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Abstract. We prove some results about the existence of fixed points, pe-
riodic points and chaotic-like dynamics for a class of planar maps which
satisfy a suitable property of “arc expansion” type. We also outline some
applications to the nonlinear Hill’s equations with indefinite weight.
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1. Introduction


The study of the existence of oscillatory and periodic solutions of the nonlin-
ear scalar second-order differential equation


ẍ + q(t)g(x) = 0 (1.1)


has motivated a great deal of research activities during the last fifty years.
Here and henceforth, we suppose that g : R → R is a locally Lipschitz


continuous function and denote by


G(s) :=


s∫


0


g(ξ) dξ


a primitive of g. The “weight” function q : R→ R is assumed to be continuous.
Further (mild) conditions on q(t) will be added later, if necessary. In the sequel,
we will also confine our discussion to the situation in which q(t) changes its sign.


In [69], Waltman initiated the study of the oscillatory solutions of the non-
linear Hill’s equation


ẍ + q(t)x2n+1 = 0, n ≥ 1, (1.2)


when the coefficient q(t) is not necessarily of definite sign. Contributions to this
problem were also given by Kiguradze [36], Wong [76], Bobisud [10], Onose [48],
Butler [12], [13], Kwong and Wong [39] and others. The interest in investigating
the oscillatory (or nonoscillatory) solutions of equation (1.2) or equation (1.1)
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for a sign indefinite weight is witnessed by a broad literature (see, e.g., [77], [78]
and the references therein).


In the case of a periodic q(·), Butler in [14] first obtained the existence of
infinitely many periodic solutions to equation (1.1) for a function g(x) having a
superlinear growth at infinity, thus including the case of equation (1.2). Recent
developments along Butler’s work have been obtained in [49], [50], [51].


In the past ten years, starting with Lassoued [40], the study of boundary value
problems for superlinear equations with an indefinite weight has received much
attention in the literature. Besides the case of partial differential equations that
we don’t discuss here (see, e.g., [1], [7], [8]), general results have been obtained
for the periodic solutions of Hamiltonian systems and, in particular, second
order vector differential equations of the form ü +∇uV (t, u) = 0, using critical
point theory (see [5], [6], [22], [25], [26], [43]). Other applications of variational
methods to the periodic problem for the equation


ẍ + q(t)|x|p−1x = 0 (1.3)


are contained in [41] and [57].
In [68], Terracini and Verzini showed that, for a sign changing weight, equa-


tion (1.2) (as well as its “forced” extension) may possess solutions which oscillate
in a quite “wild” sense. In fact, in [68] the authors gave evidence of the pos-
sibility of a chaotic behavior for the solutions of (1.2), by proving that there
is a double-sided sequence of positive integers m∗


i (i ∈ Z), corresponding to a
suitably labeled sequence of intervals J+


i in which q > 0, such that, for every
mi ≥ m∗


i , there are solutions having mi zeros in the i-th interval of positivity
J+


i . These solutions vanish once in the intervals where q < 0 (see [68] for the
precise statement).


In [52], we considered some boundary value problems (including the Sturm-
Liouville boundary conditions) for equation (1.1) with q(t) a sign changing
function defined in a interval and satisfying suitable assumptions in order to
have, like in [14], the continuability of the solutions across the sub-intervals
where q(t) ≥ 0. Therein, under the hypothesis that


(g0) g(s)s > 0 for s 6= 0


and assuming also that g satisfies a condition of superlinear growth at infinity,
we proved the existence of solutions having an arbitrarily large number of zeros
in the intervals where q(t) > 0 and having precisely one zero or no zeros at
all (according to any sequence of 1’s and 0’s fixed in advance) in the intervals
where q(t) < 0. Further results in this direction and for the superlinear indefinite
case have been obtained in [16], [50], [51]. In particular, a detailed investigation
concerning the existence of chaotic-like oscillatory solutions of (1.1) is contained
in the recent article [16] by Capietto, Dambrosio and Papini.


With this respect, the aim of this paper is not that of reproducing the argu-
ment which has been already used in [16], yet we would like first to focus our
attention to the properties of the planar transformations which are associated to
the solutions of equation (1.1) and then to prove the existence of a chaotic-like
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dynamics for a broad class of planar maps which emulate the Poincaré map of
(1.1).


The key properties of the solutions of (1.1) which were used in the proof of
the main results in [52] are described in the following lemmas taken from [52,
Lemma 3, Lemma 4], that we recall now for the reader’s convenience.


For the purposes of the present work it is not necessary to repeat here the
precise assumptions of superlinear growth at infinity which were considered in
[52]. For simplicity in the exposition, we restrict ourselves to the special case of


(gmon) g is monotone nondecreasing in a neighborhood of ±∞
and


(g∞) lim
s→±∞


g(s)


s
= +∞,


∣∣∣∣∣∣


±∞∫
|G(s)|− 1


2 ds


∣∣∣∣∣∣
< ∞.


Clearly, all the conditions (g0), (gmon) and (g∞) are satisfied for


g(x) = |x|p−1x, p > 1,


which is the case of equation (1.3). However, we point out that in our results the
oddness or the homogeneity of g(x) are not required. More general assumptions
for g(x) in terms of time-mappings, like in [23], are given in [52].


Following the notation in [52] we denote by Ai, for i = 1, 2, 3, 4, the open
quadrants of the plane, counted in the counterclockwise sense starting from
A1 = {(x, y) : x > 0, y > 0}. We also denote by z(·; t0, z0) the solution of


ẋ = y, ẏ = −q(t)q(x) (1.4)


satisfying the initial condition z(t0) = (x(t0), y(t0)) = z0 . We observe that, due
to the fact that q < 0 in some intervals, we have that z(·; t0, z0) may be not
globally defined for some z0 ∈ R2 (see [11], [15] ). On the other hand, we assume
(like in [14], [52] ) the continuability of the solutions across the sub-intervals
where q ≥ 0.


Lemma 1 ([52, Lemma 3]). Let a < b < c, be such that


q ≥ 0 and q 6≡ 0 on [a, b], q ≤ 0 and q 6≡ 0 on [b, c].


Then there is a constant R∗ (depending only on g and q|[b,c]) such that the
following holds:


For each R > 0, there is n∗ = n∗R > 0 such that, for each n > n∗, and for
each continuous curve γ : [α, β[→ Ā1 (respectively, γ : [α, β[→ Ā3), with


|γ(α)| ≤ R and |γ(s)| → ∞, as s → β−,


there is an interval [αn, βn] ⊂ ]α, β[ such that for each s ∈ ]αn, βn] we have:


• z(t; a, γ(s)) is defined for all t ∈ [a, c],
• x(·; a, γ(s)) has exactly n zeros in ]a, b[ , no zeros in [b, c] and exactly


one change of sign of the derivative in ]b, c[ .







342 DUCCIO PAPINI AND FABIO ZANOLIN


Moreover, setting


γn(s) := z(c; a, γ(s)), ∀ s ∈ ]αn, βn],


we have that


|γn(βn)| ≤ R∗ and |γn(s)| → ∞, as s → α+
n ,


and γn lies in Ā1 or in Ā3 according to the fact that n is even or odd (respectively,
γn lies in Ā3 or in Ā1 according to the fact that n is even or odd).


Lemma 2 ([52, Lemma 4]). Let a < b < c, be such that


q ≥ 0 and q 6≡ 0 on [a, b], q ≤ 0 and q 6≡ 0 on ; [b, c].


Then there is a constant R∗ (depending only on g and q|[b,c]) such that the
following holds:


For each R > 0, there is n∗ = n∗R > 0 such that, for each n > n∗, and for
each continuous curve γ : [α, β[→ Ā1 (respectively, γ : [α, β[→ Ā3), with


|γ(α)| ≤ R and |γ(s)| → ∞, as s → β−,


there is an interval [αn, βn] ⊂ ]α, β[ such that for each s ∈ [αn, βn[ we have:


• z(t; a, γ(s)) is defined for all t ∈ [a, c],
• x(·; a, γ(s)) has exactly n zeros in ]a, b[ , exactly one zero in ]b, c[ and no


zeros of the derivative in [b, c].


