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A REMARK ON POLYGONAL QUASICONFORMAL MAPS

S. L. KRUSHKAL

To Reiner Kühnau on his 65th birthday

Abstract. Given a quasisymmetric map h : R̂ → R̂, let f0 be an extremal
quasiconformal extension of h onto the upper half-plane U = {z ∈ C : =z >
0} whose dilatation k(f0) = inf{k(f) : f |∂U = h0} =: k(h). Let kn be the
minimal dilatation of polygonal quasiconformal maps f : U → U satisfying
f(xj) = h(xj), j = 1, 2, . . . , n, for any n points of R̂ (vertices of n-gons).
Already a long time ago, the question was posed whether k(h) = sup kn,
where the supremum is taken over all possible n-gons of such kind. The
answer is obtained (in the negative) for the case of quadrilaterals (n = 4).

We show that in the case of pentagons (n = 5) the answer is also negative,
i.e., there are quasisymmetric h with k(h) > sup k5.
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1. Introduction. Any quasisymmetric homeomorphism h of R̂ = R∪ {∞}
onto itself, i.e., such that

M−1 ≤ h(x + t)− h(x)

h(x)− h(x + t)
≤ M

for any x ∈ R and t > 0, with M = M(h) < ∞, admits quasiconformal
extensions onto the upper half-plane U = {z : =z > 0} (and symmetrical
extensions to the lower half-plane U∗ = {z : =z < 0}).

Let f0 be an extremal quasiconformal extension of h whose dilatation

k(f0) = inf{k(f) = ‖∂z̄f/∂zf‖∞ : f |∂U = h} =: k(h).

Recall that quasiconformal maps are (generalized) homeomorphic solutions

of the Beltrami equation ∂z̄w = µ(z) ∂zw in a domain D ⊂ Ĉ = C ∪ {∞} with
‖µ‖∞ < 1, where the derivatives ∂z̄ and ∂z are distributional and belong locally
to L2. The function µ is called the Beltrami coefficient of the map w, and the
quantity K(f) = (1+k(w))(1−k(w)) is its maximal dilatation. The maps with
k(w) ≤ k0 are called k0-quasiconformal.
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Given a simply connected Jordan domain D ⊂ Ĉ, one can regard it as a
(topological) polygon D(z1, . . . , zn) whose vertices are n distinguished bound-
ary points z1, . . . , zn ordered in accordance with the orientation of ∂D. Qua-
siconformal maps of polygons moving the vertices into vertices will be called
polygonal quasiconformal.

In view of conformal invariance of q-quasiconformality, it will suffice for us to
deal with the maps of polygons whose domains are either the upper half-plane
U or the unit disk ∆ = {z : |z| < 1}.

For any quasisymmetric map h, we have k(f0)= lim
n→∞ k(fn), where fn are ex-

tremal polygonal quasiconformal maps of U(x1, . . . , xn) onto U(h(x1), . . . , h(xn)),
and the set of vertices {xn} becomes dense on R.

Already a long time ago, the question was posed whether for a fixed n ≥ 4
(or even for n ≤ N) the equality

k(h) = sup k(fn) (1)

is achieved when one allows the vertices to vary on R̂ in all possible ways.
The answer is known only in the case of quadrilaterals (n = 4). The dis-

tortion of conformal modules mod Q of all quadrilaterals D ⊂ ∆ under a
quasiconformal homeomorphism f : D → Ĉ determines its maximal dilatation
K(f), and it was conjectured that the bound

K0(h) = sup
Q

mod f0(Q)

mod Q
,

where f0 is an extremal extension of h and the supremum is taken over all
quadrilaterals Q = U(z1, z2, z3, z4), is the best possible.

This conjecture was disproved by a counterexample of Anderson and Hinkka-
nen (see [1]) and by Reich [15]; a complete answer for quadrilaterals has been
given in [21] (see also [12]).

