have one scanning family which will
serve the purpose, but we can apply Theorem 1 twice consecutively. What can
be said then is this:

Theorem 2. Let the process w[0,1]2 = {w(t, τ), (t, τ) ∈ [0, 1]2} be defined by
either of the equations:

w(dt, dτ) = w(1)(dt, dτ)− E[w(1)(dt, dτ)|F (2)
τ ]

= w(2)(dt, dτ)− E[w(2)(dt, dτ)|F (1)
t ]

or, in explicit form

w(t, τ) = b(t, τ)−
t∫

0

b(1, τ)− b(t′, τ)

1− t′
dt′ −

τ∫

0

b(t, 1)− b(t, τ ′)
1− τ ′

dτ ′

+

t∫

0

τ∫

0

b(1, 1)− b(t′, 1)− b(1, τ ′) + b(t′τ ′

(1− t′)(1− τ ′)
dt′dτ ′.

Then:
(1) The distribution of this process under the boundary condition {b(1, τ), τ ∈

[0, 1]} and {b(t, 1), t ∈ [0, 1]} does not depend on this condition and is the dis-
tribution of Brownian bridge on [0, 1]2.
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(2) There is one-to-one correspondence between processes w[0,1]2 and v =
{v(t, τ)}, where

v(t, τ) = b(t, τ)− tb(1, τ)− τb(t, 1) + tτb(1, 1)

is the projection of {b(t, τ), (t, τ) ∈ [0, 1]2 on the boundary of [0, 1]2.

Let us leave the proof of this theorem to the reader.
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