Moreover, setting


γn(s) := z(c; a, γ(s)), ∀ s ∈ [αn, βn[ ,


we have that


|γn(αn)| ≤ R∗ and |γn(s)| → ∞, as s → β−n


and γn lies in Ā3 or in Ā1 according to the fact that n is even or odd (respectively,
γn lies in Ā1 or in Ā3 according to the fact that n is even or odd).


Let us define, for 0 < r1 < r2 , the closed annulus


A[r1, r2] := {z ∈ R2 : r1 ≤ |z| ≤ r2}
and, for r > 0, the circumference Cr := {z ∈ R2 : |z| = r}. Now, from Lemma
1 and Lemma 2 we can obtain the following.


Proposition 1. Assume (g0), (gmon) and (g∞). Let a < b < c, be such that


q ≥ 0 and q 6≡ 0 on [a, b], q ≤ 0 and q 6≡ 0 on [b, c]


and suppose that the solutions of (1.1) are continuable across [a, b]. Then there
is a constant R∗ (depending only on g and q|[b,c]) such that for each R ≥ R∗,
there is n∗ = n∗R > 0 such that for each j > n∗ there is Rj > R in order to
satisfy the following arc expansion property:
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Let us fix i = 1, 3 and δ = 0, 1. Given any path σ contained in Āi ∩
A[R,Rj] and such that


σ ∩ CR 6= ∅, σ ∩ CRj
6= ∅,


there is a sub-path σ′ such that, for each z0 ∈ σ′ :
z(·; a, z0) is defined for all t ∈ [a, c],
x(b)x(c)ẋ(b)ẋ(c) 6= 0,
x(·; a, z0) has exactly j zeros in ]a, b[ , exactly δ zeros in ]b, c[ and
exactly 1− δ changes of sign of the derivative in ]b, c[ .


Moreover, for the map φ : z0 7→ z(c; a, z0), we have that:


φ(σ′) ∩ CR 6= ∅, φ(σ′) ∩ CRj
6= ∅


and
φ(σ′) ⊂ Ā` ∩ A[R, Rj],


with ` = i or ` = i + 2 (mod. 4) according to the fact that j + δ is even
or odd.


Proof (sketched). The proof of Proposition 1 is a straightforward consequence
of Lemma 1 and Lemma 2 using the following two facts.


First, by our assumptions, we have the continuability of the solutions across
the intervals of positivity of q(t). From this and the fact that g is lipschitzean
around zero, it follows that solutions with an initial point z(a) 6= 0 in a compact
set have a number of zeros in [a, b] which is (uniformly) upper bounded. Indeed,
for the number of zeros n(x; a, b) of x(·) in [a, b[ , we have that b2rot(z; a, b)c ≤
n(x; a, b) ≤ 2rot(z; a, b) + 1 where


rot(z; a, b) =
1


2π


b∫


a


y(t)2 + q(t)g(x(t))x(t)


y(t)2 + x(t)2
dt.


Second, thanks to the assumption of superlinear growth at infinity for g(x),
we know (see, e.g., [14], [29], [33], [44], [65] ) that in the interval of positivity
of q(t) solutions having at most j zeros are uniformly bounded (by a constant
depending on j) in the C1-norm on [a, b].


By virtue of these facts, we can “cut” the paths γ and γn of Lemma 1 and
Lemma 2 in order to reduce the corresponding results to compact sets, provided
that the number of the zeros of the solutions is sufficiently large but bounded.


As to the precise dynamics of the trajectories we have that the following
four situations are possible for a solution z(·) with z(a) belonging to a suitable
sub-path σ′ of σ in Āi ∩ A[R, Rj] :


if j is even and δ = 0, we have that x(·) has exactly j-zeros in ]a, b[ ,
with z(b) ∈ Ai−1 (mod. 4), x(t) 6= 0 for all t ∈ [b, c] and ẋ changes sign
exactly once in ]b, c[ , with z(c) ∈ Ai;
if j is even and δ = 1, we have that z(·) has exactly j-zeros in ]a, b[ , with
z(b) ∈ Ai−1 (mod. 4), ẋ(t) 6= 0 for all t ∈ [b, c] and x vanishes exactly
once in ]b, c[ , with z(c) ∈ Ai+2 (mod. 4);
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if j is odd and δ = 0, we have that z(·) has exactly j-zeros in ]a, b[ , with
z(b) ∈ Ai+1 , x(t) 6= 0 for all t ∈ [b, c] and ẋ changes sign exactly once in
]b, c[ , with z(c) ∈ Ai+2 (mod. 4);
if j is odd and δ = 1, we have that z(·) has exactly j-zeros in ]a, b[ , with
z(b) ∈ Ai+1 , ẋ(t) 6= 0 for all t ∈ [b, c] and x vanishes exactly once in
]b, c[ , with z(c) ∈ Ai .


With respect to Lemma 1 and Lemma 2 we have added here also the information
that z(c) is not on the coordinate axes. This would follow by reworking along
the argument in [52], or by a corresponding remark in [51].


Note that from ẋ = y and by an elementary analysis of the direction of
the vector field in system (1.4), it follows that all the zeros of x(·) are simple
and that (roughly) the transition from a quadrant to another is of the type
A2 → A1 , A4 → A3 and, moreover, A1 → A4 , A3 → A2 for t ∈ ]a, b[ , A4 → A1 ,
A2 → A3 for t ∈ ]b, c[ . This way, we have a complete control of the position of
z(c) according to the number of the zeros of the solution. In particular, from
the above four cases, we have also that φ(z0) ∈ Ai or φ(z0) ∈ Ai+2 (mod. 4)
according to the fact that j+δ is even or odd. Hence the conclusion follows.


Now, our aim will be that of showing that the arc expansion property de-
scribed in Proposition 1 implies the existence of fixed points and of periodic
points of arbitrary order for the Poincaré map associated to (1.1) as well as of a
chaotic-like dynamics of coin tossing type [37]. 1 This goal will be achieved by
means of some theorems about the dynamics of a planar map which entails some
properties of the Poincaré map associated to the nonlinear Hill’s equations with
indefinite weight. We stress that, even if in the present article we have made our
main reference to the case of a restoring field g(x) having superlinear growth
at infinity (like in [16] and in [52] ), in principle (and due to the more general
setting of planar maps instead of that of a special class of differential equations)
our results can be applied to a wide family of nonlinear scalar ordinary differen-
tial equations, including some cases of asymptotically linear systems (provided
that a suitable gap between zero and infinity is assumed). More details and
further results in this direction will be given in [53].


At the end of this introductory section, we should also mention two recent
articles by Kennedy and Yorke [35] and Kennedy, Koçak and Yorke [34] in
which the authors develop a general topological framework in order to deduce
the presence of chaotic dynamics for a broad variety of different situations. In
particular, in [34], the authors define the concept of a “family of expanders” and
it seems that it should be possible to show that some of the results following from
the arc expansion property of Proposition 1 (and that we are going to develop
in the next sections) are likely to be obtainable as a consequence of the results
[34] or [35]. On the other hand, in our setting, we are able to prove the existence


1 Recall that, according to [37], a discrete dynamical system (X, ψ) is chaotic in the sense
of coin tossing, if there are two disjoint compact sets X0 and X1 of X such that, given any
two-sided sequence (. . . , s−2, s−1, s0, s1, s2, . . . ), with si ∈ {0, 1}, there is an orbit (xn)n of ψ
with xn ∈ Xsn for each n ∈ Z.
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of fixed points and of periodic points, via an elementary fixed point theorem for
planar maps (see Theorem 1 and Theorem 2[case (w2)]). It is therefore our hope
that the approach proposed in the present paper (even if limited to the study of a
two-dimensional map) may be of some independent interest as well. In the last
section, we try to describe the presence of an underlying general topological
structure for our setting, in order to make more transparent the connections
between our results for the nonlinear Hill equation and some arguments which
belongs to the recent research on “topological horseshoes”.


