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ON THE DIMENSION OF SOME SPACES OF GENERALIZED
TERNARY THETA-SERIES
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Abstract. The upper bound of dimension of vector spaces of generalized
theta-series corresponding to some ternary quadratic forms is established. In
a number of cases, the dimension of vector spaces of generalized theta-series
is established and bases of these spaces are constructed.
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1. Introduction


Let
Q(X) = Q(x1, . . . , xr) =


∑
1≤i≤j≤r


bijxixj


be an integral positive definite quadratic form in an even number r of variables.
That is, bij ∈ Z and Q(X) > 0 if X 6= 0. To Q(X) we associate the even integral
symmetric r× r matrix A defined by aii = 2bii and aij = aji = bij, where i < j.
If X = [x1, . . . , xr]


′ denotes a column vector where ′ denotes the transposition,
then we have Q(X) = 1


2
X ′AX. Let Aij denote the algebraic adjunct of the


element aij in D = det A and a∗ij the corresponding element of A−1.
Below we shall use the notions, notation and some results from [2].
A homogeneous polynomial P (X) = P (x1, . . . , xr) of degree ν with complex


coefficients, satisfying the condition


∑
1≤i,j≤r


a∗ij
( ∂2P


∂xi∂xj


)
= 0 (1)


is called a spherical polynomial of order ν with recpect to Q(X) (see [1]), and


ϑ(τ, P,Q) =
∑


n∈Zr
P (n)zQ(n), z = e2πiτ , τ ∈ C, Im τ > 0, (2)


is the corresponding generalized r-fold theta-series.
Let R(ν,Q) denote the vector space over C of spherical polynomials P (X) of


even order ν with respect to Q(X). Hecke [2] calculated the dimension of the
space R(ν,Q) and showed that


dimR(ν,Q) =
(ν +∇− 3)!


(∇− ∈)!ν!
(∇+ ∈ν − ∈). (3)


ISSN 1072-947X / $8.00 / c© Heldermann Verlag www.heldermann.de







168 K. SHAVGULIDZE


Let T (ν, Q) denote the vector space over C of generalized multiple theta-
series, i.e.,


T (ν, Q) = {ϑ(τ, P, Q) : P ∈ R(ν,Q)}.
Gooding [1] calculated the dimension of the vector space T (ν, Q) for reduced


binary quadratic forms Q.
In this paper the upper bound is established for dimension of the vector space


T (ν, Q) for some positive reduced ternary quadratic forms. In a number of cases
the dimension of vector spaces of theta-series is also calculated and the bases
of this spaces are constructed.


In the sequel we use the following definition and results:
An integral r × r matrix U is called an integral automorph of the quadratic


form Q(X) in r variables if the condition


U ′AU = A (4)


is satisfied.


Lemma 1 ([1], p. 37). Let Q(X) = Q(x1, . . . , xr) be a positive definite
quadratic form in r variables and P (X) = P (x1, . . . , xr) ∈ R(ν,Q). Let G be
the set of all integral automorphs of Q. Suppose


t∑
i=1


P (UiX) = 0 for some U1, . . . , Ut ⊆ G,


then ϑ(τ, P,Q) = 0.


Lemma 2 ([2], p. 853). Among homogeneous quadratic polynomials in r
variables


ϕij = xixj − Aij


rD
2Q(X) (i, j = 1, . . . , r), (5)


exactly r(r+1)
2


− 1 ones are linearly independent and form the basis of the space
of spherical polynomials of second order with respect to Q(X).


Lemma 3 ([3], p. 533). Among homogeneous polynomials of fourth degree
in r variables


ϕijkl = xixjxkxl − 1


(r + 4)D
(Aijxkxl + Aikxjxl + Ailxjxk + Ajkxixl


+ Ajlxixk + Aklxixj) · 2Q +
1


(r + 2)(r + 4)D2
· (AijAkl + AikAjl


+ AilAjk) · (2Q)2 (i, j, k, l = 1, . . . , r), (6)


exactly 1
24


r(r2 − 1)(r + 6) ones are linearly independent and form the basis of
the space of spherical polynomials of fourth order with respect to Q(X).