As for n ≥ 5, it has been showed by Strebel [19] that equality (1) holds for
extremal quasiconformal maps f0 without essential boundary points.

The purpose of this note is to show that in the case of pentagons (n = 5) the
answer is also negative:

Theorem. For each k ∈ (0, 1), there exist quasisymmetric maps h with

k(h) = k > sup k(f5), (2)

where the supremum is taken over the extremal polygonal maps of all possible
pentagons U(x1, . . . , x5).

The proof goes along the lines of [15] and [5]; it involves the fundamental
Reich–Strebel inequality for polygonal maps and the Grunsky coefficient in-
equality for holomorphic functions with quasiconformal extension.

2. The Grunsky coefficients. For convenience, we collect here the main
facts concerning the properties of the Grunsky matrix of univalent functions.
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We shall use the following notations. Let D be a hyperbolic simply-connected
domain in Ĉ. We denote by A1(D) the subspace of L1(D) formed by holomor-
phic functions in D , and put

< µ, ϕ >D=
∫ ∫

D

µ(z)ϕ(z)dxdy, µ ∈ L∞(D), ϕ ∈ L1(D) (z = x + iy)

and

A2
1(D) = {ϕ ∈ A1(D) : ϕ = ω2};

the last set consists of the integrable holomorphic functions in D with zeros of
even order.

The Grunsky univalence criterion [3] says that a Ĉ-holomorphic function

f(z) = z + a0 + a1z
−1 + · · · (3)

in a neighborhood of the infinite point z = ∞ extends to an injective holomor-
phic function in the disk

D∗ = {z ∈ Ĉ : |z| > 1}
(with the same expansion (2)) if and only if its Grunsky coefficients, defined
from the expansion

log
f(z)− f(ζ)

z − ζ
= −

∞∑

m,n=1

cmnz
−mζ−n, (z, ζ) ∈ (∆∗)2,

satisfy for any x = (x1, x2, . . . ) ∈ l2 the inequality

∣∣∣
∞∑

m,n=1

√
mn cmnxmxn

∣∣∣ ≤ ‖x‖2
(
‖x‖2 =

(∣∣∣
∞∑

1

|xn|2
)1/2)

. (4)

It is also known that, for functions (3) having k-quasiconformal extensions to

Ĉ, inequality (4) is sharpened as follows:

κ(f) = sup
{∣∣∣

∞∑

m,n=1

√
mn cmnxmxn

∣∣∣ : x ∈ l2, ‖x‖ = 1
}
≤ k‖x‖2; (5)

and on the other hand, any holomorphic function f in ∆∗ satisfying (5) is

univalent and quasiconformally extendible to Ĉ with a dilatation k′ ≥ k (see,
e.g., [9] [13]; [8], pp. 82–84).

We shall denote the class of univalent functions in ∆∗ of form (3) by Σ, and

let Σ(k) consist of f ∈ Σ having k-quasiconformal extensions to Ĉ.
The following statement provides a complete description of the class of func-

tions for which inequality (5) is both necessary and sufficient to belong to Σ(k),
i.e., the value κ(f) coincides with the least (extremal) dilatation k(f) among
possible extensions of f .

Proposition ([5], [6]). The equality

κ(f) = inf{‖µ‖∞ : wµ|∆∗ = f} (6)
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holds if and only if the function f is the restriction to ∆∗ of a quasiconformal
self-map wµ0 of C with the Beltrami coefficient µ0 satisfying the condition

sup | < µ0, ϕ >∆ | = ‖µ0‖∞, (7)

where the supremum is taken over holomorphic functions ϕ ∈ A2
1(∆) with

‖ϕ‖A1(∆) = 1.

Geometrically, this means that the Carathéodory metric on the immersion of
the holomorphic disk {tµ0 : t ∈ ∆} ⊂ L∞(∆) into the universal Teichmüller
space T equals the intrinsic Teichmüller–Kobayashi metric of this space.