Throughout the paper, we recall that by an arc (respectively, a path) we
mean the homeomorphic image (respectively, the image through a continuous
map) of a compact nondegenerate interval of the real line. A continuum is a
compact connected set. In the sequel, all the arcs, paths and continua that will
be considered are subsets of the plane R2. It will be also useful to have in mind
that a plane continuum is not necessarily a path and that each path joining two
different points contains an arc joining the same two points [24], [79]. Moreover,
if Γ ⊂ R2 is a continuum, then, for any two points P, Q ∈ Γ, with P 6= Q and
any ε > 0, there is a path (or, if we like, an arc) σ = σε


(P,Q) joining P with Q


and contained in the ε-neighborhood B(Γ, ε) of Γ. This property clearly allows
to suitably approximate a continuum with arcs.


As a last definition, we call a two-dimensional cell R ⊂ R2 the homeomorphic
image of the square Q = [−1, 1]2.


Finally, and in order to avoid misunderstanding, we notice that we denote
by N = {1, 2, . . . } the set of positive integers and when we speak of a map ψ
we implicitly assume that it is a continuous one (unless when the contrary is
explicitly mentioned).


2. Fixed Points and Dynamics of Planar Maps


We start this section with some results on the existence of fixed points for a
(continuous) map ψ : R2 ⊃ dom(ψ) := Dψ → R2 .


Let v = (v1, v2) and w = (w1, w2) be two unit vectors of the plane with v 6= w.
We denote by `v = {tv : t > 0} and `w = {tw : t > 0} the (open) half-lines from
the origin through v and w. The 0-pointed angle v̂0w is the union of `v, `w with
all the half-lines `u such that the triple (v, u, w) is positively oriented. Given an
angle v̂0w we denote by νv = (v2,−v1) and νw = (−w2, w1) the outer normals
to v̂0w at the points of `v and `w (clearly, these points lie on the boundary of
v̂0w).


Note that in the above definition, 0 6∈ v̂0w. Clearly, the closure of v̂0w is
v̂0w ∪ {0}, that will be denoted by v0w.


Lemma 3. Let v̂0w be a pointed angle at the origin. Assume that there is a
connected set Γ ⊂ Dψ ∩ v̂0w, with Γ ∩ `v 6= ∅ and Γ ∩ `w 6= ∅ and such that


(ψ(z)|νv) ≤ 0, ∀ z ∈ Γ ∩ `v and (ψ(z)|νw) ≤ 0, ∀ z ∈ Γ ∩ `w (2.5)
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(or


(ψ(z)|νv) ≥ 0, ∀ z ∈ Γ ∩ `v and (ψ(z)|νw) ≥ 0, ∀ z ∈ Γ ∩ `w , (2.6)


respectively.) Then, there is at least one point z̃ ∈ Γ such that ψ(z̃) = λz̃ for
some λ ∈ R.


The interested reader is invited to draw a picture in order to visualize the
geometrical meaning of conditions (2.5), (2.6).
Proof. Assume (2.5). Let ψ = (ψ1, ψ2) and consider the map h : z = (z1, z2) 7→
z1ψ2(z)− z2ψ1(z), for z ∈ Γ. If z ∈ Γ ∩ `v , we have that z = tv for some t > 0.
Hence, h(z) = t(v1ψ2(tv) − v2ψ1(tv)) = −t(ψ(tv)|νv) ≥ 0. With analogous
computation, we can see that h(z) ≤ 0 for z ∈ Γ ∩ `w . By the continuity of ψ
and the connectedness of Γ, we conclude that there is z̃ ∈ Γ such that h(z̃) = 0
(Bolzano theorem). Since z̃ 6= 0 (because 0 6∈ Γ), this implies that there is a
λ ∈ R such that ψ(z̃) = λz̃ and the proof is complete.


Corollary 1. Let v̂0w be a pointed angle at the origin such that its closure
v0w is convex. Assume that there is a connected set Γ ⊂ Dψ ∩ v̂0w, with
Γ ∩ `v 6= ∅ and Γ ∩ `w 6= ∅ and such that


ψ(Γ) ⊂ v̂0w. (2.7)


Suppose further that


ψ(z) 6= µv, ∀ z ∈ Γ ∩ `v , ∀µ < 0,
ψ(z) 6= µw, ∀ z ∈ Γ ∩ `w , ∀µ < 0,


(2.8)


is satisfied. Then, there is at least one point z̃ ∈ Γ such that ψ(z̃) = λz̃ for
some λ > 0.


Proof. Since v0w is closed and convex, the assumption that ψ(Γ) ⊂ v̂0w, implies
that (ψ(z)|νv) ≤ 0, for all z ∈ Γ ∩ `v and (ψ(z)|νw) ≤ 0, for all z ∈ Γ ∩ `w .
Hence, we can apply Lemma 3 and find z̃ ∈ Γ and λ ∈ R such that ψ(z̃) = λz̃.
As a consequence of ψ(Γ) ⊂ v̂0w, we find that λz̃ ∈ v̂0w with z̃ ∈ v̂0w and
hence λ 6= 0 for 0 6∈ v̂0w. If, by contradiction, λ < 0, we have that both z̃
and −z̃ belong to v̂0w and this is possible only if z̃ ∈ `v ∪ `w , but then, we
contradict (2.8).


Remark 1. In the frame of Corollary 1, we notice that condition (2.8) is
always fulfilled when w 6= −v (that is, v̂0w ∪ {0} is a cone [21, Ch.6]) or when
ψ(Γ) ⊂ int(v̂0w).


It will be also useful to introduce the following definition.
Let v̂0w be a pointed angle at the origin. For r1 and r2 with 0 < r1 < r2 , we


define the (closed) set


[v̂0w]r2
r1


:=
{
z ∈ v̂0w : r1 ≤ |z| ≤ r2


}
= v̂0w ∩ A[r1, r2].
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We say that [v̂0w]r2
r1


is a conical shell if it is determined by a pointed angle


v̂0w at the origin such that v0w is convex and also w 6= −v. This definition
corresponds to that given in [21, p. 239].


Corollary 2. Let W = [v̂0w]r2
r1


be a conical shell and suppose that there is
a connected set Γ ⊂ Dψ ∩ W with Γ ∩ `v 6= ∅ and Γ ∩ `w 6= ∅ and such that
ψ(Γ) ⊂ W and |ψ(z)| = |z| for all z ∈ Γ. Then, the map ψ has at least one
fixed point z̃ ∈ Γ.


Proof. By Corollary 1 and Remark 1 we have that there is z̃ ∈ Γ such that
ψ(z̃) = λz̃ for some λ > 0. But, evidently, λ = 1 as |ψ(z)| = |z| on Γ.


For the next steps, we recall a slight variant of a result from plane topology
previously used also in [14], [20] (more or less explicitly). Details can be found
in [54].


Lemma 4. Let R ⊂ R2 be a two-dimensional cell and let h : Q = [−1, 1]2 →
R, be a surjective homeomorphism. Let us define H± := h([−1, 1]×{±1}) and
V ± := h({±1} × [−1, 1]). Let S ⊂ R be a closed set such that


σ ∩ S 6= ∅,


for each path σ contained in R and joining H− with H+. Then, S contains a
closed connected set C joining V − with V +.


Using the property that any path joining two distinct points contains an arc
joining the same two points (as recalled at the end of the Introduction), it is
easy to see that it is completely equivalent if in the assumption of Lemma 4 we
suppose that σ is an arc.


Example 1. Let us consider the set S = S0 ∩Q, where


S0 =
{
(x, y) :


(
x ∈ Q, y ∈ Q,−1


2
≤ y ≤ 0


)
∨


(
x ∈ R\Q, y ∈ R\Q, 0 < y <


1


2


)}
.