Lemma 4 ([4], p. 28–30). For a matrix of integers


U = ‖uij‖r×r
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to be an integral automorph of the quadratic form


Q(X) =
∑


1≤i≤j≤r


bijxixj


it is sufficient
a) to find a representation of integers b11, b22, . . . , brr by the quadratic form


Q(X), assuming that


Q(u1i, u2i, . . . , uri) = bii (1 ≤ i ≤ r), (7)


and
b) to verify that the r2−r


2
conditions


r∑
t=1


r∑


k=1


atkutiukj = bij (i < j; i, j = 1, . . . , r) (8)


are satisfied.


2. The Basis of the Space R(ν,Q)


Let


P (x) = P (x1, x2, x3) =
ν∑


k=0


k∑
i=0


akix
i
1x


k−i
2 xν−k


3 (9)


be a spherical function of order ν with respect to the positive ternary quadratic
form Q(x1, x2, x3). Hence, according to definition (1), the condition


A11


|A|
∂2P


∂x2
1


+ 2
A12


|A|
∂2P


∂x1∂x2


+ 2
A13


|A|
∂2P


∂x1∂x3


+
A22


|A|
∂2P


∂x2
2


+2
A23


|A|
∂2P


∂x2∂x3


+
A33


|A|
∂2P


∂x2
3


= 0 (10)


is satisfied. Since


∂2P


∂x2
1


=
ν∑


k=0


k∑
i=0


i(i− 1)akix
i−2
1 xk−i


2 xν−k
3


=
ν−1∑


k=1


k−1∑
i=0


(i + 1)(i + 2)ak+1,i+2x
i
1x


k−i−1
2 xν−k−1


3


and one can easily obtain similar formulas for other second partial derivatives,
condition (10) takes the form


1


|A|
ν−1∑


k=1


k−1∑
i=0


(
A11(i + 1)(i + 2)ak+1,i+2 + 2A12(k − i)(i + 1)ak+1,i+1


+2A13(ν − k)(i + 1)ak,i+1 + A22(k − i)(k − i + 1)ak+1,i


+2A23(ν − k)(k − i)aki + A33(ν − k)(ν − k + 1)ak−1,i


)
xi


1x
k−i−1
2 xν−k−1


3 = 0.
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Thus, for 0 ≤ i < k ≤ ν − 1, we obtain


A11(i + 1)(i + 2)ak+1,i+2 + 2A12(k − i)(i + 1)ak+1,i+1


+2A13(ν − k)(i + 1)ak,i+1 + A22(k − i)(k − i + 1)ak+1,i


+2A23(ν − k)(k − i)aki + A33(ν − k)(ν − k + 1)ak−1,i = 0. (11)


Let


L = [a00, a10, a11, a20, a21, a22, . . . , aνν ]
′


be the column vector, where aki (0 ≤ i ≤ kν) are the coefficients of polynomial
(9).


Conditions (11) in matrix notation have the form


S · L = 0, (12)


where the matrix S (the elements of this matrix are defined from conditions
(11)) has the form


∥∥∥∥∥∥


A33(ν−1)ν 2A23(ν−1) 2A13(ν−1) 2A22 ... 0 0
0 A33(ν−2)(ν−1) 0 4A23(ν−2) ... 0 0
0 0 A33(ν−2)(ν−1) 0 ... 0 0
... ... ... ... ... ... ...
0 0 0 0 ... 2A12(ν−1) A11(ν−1)ν


∥∥∥∥∥∥
.


The number of rows of the matrix S is equal to the number of conditions (11),
i.e., to the number of pairs (i, k) with 0 ≤ i < k ≤ ν − 1. Hence the number
of rows is equal to


(
ν
2


)
= ν(ν − 1)/2. As for the number of columns of the


matrix S it is equal to the number of coefficients aki of polynomial (9), i.e., to
the number of pairs (i, k) with 0 ≤ i ≤ k ≤ ν. Hence it is equal to


(
ν+2
2


)
.


We partition the matrix S into two matrices S1 and S2. S1 is the left square
nondegenerate


(
ν
2


)×(
ν
2


)
matrix, it consists of the first


(
ν
2


)
columns of the matrix


S; S2 is the right
(


ν
2


) × (2ν + 1) matrix, it consists of the last 2ν + 1 columns
of the matrix S.