In particular, for any function f ∈ Σ(k) having k-quasiconformal extension
onto ∆ with the Beltrami coefficient µ of the form

µ(z) = k|ϕ(z)|/ϕ(z), ϕ ∈ A2
1(∆) \ {0}, (8)

we have the equality

κ(f) = k. (9)

If the boundary quasicircle L = f(∂∆) is asymptotically conformal, i.e., satisfies

max
z∈L(a,b)

|a− z|+ |z − b|
|a− b| → 1 as |a− b| → 0,

where L(a, b) is the smaller subarc of L between the points a, b ∈ L, then equality
(8) is both necessary and sufficient for f ∈ Σ(k) to have (9) ([7]; see also [6],
[11]). In particular, this holds for C1-smooth curves.

The properties of asymptotically conformal curves and of related conformal
maps are described, for example, in [14].

Using Strebel’s frame mapping criterion (see [18], [2]), one can establish
that each f ∈ Σ(k) mapping the unit circle S1 = ∂∆ onto an asymptoti-
cally conformal curve admits a unique extremal quasiconformal extension to
∆ of Teichmüller’s type, i.e., whose Beltrami coefficient µ0 = k|ϕ|/ϕ with
ϕ ∈ A1(∆) \ {0} (see [7]). This yields (together with (8) and (9)) that for
any f ∈ Σ(k) which maps ∆∗ onto a domain with asymptotically conformal
boundary and has extremal extension with the Beltrami coefficient is of the
form

µ0 = k|ϕ|/ϕ, ϕ ∈ A1(∆) \ A2
1(∆), (10)

(i.e., with ϕ having at least one zero in ∆ of odd order), one obtains the strong
inequality κ(f) < k.

The simplest example of coefficients (10) is given by µ0(z) = |z|m/zm with
odd m ≥ 1.

3. The proof of the Theorem consists of four stages.
(a) For a given quasisymmetric map h, let f0 be an extremal quasiconfor-

mal extension of h to U . Fix a pentagon U(a1, a2, a3, a4, a5) with the vertices

a1, . . . , a5 ∈ R̂. We can assume that these vertices are ordered by

−∞ < a1 < a2 < · · · < a5 = ∞.
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By the general Teichmüller theorem on extremal quasiconformal maps (see, e.g.,
[20], [4]), the Beltrami coefficient of the extremal map

f : U(a1, . . . , a5) → U(h(a1), . . . , h(a5))

is of the form

µf (z) = k
|ϕ0(z)|
ϕ0(z)

,

where k = k(f) and ϕ0 is a rational function of the form

ϕ0(z) =
4∑

k=1

ck

z − ak

. (11)

Here the numbers ck are real because the quadratic differential ϕ0(z)dz2 takes
the real values on R; hence

ϕ0(z̄) = ϕ0(z).

First observe that after composing h with the elements of PSL(2,R) (frac-
tional linear automorphisms of U), the initial pentagon is transformed confor-
mally to a pentagon U(0, 1, a, b,∞) for which representation (11) takes the most
simple form

ϕ0(z) =
(c1 + c2)z − (c1b + c2a)

z(z − 1)(z − a)(z − b)
,

which shows that ϕ0 has only one real zero. This yields that the extremal
quasiconformal maps of any pentagon D(a1, a2, a3, a4, a5), whose domain D is
bounded by a C1+α smooth curve onto other ones, are determind by holomorphic
quadratic differentials

ψ0 = (ϕ0 ◦ g)(g′)2, (12)

where g maps conformally D(a1, a2, a3, a4, a5) onto U(0, 1, a, b,∞), and each
ψ0 has only one zero; moreover, this zero is located on the boundary of D.
Consequently, ψ0 does not vanish in D, and it is possible to define a single-
valued branch of

√
ψ0 in the whole domain D.

When at least two vertices of a pentagon tend to the same limit point, it
degenerates into an n-gon with n ≤ 4 vertices.