The set S is not closed, not connected and does not contain any connected
subset joining V − with V +. Though, any path from H− to H+ has nonempty
intersection with S.


For the subsequent results, we also need a property of the domain (or a part
of the domain) on which we want to have the map ψ defined.


Let us consider a set D ⊂ Dψ . We say that the (continuous) map is proper
on D if ψ−1(K)∩D is compact for each compact set K ⊂ R2. Equivalently, we
have that whenever there is a sequence zn ∈ D and a point w ∈ R2 such that
ψ(zn) → w, then, there is a subsequence zin of zn and a point z∗ ∈ D such that
zin → z∗.


In this situation, we will also say that the pair (D, ψ) is proper.
To be used in the next steps, we note that a composition of proper maps is


proper and that if (D, ψ) is proper, then ψ is proper on D ∩ C, for each closed
set C ⊂ R2 (see the Appendix for more details).
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Given a map ψ and a set D ⊂ Dψ , we also define (D, ψ) proper on compact
sets if, for each K compact, ψ is proper on D ∩K.


Example 2. Let f : R × R2 → R2 be a Carathéodory function and assume
the uniqueness of the solutions for the Cauchy problems


{
ż = f(t, z)
z(t0) = z0


(2.9)


with (t0, z0) ∈ R× R2.
If we denote by z(·; t0, z0) the noncontinuable solution of (2.9), defined on its


maximal interval of existence I(t0,z0) , we have that for each t0, t ∈ R, the map
φt


t0
: z0 7→ z(t; t0, z0) is continuous and is defined in a open (possibly empty)


set D(t0, t) ⊂ R2 (by the Peano’s theorem for the Carathéodory equations [28]
D(t0, t) 6= ∅ if |t− t0| is sufficiently small). We also have that φt2


t1 ◦ φt1
t0 = φt2


t0 .
We look now for conditions to be satisfied by the differential equation in


order that the pair (D(t0, t), φ
t
t0
) is proper on compact sets. In fact, in general,


the map φt
t0


may fail to be proper even when it is restricted to the compact
sets. An example of this fact is shown, for instance, by the the planar system
ẋ = 1, ẏ = −xy2 .


Let t0 < t1 and let K be a compact set. Suppose that (2.9) has solutions
defined on [t0, t1] for each z0 ∈ K. Then it is easy to prove that φt1


t0 is proper on
K ⊂ Dt1


t0 . A more general result is the following.


Claim 1. Assume that there is a continuous function η : R+ → R+ such that


|z(s; t0, z0)| ≤ η
(


max{|z0|, |z(t; t0, z0)|}
)
, ∀ t0 ≤ s ≤ t, ∀ z0 ∈ D(t0, t). (2.10)


Then, for any compact set K ⊂ R2, the map φt
t0


is proper on D(t0, t) ∩K.


Proof. Let t > t0 be fixed and suppose that D(t0, t) 6= ∅ (otherwise the claim
is vacuously true). Let E = K ∩D(t0, t), with K a compact subset of R2.


Let zn
0 ∈ E be a bounded sequence of initial points and, without loss of


generality, assume that zn
0 → z0 ∈ K and wn := z(t; t0, z


n
0 ) → w0 ∈ R2. Then,


we have that |zn
0 |, |wn| ≤ M, for all n and for some M > 0, so that, by (2.10),


|z(s; t0, z
n
0 )| ≤ η(M) := M1, ∀ s ∈ [t0, t], n ∈ N.


By the Carathéodory assumption, there is ρ ∈ L1([t0, t],R+) such that


|f(s, z(s; t0, z
n
0 ))| ≤ ρ(s), for a.e. s ∈ [t0, t], ∀n ∈ N.


Using the Ascoli–Arzelá theorem and the Lebesgue dominated convergence the-
orem in the integral relation


z(s; t0, z
n
0 ) = zn


0 +


t∫


t0


f(ξ, z(ξ; t0, z
n
0 )) dξ, ∀ s ∈ [t0, t],
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(cf.[28, p.29]) we can prove that there is a continuous function ẑ : [t0, t] → R2


such that


ẑ(s) = z0 +


t∫


t0


f(ξ, ẑ(ξ)) dξ, ∀ s ∈ [t0, t].


From this, it follows that z0 ∈ D(t0, t), ẑ(s) = z(s; t0, z0) and w0 = ẑ(t). Hence
the claim is proved.


Example 3. Let g : R→ R be a locally Lipschitzean function satisfying (g0)
and let q : R→ R be a locally summable function.


• Let [a, b] be an interval such that q ≥ 0 on [a, b] and q is continuous and
of bounded variation on [a, b]. Suppose that the set {t ∈ [a, b] : q(t) > 0}
is the union of a finite number of intervals. If, further, q(·) is monotone
in a left neighborhood of any point s ∈ ]a, b] where q(s) = 0, then, for
each t0 ∈ [a, b[ any solution of (1.1) is continuable to [t0, b]. Respectively,
if q(·) is monotone in a right neighborhood of any point s ∈ [a, b[ where
q(s) = 0, then, for each t0 ∈ ]a, b] any solution of (1.1) is continuable to
[a, t0].


Proof. The result follows from [19], [14] (see also [50] for more details).
For completeness, we give a sketch of the proof in the simpler case when


q(·) is absolutely continuous. This assumption can be relaxed to that of q(·) of
bounded variation on [a, b] arguing like in [19].


Let [t0, t1] ⊂ [a, b] be such that q(t) > 0 on ]t0, t1[ and suppose that q(t1) =
0 and q is monotone nonincreasing in a left neighborhood of t1 . By Peano’s
theorem, we have that the solution x(·) is defined on [t0, t2] for some t2 ∈ ]t0, t1[ .
Consider now V (t, x, ẋ) = 1


2
ẋ2 + 1


2
x2 + q(t)G(x) + 1, where G(x) =


∫ x
0 g(ξ) dξ.


Differentiation of v(t) := V (t, x(t), ẋ(t)) yields to


v̇(t) = xẋ + q̇(t)G(x) ≤ ζ(t)v(t),


for a.e. t ∈ [t2, t1] where x(·) is defined and where ζ is a suitably chosen function,
summable on [t2, t1] and such that ζ(t)q(t) ≥ q̇(t) for a.e. t ∈ [t2, t1]. Hence,
v(t) ≤ v(t2) exp


∫ t1
t2


ζ(s) ds := N holds for all t ∈ [t2, t1]. From this a priori bound
and the fact that V (t, x, ẋ) → +∞ uniformly for t ∈ [a, b] as |x| + |ẋ| → +∞,
we obtain the continuability of the solution up to t = t1 . By a finite number of
steps, we can then obtain the continuability on [t0, b].


• Let [b, c] be an interval such that q ≤ 0 on [b, c]. Then, property (2.10)
holds for each [t0, t] ⊂ [b, c].


Proof. Let x(·) be a solution of (1.1). Multiplying the equation by x(s) gives
ẍ(s)x(s) ≥ 0 for a.e. t ∈ [t0, t], that is, for `(t) = 1


2
x(t)2, we have


d2


dt2
`(s) ≥ 0, for a.e. s ∈ [t0, t].


Hence, it follows immediately that


|x(s)| ≤ max
{
|x(t0)|, |x(t)|


}
≤ max


{
|x(t0)|+ |ẋ(t0)|, |x(t)|+ |ẋ(t)|


}
:= L1







350 DUCCIO PAPINI AND FABIO ZANOLIN


holds for all s ∈ [t0, t]. Now, we easily conclude, using the equation.
In fact, |ẍ(s)| ≤ |q(s)|max|ξ|≤L1{|g(ξ)|} := µ(t), for a.e. s ∈ [t0, t] and then


|ẋ(s)| ≤ L1 +
∫ t
t0


µ(ξ) dξ := L2 . From the proof it is clear that L1 + L2 is a
continuous function of ( |z(t0)|, |ż(t0)| ).


As a consequence of the above results, we can give the following corollary.