Similarly, we partition the matrix L into two matrices L1 and L2. L1 is the(
ν
2


)× 1 matrix, it consists of the upper
(


ν
2


)
elements of the matrix L; L2 is the


(2ν + 1)× 1 matrix, it consists of the lower 2ν + 1 elements of the matrix L.
According to the new notation, the matrix equality (12) has the form:


S1L1 + S2L2 = 0,


i.e.,


L1 = −S−1
1 S2L2. (13)


It follows from this equality that the matrix L1 is expressed through the matrix
L2, i.e., the first


(
ν
2


)
elements of the matrix L are expressed through its other


2ν + 1 elements. Since the matrix L consists of the coefficients of the spherical
polynomial P (X), its first


(
ν
2


)
coefficients can be expressed through the last


2ν + 1 coefficients.
Let Q(X) = Q(x1, x2, x3) be a ternary quadratic form. According to the


formula (3), dimR(ν,Q) = ∈ν +∞.
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Let us show that the polynomials1


P1(a
(1)
00 , a


(1)
10 , . . . , a


(1)
ν−2,ν−2, 1, 0, 0, . . . , 0),


P2(a
(2)
00 , a


(2)
10 , . . . , a


(2)
ν−2,ν−2, 0, 1, 0, 0, . . . , 0),


. . . . . . . . . . . . . . . . . . . . . . . . . . . . .


P2ν+1(a
(2ν+1)
00 , a


(2ν+1)
10 , . . . , a


(2ν+1)
ν−2,ν−2, 0, 0, 0, . . . , 1),


(14)


where in view of (13) the first
(


ν
2


)
coefficients from a00 to aν−2,ν−2 are calculated


through other 2ν + 1 coefficients and form the basis of the space R(ν,Q).
Indeed, these polynomials satisfy condition (13), i.e., condition (1), hence


polynomials (14) are spherical functions with respect to Q(X). They are linearly
independent and altogether are 2ν + 1, as it is stated above that the dimension
of the space R(ν,Q) is equal to 2ν + 1. Thus polynomials (14) form the basis
of the space R(ν,Q).


3. The Upper Bound of Dimension of T (ν, Q) for Some Ternary
Forms


Consider the quadratic form


Q1 = b11x
2
1 + b22x


2
2 + b33x


2
3,


where 0 < b11 < b22 < b33.
Construct the integral automorphs U of the quadratic form Q1. According


to the definition (4) and Lemma 4,


b11 = Q(±1, 0, 0),


b22 = Q(0,±1, 0),


b33 = Q(0, 0,±1).


Hence it is easy to verify that the integral automorphs of the quadratic form
Q1 are only


U =


∥∥∥∥∥∥


e1 0 0
0 e2 0
0 0 e3


∥∥∥∥∥∥
(ei = ±1, i = 1, 2, 3). (15)


From these 8 automorphs U we use only


U1 =


∥∥∥∥∥∥


−1 0 0
0 1 0
0 0 1


∥∥∥∥∥∥
and U2 =


∥∥∥∥∥∥


1 0 0
0 1 0
0 0 −1


∥∥∥∥∥∥
. (16)


Consider all possible polynomials Ph(UjX) (h = 1, 2, . . . , 2ν +1), where Ph ∈
R(ν,Q∞) are spherical polynomials of order ν with recpect to Q1(X), and
Uj ∈ G are integral automorphs of the quadratic form Q1(X).


1In the brackets of (14) the coefficients of polynomial Pi of form (9) are shown.
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From (9) and (16) it follows that


Ph(U1X) =
ν∑


k=0


k∑
i=0


a
(h)
ki (−x1)


ixk−i
2 xν−k


3 =
ν∑


k=0


k∑
i=0


(−1)ia
(h)
ki xi


1x
k−i
2 xν−k


3 ,


Ph(U2X) =
ν∑


k=0


k∑
i=0


a
(h)
ki xi


1x
k−i
2 (−x3)


ν−k =
ν∑


k=0


k∑
i=0


(−1)ka
(h)
ki xi


1x
k−i
2 xν−k


3 .