(b) Now, assuming that equality (1) holds for h with n = 5, one can select
a sequence of pentagons

Pm = U(a1,m, a2,m, a3,m, a4,m, a5,m), m = 1, 2, . . . ,

and the corresponding extremal quasiconformal maps

fm : Pm → U(h(a1,m), . . . , h(a5,m))

which carry the vertices aj to h(aj), j = 1, . . . , 5, so that

lim
m→∞ k(fm) = k(h) = k(f0). (13)

The Beltrami coefficients of these maps are

µfm(z) = km|ϕm(z)|/ϕm(z), km = k(fm),
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where each ϕm(z) is a rational function of form (11).
We now apply the Reich–Strebel inequality for polygons to the extremal

Beltrami coefficient µ0 = µf0 of h and to quadratic differentials ϕm (see [16],
Theorem 7) which yields

<
∫ ∫

U

µ0(z)ϕm(z)

1− |µ0(z)|2 dxdy ≥ km

1− km

−
∫ ∫

U

|ϕm(z)| |µ0(z)|2
1− |µ0(z)|2 dxdy. (14)

For the maps f0 with constant |µ0(z)| in U (equal to k(h)), the last inequality
implies

1

1− k(h)2
< < µ0, ϕm >U ≥ km

1− km

− k(h)

1− k(h)2
.

Combining this with (13), one obtains

lim inf
m→∞ < < µ0, ϕm >U ≥ k(h),

which is possible only if

lim
m→∞ < < µ0, ϕm >U= k(h). (15)

Since ϕm(z) 6= 0 in U , it follows from (15) that

sup
ϕ∈A2

1(U): ‖ϕ‖A1(U)=1

| < µ0, ϕ >U | = k(h). (16)

(c) Conjugating h and its extensions by

g : ∆ → U, ζ 7→ z = i(1 + ζ)/(1− ζ),

we pass to pentagons ∆(z1, . . . , z5) with the vertices on S1 and to quasiconformal
automorphisms f of the disk ∆, and extend their Beltrami coefficients onto the
whole complex plane C, setting µf (z) = 0 for |z| > 1. Then the corresponding
maps are conformal on ∆∗, and we normalize them by means of (3). All this
does not change the dilatations.

Denote by h̃ and f̃0 the homeomorphisms corresponding to h and f0 via such
transforms, respectively. Then

µf̃0
(ζ) = −(µ ◦ g)

(ζ̄ − 1)2

(ζ − 1)2
=: µ̃0(ζ),

and, similar to (16),

sup
ϕ̃∈A2

1(∆): ‖ϕ̃‖A1(∆)=1

| < µ̃0, ϕ̃ >∆ | = k(h̃).

This means, due to Proposition, that

κ(f̃0) = k(f̃0) = k(h).

(d). Now take quasisymmetric homeomorphisms

h = fk|ϕ|/ϕ
∣∣∣R
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with arbitrary k ∈ (0, 1) and ϕ satisfying (10) such that quasicircles h̃(S1),
determined by h following (c), are asymptotically conformal. Then it follows
from the above that all such homeomorphisms satisfy (2). This completes the
proof of the Theorem.

4. Remark on the Fredholm eigenvalues. Due to Kühnau–Schiffer’s
theorem (see [10], [17]), the reciprocal value to the Grunsky constant κ(f̃0)) is

equal to the least positive Fredholm eigenvalue λL of the quasicircle L = f̃0(S
1)

defined by

1

λL

:= sup
|Df(∆)(u)−Df(∆∗)(u)|
Df(∆)(u) + Df(∆∗)(u)

, DG(u) =
∫ ∫

G

(∇u)2dxdy,

where the supremum is taken over functions u continuous on Ĉ and harmonic
on Ĉ \ L. In the case of a smooth curve, λL coincides with the least positive
eigenvalue of the double-layer potential over L.

These eigenvalues produce another obstruction to equality (1) for quadrilat-
erals and pentagons.
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