• Let q(·) be a continuous and piece-wise monotone function defined in an
interval I. Suppose that I = [t0, t1] ∪ [t1, t2] ∪ · · · ∪ [tk−1, tk] and either
q ≥ 0 or q ≤ 0, on each of the sub-intervals Ij = [tj−1, tj]. Then, for any
compact set K ⊂ R2, and for each t0, t ∈ I, the map φt


t0
is proper on


D(t0, t) ∩K.


Proof. It is sufficient to observe that the composition of maps fits with the
property of properness on compact sets that we have defined.


Now we come back to the general setting considered at the beginning and
prove the following fixed point theorem.


Theorem 1. Suppose that (D, ψ) is proper on compact sets and consider
a conical shell W = [v̂0w]r2


r1
. Assume that any path σ contained in W and


intersecting Cr1 and Cr2 , contains a sub-path σ′ ⊂ D such that


ψ(σ′) ⊂ v̂0w , and ψ(σ′) ∩ Cr1 6= ∅, ψ(σ′) ∩ Cr2 6= ∅.


Then, the map ψ has at least one fixed point z̃ ∈ D ∩W .


Remark 2. In the above theorem we don’t assume ψ to be defined on the
whole set W .


Proof. We consider the set


S =
{
z ∈ D ∩W : ψ(z) ∈ W , |ψ(z)| = |z|


}
.


Since W is compact, by the properness of (D, ψ) on compact sets, we have that
S is compact.


Consider now an arbitrary path σ contained in W and intersecting Cr1 and
Cr2 . By the assumption, σ contains a path σ′, with σ′ ⊂ D such that ψ(σ′)
intersects Cr1 and Cr2 . This implies that there are z1 , z2 ∈ σ′ such that |ψ(z1)| =
r1 ≤ |z1| and |ψ(z2)| = r2 ≥ |z2|, and therefore, by the continuity of ψ and the
connectedness of σ′, we can conclude that σ′ intersects S. Thus we have proved
that the closed set S intersects any path σ contained in W and intersecting Cr1


and Cr2 .
At this point, using the elementary fact that W is homeomorphic to a rectan-


gle, Lemma 4 guarantees the existence of a continuum C ⊂ S with C intersecting
both `v and `w . By the assumptions, we also have that ψ is defined on C and
ψ(C) ⊂ W with |ψ(z)| = |z| on C. Then, Corollary 2 implies the existence of a
fixed point for ψ in C.


We consider now two conical shells


W0 := [v̂00w0]
r0
2


r0
1
, W1 := [v̂10w1]


r1
2


r1
1
,
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which we assume to be disjoint.
In the next result, we denote by ψj the j-th iterate of ψ, with the convention


that ψ1 = ψ.


Theorem 2. Suppose that (D, ψ) is proper on compact sets. For W0 and
W1 as above, let us suppose that the following property hold:


(a0) any path σ contained in W0 and intersecting Cr0
1


and Cr0
2
, contains


a sub-path σ′(0,0) ⊂ D such that


ψ(σ′(0,0)) ⊂ v̂00w0 , ψ(σ′(0,0)) ∩ Cr0
1
6= ∅, ψ(σ′(0,0)) ∩ Cr0


2
6= ∅,


as well as a sub-path σ′(0,1) ⊂ D such that


ψ(σ′(0,1)) ⊂ v̂10w1 , ψ(σ′(0,1)) ∩ Cr1
1
6= ∅, ψ(σ′(0,1)) ∩ Cr1


2
6= ∅;


any path σ contained in W1 and intersecting Cr1
1


and Cr1
2
, contains


a sub-path σ′(1,0) ⊂ D such that


ψ(σ′(1,0)) ⊂ v̂00w0 , ψ(σ′(1,0)) ∩ Cr0
1
6= ∅, ψ(σ′(1,0)) ∩ Cr0


2
6= ∅,


as well as a sub-path σ′(1,1) ⊂ D such that


ψ(σ′(1,1)) ⊂ v̂10w1 , ψ(σ′(1,1)) ∩ Cr1
1
6= ∅, ψ(σ′(1,1)) ∩ Cr1


2
6= ∅.


Then, the following conclusions hold:


(w1) for each i = 0, 1, the map ψ has at least one fixed point z̃i ∈ D ∩Wi ;
(w2) for each i = 0, 1 and for any finite sequence δ = (δ1, . . . , δk), with k ≥ 1


and δj ∈ {0, 1} (for all j = 1, . . . , k), there are points z̃(i,�) ∈ D ∩ Wi


which are fixed points of ψk+1 and satisfy


ψj(z̃(i,�)) ∈ Wδj
, ∀ j = 1, . . . , k;


(w3) for each i = 0, 1 and for any sequence δ = (δ1, δ2, . . . ), with δj ∈ {0, 1}
(∀ j ∈ N), there is a continuum Γ�i ⊂ Wi , with Γ�i ∩`vi


6= ∅ and Γ�i ∩`wi
6=


∅ such that for each z ∈ Γ�i , it follows that


ψj(z) ∈ Wδj
, ∀ j ∈ N;


(w4) for any doubly-infinite sequence δ = (. . . , δ−2, δ−1, δ0, δ1, δ2, . . . ), with
δj ∈ {0, 1} (∀ j ∈ N), there is a double-sided sequence of points


w̃� = (. . . , w̃−2, w̃−1, w̃0, w̃1, w̃2, . . . ),


with w̃j ∈ D ∩Wδj
and such that


ψ(w̃j) = w̃j+1 , ∀ j ∈ Z.


Proof. Clearly, (w1) is a straightforward consequence of Theorem 1, so that we
can pass to the proof of the other properties.


Let us fix a finite sequence δ = (δ1, . . . , δk) for some k ≥ 1 and with δi ∈ {0, 1}
for all i = 1, . . . , k. Let γ : [0, 1] →Wi be a continuous map such that γ(0) ∈ Cri


1
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and γ(1) ∈ Cri
2
. By assumption (a0), we have that there is a closed interval


I1 ⊂ [0, 1] such that ψ is defined in γ(I1), ψ(γ(t)) ∈ Wδ1 , for all t ∈ I1 and


ψ(γ(t′1)) ∈ C
r


δ1
1


, ψ(γ(t′′1)) ∈ C
r


δ1
2


, for {t′1, t′′1} = ∂I1 .


We apply now the same argument to the continuous map γ1 : I1 →Wδ1 defined
by γ1(t) := ψ(γ(t)) and find a closed interval I2 ⊂ I1 , such that ψ is defined in
γ1(I2), ψ(γ1(t)) ∈ Wδ2 , for all t ∈ I2 and


ψ(γ1(t
′
2)) ∈ C


r
δ2
1


, ψ(γ(t′′2)) ∈ C
r


δ2
2


, for {t′2, t′′2} = ∂I2 .


Continuing this way for a finite number of steps, we have that for each j =
1, . . . , k, k + 1 there is a closed interval Ij , with


[0, 1] ⊃ I1 ⊃ · · · ⊃ Ij ⊃ Ij+1 ⊃ · · · ⊃ Ik ⊃ Ik+1 ,


such that
ψj(γ(Ik+1)) ⊂ Wδj


for j = 1, . . . , k


and


ψk+1(γ(t′k+1)) ∈ Cri
1
, ψ(γ(t′′k+1)) ∈ Cri


2
, for {t′k+1, t


′′
k+1} = ∂Ik+1 .


We can consider now the set


Sk
i =


{
z ∈ D ∩Wi : ψj(z) ∈ Wδj


, ∀ j = 1 . . . , k, |ψk+1(z)| = |z|
}


for i = 0, 1. By the properness of (D, ψ) on the compact sets, we have that the
set Sk


i is a compact subset of Wi and, arguing like in the proof of Theorem 1
(using Lemma 4), we have that Sk


i contains a continuum Ck
i which intersects


both `vi
and `wi


. Then, Corollary 2 ensures the existence of a point z̃ ∈ Wi


which is a fixed point for ψk+1 and such that ψj(z̃) ∈ Wδj
. Thus (w2) is proved.