Further, we have


Ph(X) + Ph(U1X) =
ν∑


k=0


k∑
i=0


(1 + (−1)i)a
(h)
ki xi


1x
k−i
2 xν−k


3 ,


Ph(X) + Ph(U2X) =
ν∑


k=0


k∑
i=0


(1 + (−1)k)a
(h)
ki xi


1x
k−i
2 xν−k


3 .


We shall find out for which Ph, of two equalities


Ph(X) + Ph(U1X) = 0 (17)


or


Ph(X) + Ph(U2X) = 0, (18)


at least one takes place. Equality (17) takes place if and only if the coefficients


(1 + (−1)i)a
(h)
ki = 0 (19)


for all k, i. Keeping in mind the construction of a basis of the space of spherical
functions, it is sufficient to show that (19) is true for the last 2ν + 1 coefficients


from a
(h)
ν−1,0 to a


(h)
νν , i.e., when k = ν − 1, ν; i = 0, 1, . . . , k. All these last


coefficients a
(h)
ki are zero, except one which is equal to one. Suppose a


(h)
ki = 1


for a certain pair k, i with ν − 1 ≤ k ≤ ν and 0 ≤ i ≤ k; if i is odd, then


(1 + (−1)i)a
(h)
ki = 0. Hence Ph satisfies equality (17) if among the last 2ν + 1


coefficients, the index i – of the coefficient equal to one is odd. Similarly, it
follows that Ph satisfies equality (18) if among the last 2ν + 1 coefficients, the
index k – of the coefficient equal to one is odd.


Calculate how many polynomials Ph satisfy at least one of two equalities
(17) or (18), i.e., calculate how many coefficients aki with ν − 1 ≤ k ≤ ν and
0 ≤ i ≤ k have among the indices k or i, at least one odd. We have the following
cases:


a) If 2 - k, then k = ν − 1. The total number of coefficients with k = ν − 1
is equal to ν.


b) If 2 | k, but 2 - i, then k = ν, 0 ≤ i ≤ ν, 2 - i. The total number of
coefficients with such indices is equal to ν/2.


Thus, altogether we have ν + ν/2 polynomials Ph which satisfy at least one
of equalities (17) or (18), but for such polynomials, according to Lemma 1,


ϑ(τ, Ph, Q1) = 0. (20)
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We have thus shown that among 2ν+1 theta-series, corresponding to linearly
independent spherical polynomials, ν + ν/2 theta-series are zero. Hence the
maximal number of linearly independent theta-series, i.e.,


dim T (ν, Q1) ≤ 2ν + 1−
(
ν +


ν


2


)
=


ν


2
+ 1. (21)


Now consider the quadratic form


Q2 = b11(x
2
1 + x2


2) + b33x
2
3,


where 0 < b11 < b33.
We construct the integral automorphs U of the quadratic form Q2. Since


b11 = Q2(±1, 0, 0) = Q2(0,±1, 0), b33 = Q2(0, 0,±1),


it is easy to verify that the integral automorphs of the quadratic form Q2 are
automorphs (15) and, moreover, the automorphs


∥∥∥∥∥∥


0 e1 0
e2 0 0
0 0 e3


∥∥∥∥∥∥
(ei = ±1, i = 1, 2, 3). (22)


From automorphs (22) we use only


U3 =


∥∥∥∥∥∥


0 1 0
1 0 0
0 0 1


∥∥∥∥∥∥
. (23)


The automorphs of the quadratic form Q1 are also automorphs of the quadratic
form Q2, therefore


dim T (ν, Q2) ≤ ν


2
+ 1.


We improve this estimation. From (9) and (23) it follows that


Ph(U3X) =
ν∑


k=0


k∑
i=0


a
(h)
ki xi


2x
k−i
1 xν−k


3 =
ν∑


k=0


k∑
i=0


a
(h)
ki xk−i


1 x
k−(k−i)
2 xν−k


3 .