To prove (w3), let us fix i ∈ {0, 1} and choose a sequence δ = (δ1, δ2, . . . )
with δj ∈ {0, 1}. Repeating the first part of the proof of (w2), we have that for
any continuous map γ : [0, 1] → Wi such that γ(0) ∈ Cri


1
and γ(1) ∈ Cri


2
, and


for each j ∈ N, there is a compact interval Ij ⊂ [0, 1] such that


[0, 1] ⊃ I1 ⊃ I2 ⊃ · · · ⊃ Ij ⊃ Ij+1 ⊃ . . . ,


moreover, ψj(γ(t)) ⊂ Wδj
for all t ∈ Ij and


ψj(γ(t′j)) ∈ C
r


δj
1


, ψ(γ(t′′j )) ∈ C
r


δj
2


, for {t′j, t′′j} = ∂Ij .


We can consider now the set


Si =
{
z ∈ D ∩Wi : ψj(z) ∈ Wδj


, ∀ j ∈ N
}


for i = 0, 1 which is compact by the assumption of properness of (D, ψ). If
we take s ∈ ∩∞j=1Ij , we have that γ(s) ∈ Si and thus we have proved that
σ ∩ Si 6= ∅ for each path σ ⊂ Wi with σ intersecting both Cri


1
and Cri


2
. Hence,


Lemma 4 ensures the existence of a continuum Ci ⊂ Si such that Ci ∩ `vi
6= ∅


and Ci ∩ `wi
6= ∅. From the definition of Si we have that, for each z ∈ Ci ,


ψj(z) ∈ Wδj
for all j ∈ N. Therefore, (w3) is proved.
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To prove (w4), let us fix a double sequence δ = (. . . , δ−1, δ0, δ1, . . . ) with
δj ∈ {0, 1} for each j ∈ Z. By (w3) we have that for each n = 1, 2, . . . , there
is a continuum Γn ⊂ Wδ−n such that ψj(Γn) ⊂ Wδj−n


. We take a point yj,n ∈
ψj+n(Γn) ⊂ Wδj


, for each j ≥ −n, in order to form the infinite matrix


y−1,1 y0,1 y1,1 . . . yj,1 . . .
y−2,2 y−1,2 y0,2 y1,2 . . . yj,2 . . .


. . .
y−n,n . . . y−2,2 y−1,n y0,n y1,n . . . yj,n . . .


. . .


where, for each n and j, we have that ψ(yj,n) = yj+1,n . At this point, a standard
compactness argument allows to pass to the limit on each “column” along a
common subsequence of indexes in order to find, for each j ∈ Z a point w̃j ∈ Wδj


and the continuity of ψ implies also that ψ(w̃j) = w̃j+1 , ∀ j ∈ Z.


3. Tagged Maps


In order to apply the results of the preceding section to the Poincaré operator
associated to a second order ordinary differential equation with a changing
sign weight, it may be convenient to take advantage also of the information
about the rotation number that we obtain from the analysis of the solutions
in the time-intervals in which the weight is positive. With this respect, we
are led to attach a “tag” to the points of the domain of ψ. Such a tag, in
the applications, will be somehow linked to the rotation number associated to
the solution departing from the given initial point. Accordingly, we define any
continuous map η : Dψ \ {0} → R, as a tag associated to ψ. The pair (ψ, η) will
be called a tagged map. The choice of excluding the origin from the domain of
η is purely conventional and it is made here only in order to remember the fact
that the number of turns around the origin is defined only for those solutions
not passing through it.


Now, a “tagged” version of Theorem 1 reads as follows.


Theorem 3. Let D ⊂ Dψ and let (ψ, η) be a tagged map with (D, ψ) proper


on the compact sets. Let W = [v̂0w]r2
r1


be a conical shell. Suppose that there
is a (non-empty) set of indexes N ⊂ N such that, for each k ∈ N , there is a
compact interval Λk ⊂ R, with Λk∩Λj = ∅ for k 6= j and the following property
holds:


(e1) for each k ∈ N and any path σ contained in W and intersecting Cr1 and
Cr2 , there is a sub-path σk ⊂ D such that


ψ(σk) ⊂ v̂0w , η(σk) ⊂ Λk ,


and


ψ(σk) ∩ Cr1 6= ∅, ψ(σk) ∩ Cr2 6= ∅.
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Then, for each k ∈ N , the map ψ has at least one fixed point z̃k ∈ D ∩ W
with η(z̃k) ∈ Λk . Hence, z̃k 6= z̃j for k 6= j and therefore, ψ has at least #(N )
distinct fixed points in W ∩D.


Proof. Let us fix k ∈ N and consider the set


Sk =
{
z ∈ D ∩W : |ψ(z)| = |z| , η(z) ∈ Λk


}
.


Take a sequence (zn)n ∈ Sk , with (zn)n → z̄ as n → ∞. Since |ψ(zn)| ≤ r2 for
all n, by the properness of (D, ψ), we have that z̄ ∈ D. Moreover, z̄ 6= 0, as
z̄ ∈ W . From the continuity of ψ and η and the fact that Λk is closed, it follows
that z̄ ∈ Sk and thus we have proved that Sk is closed.


Consider now an arbitrary path σ contained in W and intersecting Cr1 and
Cr2 . By (e1) and repeating the same argument in the proof Theorem 1, we find
that the sub-path σk, of σ intersects Sk . At this point, Lemma 4 guarantees
the existence of a continuum Ck ⊂ Sk with Ck intersecting both `v and `w .
By the assumptions, we also have that ψ is defined on Ck , ψ(Ck) ⊂ v̂0w and
η(Ck) ⊂ Λk .


Hence, Corollary 2 implies the existence of a fixed point z̃k for ψ in Ck .


It may be interesting to observe that Theorem 3 could be directly obtained
from Theorem 1, just applying Theorem 1 on ψ restricted to the domain D ∩
η−1(Λk).


We can also write the following generalized version of Theorem 2.


Theorem 4. Let D ⊂ Dψ and let (ψ, η) be a tagged map with (D, ψ) proper
on the compact sets. For W0 and W1 as in Theorem 2, let us suppose that the
following properties hold:


• there is a (non-empty) set of indexes N(0,0) ⊂ N such that, for each
k ∈ N(0,0) there is a compact interval Λk = Λk


(0,0) ⊂ R, with Λk ∩Λj = ∅
for k 6= j, and such that any path σ contained in W0 and intersecting
Cr0


1
and Cr0


2
, contains a sub-path σk


(0,0) ⊂ D such that


ψ(σk
(0,0)) ⊂ v̂00w0 , η(σk


(0,0)) ⊂ Λk


and


ψ(σk
(0,0)) ∩ Cr0


1
6= ∅, ψ(σk


(0,0)) ∩ Cr0
2
6= ∅;


• there is a (non-empty) set of indexes N(0,1) ⊂ N such that, for each
k ∈ N(0,1) there is a compact interval Λk = Λk


(0,1) ⊂ R, with Λk ∩Λj = ∅
for k 6= j, and such that any path σ contained in W0 and intersecting
Cr0


1
and Cr0


2
, contains a sub-path σk


(0,1) ⊂ D such that


ψ(σk
(0,1)) ⊂ v̂10w1 , η(σk


(0,1)) ⊂ Λk


and


ψ(σk
(0,1)) ∩ Cr1


1
6= ∅, ψ(σk


(0,1)) ∩ Cr1
2
6= ∅;







CHAOTIC DYNAMICS FOR NONLINEAR HILL’S EQUATIONS 355


• there is a (non-empty) set of indexes N(1,0) ⊂ N such that, for each
k ∈ N(1,0) there is a compact interval Λk = Λk


(1,0) ⊂ R, with Λk ∩Λj = ∅
for k 6= j, and such that any path σ contained in W1 and intersecting
Cr1


1
and Cr1


2
, contains a sub-path σk


(1,0) ⊂ D such that


ψ(σk
(1,0)) ⊂ v̂00w0 , η(σk


(1,0)) ⊂ Λk


and


ψ(σk
(1,0)) ∩ Cr0


1
6= ∅, ψ(σk


(1,0)) ∩ Cr0
2
6= ∅;


• there is a (non-empty) set of indexes N(1,1) ⊂ N such that, for each
k ∈ N(1,1) there is a compact interval Λk = Λk


(1,1) ⊂ R, with Λk ∩Λj = ∅
for k 6= j, and such that any path σ contained in W1 and intersecting
Cr1


1
and Cr1


2
, contains a sub-path σk


(1,1) ⊂ D such that


ψ(σk
(1,1)) ⊂ v̂10w1 , η(σk


(1,1)) ⊂ Λk


and


ψ(σk
(1,1)) ∩ Cr1


1
6= ∅, ψ(σk


(1,1)) ∩ Cr1
2
6= ∅.