From here it follows that if all last 2ν + 1 coefficients of the basis polynomial


Ph(X) are equal to zero, except one a
(h)
ki = 1, then all last 2ν + 1 coefficients of


polynomial Ph(U3X) are equal to zero, except one ak,k−i = 1. Hence Ph(U3X)
is a basis polynomial of the space R(ν,Q∈). Further, it is known ([1], p. 38)
that


ϑ(τ, Ph(X), Q2) = ϑ(τ, Ph(U3X, Q2);


thus the theta-series ϑ(τ, Ph(X), Q2) and ϑ(τ, Ph(U3X), Q2), corresponding to
different basis polynomials Ph(X) and Ph(U3X), are linearly dependent.


Calculate how many such linearly dependent theta-series we have. Let k and
i be even (otherwise, it can be shown similarly to (20) that ϑ(τ, Ph, Q2) = 0),
i.e., k = ν, and i takes ν


2
+ 1 even values. Thus altogether we have [1


2
(ν


2
+ 1)]


linearly dependent theta-series.
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But [1


2


(ν


2
+ 1


)]
=


{
ν
4


if ν ≡ 0 (mod 4),
ν+2
4


if ν ≡ 2 (mod 4).


Hence


dim T (ν, Q2) ≤ ν


2
+ 1− ν


4
=


ν


4
+ 1 if ν ≡ 0 (mod 4),


dim T (ν, Q2) ≤ ν


2
+ 1− ν + 2


4
=


ν + 2


4
if ν ≡ 2 (mod 4).


(24)


Consider now the quadratic form


Q3 = b11(x
2
1 + x2


2) + b33x
2
3 + b12x1x2,


where 0 < |b12| < b11 < b33.
It is easy to verify that the integral automorphs of the quadratic form Q3 are∥∥∥∥∥∥


e1 0 0
0 e1 0
0 0 e2


∥∥∥∥∥∥
and


∥∥∥∥∥∥


0 e1 0
e1 0 0
0 0 e2


∥∥∥∥∥∥
(ei = ±1, i = 1, 2). (25)


From automorphs (25) we use


U4 =


∥∥∥∥∥∥


1 0 0
0 1 0
0 0 −1


∥∥∥∥∥∥
and U5 =


∥∥∥∥∥∥


0 1 0
1 0 0
0 0 1


∥∥∥∥∥∥
. (26)


From (9) and (26) it follows that


Ph(U4X) =
ν∑


k=0


k∑
i=0


a
(h)
ki xi


1x
k−i
2 (−x3)


ν−k =
ν∑


k=0


k∑
i=0


(−1)ν−ka
(h)
ki xi


1x
k−i
2 xν−k


3 ,


Ph(U5X) =
ν∑


k=0


k∑
i=0


a
(h)
ki xi


2x
k−i
1 xν−k


3 =
ν∑


k=0


k∑
i=0


a
(h)
ki xk−i


1 x
k−(k−i)
2 xν−k


3 .
(27)


We have


Ph(X) + Ph(U4X) =
ν∑


k=0


k∑
i=0


(1 + (−1)k)a
(h)
ki xi


1x
k−i
2 xν−k


3 . (28)


Calculate how many polynomials Ph satisfy the equality


Ph(X) + Ph(U4X) = 0. (29)


According to (28), we must calculate how many coefficients aki, with ν− 1 ≤
k ≤ ν and 0 ≤ i ≤ k, have the index k odd, i.e., k = ν − 1. Thus altogether we
have ν polynomials Ph which satisfy equality (29). But for such polynomials,
according to the Lemma 1,


ϑ(τ, Ph, Q3) = 0. (30)


From (14) and (27) it follows that if all last 2ν + 1 coefficients of the basis


polynomial Ph(X) are equal to zero, except one a
(h)
ki = 1, then all last 2ν + 1


coefficients of polynomial Ph(U5X) are equal to zero, except one ak,k−i = 1.
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Hence Ph(U5X) is a basis polynomial of the space R(ν,Q3). Further, it is
known ([1], p. 38) that


ϑ(τ, Ph(X), Q3) = ϑ(τ, U5(X), Q3);


thus the theta-series ϑ(τ, Ph(X), Q3) and ϑ(τ, Ph(U5X), Q3), corresponding to
the different basis polynomials Ph(X) and Ph(U5X), are linearly dependent.