Then, the following conclusions hold:


• for each i = 0, 1 and ki ∈ N(i,i) , the map ψ has at least one fixed point


z̃ki
∈ D ∩Wi with η(z̃ki


) ∈ Λki


(i,i) . In particular, z̃ki
6= z̃mj


for ki 6= mj ,


where i, j ∈ {0, 1} and ki ∈ N(i,i) , mj ∈ N(j,j) . In particular, for i = 0, 1,
the map ψ has at least #(N(i,i)) distinct fixed points in Wi ;


• for each i = 0, 1, for any finite sequence δ = (δ1, . . . , δm), with m ≥ 1
and δj ∈ {0, 1} (for each j = 1, . . . , m) and for any finite sequence
κ = (k1, . . . , km, km+1), with


k1 ∈ N(i,δ1) , k2 ∈ N(δ1,δ2) , . . . , km ∈ N(δm−1,δm) , km+1 ∈ N(δm,i) ,


there are points z̃(i,�,κ) ∈ D ∩ Wi which are fixed points of ψm+1 and
satisfy


ψj(z̃(i,�,κ)) ∈ Wδj
, η(ψj(z̃(i,�,κ))) ∈ Λ


kj


(δj−1,δj)
, ∀ j = 1, . . . , m + 1


(we use here the convention that δ0 = δm+1 = i);
• for each i = 0, 1, for any sequence δ = (δ1, δ2, . . . ), with δj ∈ {0, 1}


(∀ j ∈ N) and for any sequence κ = (k1, k2, . . . ), with


k1 ∈ N(i,δ1) , k2 ∈ N(δ1,δ2) , . . . , km ∈ N(δm−1,δm) , . . . ,


there is a continuum Γ�,κi ⊂ Wi , with Γ�,κi ∩ `vi
6= ∅ and Γ�,κi ∩ `wi


6= ∅
such that for each z ∈ Γ�,κi , it follows that


ψj(z) ∈ Wδj
, η(ψj(z)) ∈ Λ


kj


(δj−1,δj)
, ∀ j ∈ N;
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• for any doubly-infinite sequence δ = (. . . , δ−2, δ−1, δ0, δ1, δ2, . . . ), with
δj ∈ {0, 1} (∀ j ∈ Z) and for any κ = (. . . , k−2, k−1, k0, k1, k2, . . . ), with


km ∈ N(δm−1,δm) , (∀m ∈ Z),


there is a double-sided sequence of points


w̃(�,κ) = (. . . , w̃−2, w̃−1, w̃0, w̃1, w̃2, . . . ),


with w̃j ∈ D ∩Wδj
such that


ψ(w̃j) = w̃j+1 , η(ψj(w̃j)) ∈ Λ
kj


(δj−1,δj)
, ∀ j ∈ Z.


The proof is omitted, as it is just a repetition of that of Theorem 2.
An application of Theorem 4 to the nonlinear Hill’s equation is the following,


where we give a new proof to some of the results contained in [16], [51]. We warn
that we don’t claim that all the solutions of equation (1.1) are oscillatory under
the mild sign conditions on q(t) considered here. What we prove is that there
exist solutions with such a complicated oscillatory behavior like those depicted
in the next Theorem 5.


Theorem 5. Let g : R → R be a locally Lipschitz continuous function sat-
isfying (g0), (gmon) and (g∞). Let q : R → R be a continuous, T -periodic and
piece-wise monotone function. Suppose that there is a finite sequence of points
t0 < t1 < · · · < t2k+1 < t2k+2 = t0 + T such that for j = 0, . . . , k,


q ≥ 0 and q 6≡ 0 on [t2j, t2j+1], q ≤ 0 and q 6≡ 0 on [t2j+1, t2j+2].


Then, there are positive integers m∗
0, m∗


1 . . . , m∗
k , such that the following con-


clusion hold:


• For each n ≥ 1 and for each finite sequence of integers


(m1
0, . . . , m


1
k,m


2
0, . . . , m


2
k, . . . ,m


n
0 , . . . , m


n
k)


with ms
j ≥ m∗


j and for each finite sequence


(δ1
0, . . . , δ


1
k, δ


2
0, . . . , δ


2
k, . . . , δ


n
0 , . . . , δn


k ),


with δs
j ∈ {0, 1}, (for each s = 1, . . . n and j = 0, . . . , k) and such that


∑
s=1,...,n
j=0,...k


ms
j + δs


j = even,


there are at least two nontrivial nT -periodic solutions x(·) of equation
(1.1) such that x has exactly ms


j zeros in the interval ]t2j+(s−1)T, t2j+1+
(s − 1)T [ and exactly δs


j zeros and 1 − δs
j changes of sign of ẋ in the


interval ]t2j+1 +(s− 1)T, t2j+2 +(s− 1)T [ . These two solutions are such
that x(t0) ≥ 0, ẋ(t0) ≥ 0 and x(t0) ≤ 0, ẋ(t0) ≤ 0, respectively.
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• For each N > max{m∗
i : i = 0, . . . , k} and for each sequence of integers


(m0,m1, . . . , mj, . . . )


with mj ∈ [m∗
i , N ] for j ≡ i (mod k) and for each sequence


(δ0, δ1, . . . , δj, . . . )


with δj ∈ {0, 1}, there are two closed connected sets C+ ⊂ Ā1 \ {0} and
C− ⊂ Ā3 \ {0}, with C+ and C− intersecting both the x and the y axes
such that for each (a, b) ∈ C+ ∪ C−, there is at least one solution x(·) of
equation (1.1) with x(t0) = a, ẋ(t0) = b, such that, if j = sk + i, then x
has exactly mj zeros in the interval ]t2i + (s− 1)T, t2i+1 + (s− 1)T [ and
exactly δj zeros and 1 − δj changes of sign of ẋ in the interval ]t2i+1 +
(s− 1)T, t2i+2 + (s− 1)T [ ;


• For each N > max{m∗
i : i = 0, . . . , k} and for each double-sided se-


quence of integers


(. . . ,m−1,m0, m1, . . . ,mj, . . . )


with mj ∈ [m∗
i , N ] for j ≡ i (mod k) and for each sequence


(. . . , δ−1, δ0, δ1, . . . , δj, . . . )


with δj ∈ {0, 1}, there is at least one solution x(·) of equation (1.1) such
that x has exactly mj zeros in the interval ]t2i + (s − 1)T, t2i+1 + (s −
1)T [ and exactly δj zeros and 1− δj changes of sign of ẋ in the interval
]t2i+1 + (s− 1)T, t2i+2 + (s− 1)T [ , when j = sk + i.


Proof. We give a proof in the simpler case in which k = 0. We also assume
t0 = 0 (there is no loss of generality in this latter assumption), so that we can
split the interval [0, T ] as the union of two intervals [0, τ ] and [τ, T ] such that


q ≥ 0 and q 6≡ 0 on [0, τ ], q ≤ 0 and q 6≡ 0 on [τ, T ].


Now we take as ψ the Poincaré map φT
0 associated to the planar system (1.4).