We count the number of linearly dependent theta-series. Let k be even (other-
wise (30) holds true) i.e., k = ν, i takes ν+1 values. Thus we have [1


2
(ν+1)] = ν


2
linearly dependent theta-series.


We have thus shown that among 2ν+1 theta-series, corresponding to linearly
independent spherical polynomials, ν theta-series are zero and ν/2 are linearly
dependent theta-series. Hence the maximal number of linearly independent
theta-series


dim T (ν, Q3) ≤ 2ν + 1− ν − ν


2
=


ν


2
+ 1. (31)


Consider the quadratic forms:


Q4 = b11(x
2
1 + x2


2) + b33x
2
3 + b23x2x3,


Q5 = b11(x
2
1 + x2


2) + b33x
2
3 + b13x1x3,


Q6 = b11(x
2
1 + x2


2) + b33x
2
3 + b13(x1x3 + x2x3),


Q7 = b11(x
2
1 + x2


2) + b33x
2
3 + b13(x1x3 + x2x3) + b12x1x2,


where 0 < |b13| < b11 < b33, |b23| < b22. For each quadratic form Qi (i =
4, 5, 6, 7) we construct the corresponding integral automorphs; consider all pos-
sible polynomials Ph(UjX) (h = 1, 2, . . . , 2ν + 1), where Ph ∈ R(ν,Q〉) are
spherical basis polynomials of order ν with respect to Qi (see (14)), Uj ∈ G
are integral automorphs of the quadratic form Qi. We investigate the sets
{ϑ(τ, Ph(Uj), Qi}h,j. From these sets we remove the zero theta-series and leave
those through which other theta-series are expressed. Thus we obtain:


dim T (ν, Q4), dim T (ν, Q5), dim T (ν, Q6), dim T (ν,Q7) ≤ ν + 1.
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In ([4], p. 31) we have shown that for the quadratic forms


Q8 = b11x
2
1 + b22(x


2
2 + x2


3),


Q9 = b11x
2
1 + b22x


2
2 + b33x


2
3 + bijxixj with 1 ≤ i < j ≤ 3,


Q10 = b11x
2
1 + b22(x


2
2 + x2


3) + b1jx1xj with j = 2, 3,


Q11 = b11x
2
1 + b22(x


2
2 + x2


3) + b12(x1x2 + x1x3),


Q12 = b11x
2
1 + b22(x


2
2 + x2


3) + b12(x1x2 + x1x3) + b23x2x3,


Q13 = b11x
2
1 + b22(x


2
2 + x2


3) + b23x2x3,


dim T (ν, Q8) ≤ ν


4
+ 1 if ν ≡ 0 (mod 4),


dim T (ν, Q8) ≤ ν + 2


4
if ν ≡ 2 (mod 4),


dim T (ν, Q9), dim T (ν, Q10), dim T (ν,Q11), dim T (ν, Q12) ≤ ν + 1,


dim T (ν, Q13) ≤ ν


2
+ 1.


4. Dimension and the Basis of the Space T (ν, Q) for Some
Ternary Forms


From (24), for ν =2 and ν =4, it follows that dim (2, Q2)≤1 and dim (4, Q2)≤
2, respectively. Let us show that dim (2, Q2) = 1 and dim (4, Q2) = 2.


For the quadratic form


Q2 = b11(x
2
1 + x2


2) + b33x
2
3,


where 0 < b11 < b33, we have D = det A = 8b2
11b33, A11 = A22 = 4b11b33,


A33 = 4b2
11. Hence, according to (5) and (6),


ϕ11 = x2
1 −


A11


3D
2Q2 = x2


1 −
1


3b11


Q2, (32)


ϕ1111 = x4
1 −


6


7b11


x2
1Q2 +


3


35b2
11


Q2
2, (33)


ϕ3333 = x4
3 −


6


7b33


x2
3Q2 +


3


35b2
33


Q2
2. (34)


Consider the equation


b11(x
2
1 + x2


2) + b33x
2
3 = n. (35)


1) When n = b11, equation (35) has 4 solutions:


x1 = ±1, x2 = x3 = 0,
x2 = ±1, x1 = x3 = 0.


2) When n = b33,


a) if b33 6= b11h
2 and b33 6= b11(u


2 + v2), then (35) has 2 solutions:


x1 = x2 = 0, x3 = ±1.







GENERALIZED TERNARY THETA-SERIES 177


b) if b33 = b11h
2 and b33 6= b11(u


2 + v2), then (35) has 6 solutions:


x1 = x2 = 0, x3 = ±1;
x1 = ±h, x2 = x3 = 0;
x2 = ±h, x1 = x3 = 0.


c) if b33 6= b11h
2 and b33 = b11(u


2 + v2), then (35) has 10 solutions if u 6= v
and 6 solutions if u = v:


x1 = x2 = 0, x3 = ±1;
x1 = ±u, x2 = ±v, x3 = 0;
x1 ± v, x2 = ±u, x3 = 0;
x1 = ±u, x2 = ∓v, x3 = 0;
x1 = ±v, x2 = ∓u, x3 = 0.


d) if b33 = b11h
2 and b33 = b11(u


2 + v2), then (35) has 14 solutions:


x1 = x2 = 0, x3 = ±1;
x1 = ±h, x2 = x3 = 0;
x2 = ±h, x1 = x3 = 0;
x1 = ±u, x2 = ±v, x3 = 0;
x1 = ±v, x2 = ±u, x3 = 0;
x1 = ±u, x2 = ∓v, x3 = 0;
x1 = ±v, x2 = ∓u, x3 = 0.


Using these solutions and performing easy calculations by (32) we obtain


ϑ(τ, ϕ11, Q2) =
∞∑


n=1


( ∑
Q2=n


x2
1 −


1


3b11


Q2


)
= zn + · · ·+ 2


3
zb11 + · · · .


Since ϑ(τ, ϕ11, Q2) ∈ T (2, Q2) and, as is shown above, dim T (2, Q2) ≤ 1, we
have proved


Theorem 1. dim T (2, Q2) = 1 and the generalized ternary theta-series
ϑ(τ, ϕ11, Q2) is a basis of the space T (2, Q2).


Performing easy calculations and using the solutions of equation (35), for
b33 6= b11h


2 and b33 6= b11(u
2 + v2) by (33) and (34) we obtain


ϑ(τ, ϕ1111, Q2) =
∞∑


n=1


( ∑
Q2=n


x4
1 −


6


7b11


Q2 +
3


35b2
11


Q2
2


)
zn


= · · ·+ 22


35
zb11 + · · ·+ 6


35


b2
33


b2
11


zb33 + · · · ,


ϑ(τ, ϕ3333, Q2) =
∞∑


n=1


( ∑
Q2=n


x4
3 −


6


7b33


x2
3Q2 +


3


35b2
33


Q2
2


)
zn


= · · ·+ 12


35


b2
11


b2
33


zb11 + · · ·+ 16


35
zb33 + · · · .
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These generalized ternary theta-series are linearly independent since the de-
terminant of second order constructed from the coefficients of these theta-
series is not equal to zero. Similarly, in the remaining cases, the theta-series
ϑ(τ, ϕ1111, Q2) and ϑ(τ, ϕ3333, Q2) are linearly independent. Above it is shown
that dim T (4, Q2) ≤ 2; hence dim T (4, Q2) = 2. Thus we have proved


Theorem 2. dim T (4, Q2) = 2 and the generalized ternary theta-series
ϑ(τ, ϕ1111, Q2) and ϑ(τ, ϕ3333, Q2) form a basis of the space T (4, Q2).


The proof of the following theorem is similar.


Theorem 3. Let
Q1 = b11x


2
1 + b22x


2
2 + b33x


2
3,


then T (2, Q1) = 2 and the generalized ternary theta-series


ϑ(τ, ϕ11, Q2) =
∞∑


n=1


( ∑
Q1=n


x2
1 −


1


3b11


Q1


)
zn =


4


3
zb11 + · · · − 2


3


b22


b11


zb22 + · · · ,


ϑ(τ, ϕ22, Q2) =
∞∑


n=1


( ∑
Q1=n


x2
2 −


1


3b22


Q1


)
zn = −2


3


b11


b22


zb11 + · · ·+ 4


3
zb22 + · · ·


form a basis of the space T (2, Q1).
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