We note that, due to the superlinear growth of g at infinity, we have that some
solutions of (1.1) blow up in the intervals where q ≤ 0 (cf. [11] ), so that Dψ is
a proper open subset of R2 which may possess a complicated structure [15]. In
any case, thanks to Example 3, we have that ψ is proper on the compact sets.
Then we define


W0 = Ā1 ∩ A[r1, r2], W1 = Ā3 ∩ A[r1, r2],


where r1 and r2 are chosen as follows: from Proposition 1, we first fix r1 > R∗ .
This determines a number n∗r1


and hence we can define m∗
0 = n∗r1


+ 1. At this
point, we can choose any number N > m∗


0 and take r2 > max{Rj : j ∈ [m∗
0, N ]}


for the Rj’s as in Proposition 1. After these definitions, and using the arc
expansion property ensured by Proposition 1, we can easily enter into the frame
of Theorem 4 and arrive to the conclusion.
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For the case k ≥ 1, one should use a more general version of Theorem 4,
using a decomposition of ψ of the form


ψ = φ
t2k+2
t2k


◦ · · · ◦ φt2
t0


and repeating a similar argument like that of the proof of Theorem 4, but taking
into account the the whole information about the oscillation of the solutions in
the single intervals [t2j, t2j+2]. For a different proof of these results, see [51] for
the periodic problem and [16] for the “chaotic solutions”.


Remark 3. The upper bound N for the numbers of zeros in the intervals of
positivity of the function q(t) is assumed in Theorem 5 only for the purpose
to have a direct application of Theorem 4. Using more carefully the properties
given in Lemma 1 and Lemma 2 (instead of putting a bound for the oscillations
like in Proposition 1) one could obtain a more general result in which the request
of upper bound N can be avoided. Results in this direction have been obtained
by Terracini and Verzini in [68] and by Capietto, Dambrosio and Papini in [16].


We also point out that the same result of Theorem 5 can be obtained for the
damped nonlinear Hill’s equation


ẍ + cẋ + q(t)g(x) = 0, (3.11)


with c ∈ R and q(t) and g(x) satisfying the same conditions of Theorem 5 (see
also [16] and [51]). In fact, Lemma 1 and Lemma 2 and hence Proposition 1
are true for equation (3.11), too.


4. Appendix 1: Looking for an Underlying Geometric Structure


Here, we show how the results of the previous sections can be generalized to
the case of arbitrary two-dimensional cells. In doing this, we try to make more
explicit the geometric structure which allows to obtain results like Theorem 1
and Theorem 2.


Results about chaotic dynamical systems are nowadays available in various
excellent books and articles. Probably, the most famous model for the chaotic
dynamics is given by the celebrated Smale Horseshoe [58], [59]. General results
about the horseshoe, as well applications to various examples of dynamical sys-
tems can be found, for instance, in [27], [47], [70], [55]. In some recent years,
various authors have developed topological approaches in order to prove the
existence of chaotic dynamics either for some specific examples of differential
equations ([30], [32], [67]) or for dynamical systems satisfying suitable assump-
tions in order to apply some kind of index theory [17], [18], [45], [60], [61], [62],
[63], [64], [66], [71], [73], [74], [75], [80]. Other approaches based on variational
methods have been applied to differential equations as well (see, e.g., [2], [3],
[56] for results in that direction).


The aim of this section is just to show how the arguments described in The-
orem 1 and Theorem 2 can be easily extended to the more general setting of
two-dimensional cells (the case of one-dimensional cells is much more simple
and is only sketched in Remark 6). In some recent articles, [34], [35], a general
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theory for expanding maps yielding to chaotic dynamics has been developed.
The settings of [34] and [35] appear to be more general than ours. On the
other hand, in our case, as a by-product of the arc expansion property, it is
possible to obtain a fixed point theorem which, in turns, allows to prove, in an
elementary manner, the existence of periodic orbits (and periodic solutions for
the nonlinear Hill’s equation) too.


First of all, we introduce some definitions.


Definition 1. We define an oriented cell R̃ as a pair (R,R−), where
R ⊂ R2 is a two-dimensional cell (i.e., a subset of the plane homeomorphic
to the unit square Q = [−1, 1]2 ) and R− ⊂ ∂R is the union of two disjoint
compact arcs, too. The two components of R− will be denoted by R−


l and R−
r


and conventionally called the left and the right sides of R. The order in which
we make the choice of naming R−


l and R−
r is not important in what follows.


Since ∂R is a simple closed curve, we have that R+ := ∂R \R− is the union
of two disjoint compact arcs, too. The two components of R+ will be denoted
by R+


b and R+
t (the base and the top of R); again, the order is not important.


To consider the unit square as an oriented cell, a natural choice will be that
of Q−


l = {−1} × [−1, 1], Q−
r = {1} × [−1, 1], Q+


b = [−1, 1] × {−1} and Q+
t =


[−1, 1]× {+1}.
As a consequence of the Shoenflies theorem [31] or [46], it is not difficult to


see that, given an oriented cell R̃ = (R,R−), there is a homeomorphism h of
the plane onto itself such that h(Q) = R and h(Q−


l ) = R−
l , h(Q−


r ) = R−
r ,


h(Q+
b ∪Q+


t ) = R+.


Let ψ : R2 ⊃ Dψ → R2 be a (continuous) map that we consider to be defined
on a set Dψ . Let D be a subset of Dψ and let also K ⊂ R2 be compact set.


Definition 2. We say that (D, ψ) is proper on K if ψ is continuous on
D and, for each sequence zn ∈ D ∩ K such that ψ(zn) is bounded, there is a
subsequence zjn converging to a point of D.


This, clearly, is equivalent to the requirement that if there is any w ∈ (∂D \
D) ∩ K, then lim


z→w
z∈D∩K


|ψ(z)| = ∞.


Remark 4. a) In the above definition D is not necessarily the whole domain
of ψ. b) If (D, ψ) is proper on K, then (D, ψ) is proper on any closed subset of
K, that is (D ∩ C, ψ) is proper on K, for each closed set C ⊂ R2. In particular,
if D ∩ K is closed (for instance, if K ⊂ D ), then, any continuous map ψ is
such that (D, ψ) is proper on K. c) If (D1, ψ1) is proper on K1 and (D2, ψ2)
is proper on K2 then, (D1,2, ψ2 ◦ ψ1) is proper on K1 for


D1,2 := D1 ∩ ψ−1
1 (D2 ∩ K2).


The set D1,2 will be considered as the natural domain for the composition of
two proper maps. By induction, for the composition of ψ1, . . . , ψn , with (Di, ψi)
proper on Ki for i = 1, . . . , n, the corresponding “natural domain” will be the
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set
D1,...,n =


{
z ∈ D1 : ψ1(z) ∈ D2,...,n ∩ K2


}
.


Definition 3. Let Ã = (A,A−) and B̃ = (B,B−) be two oriented cells and
let ψ : R2 ⊃ Dψ → R2 be a map. Consider also a set D ⊂ Dψ . We say that


(D, ψ) stretches Ã to B̃ and write


(D, ψ) : Ã CÃ B̃
if


• (D, ψ) is proper on A,
• for any path Γ ⊂ A such that Γ ∩ A−


l 6= ∅ and Γ ∩ A−
r 6= ∅, there is a


path Γ′ ⊂ Γ ∩ D such that


ψ(Γ′) ⊂ B, ψ(Γ′) ∩ B−l 6= ∅, ψ(Γ′) ∩ B−r 6= ∅.


Lemma 5. Suppose that (D1, ψ1) : Ã CÃ B̃ and (D2, ψ2) : B̃ CÃ C̃. Then


(D1,2, ψ2 ◦ ψ1) : Ã CÃ C̃.
Proof. The result easily follows from the definition.


Theorem 6. Suppose that there is an oriented cell R̃ = (R,R−), a map


ψ : R2 ⊃ Dψ → R2 and a set D ⊂ R2, such that (D, ψ) : R̃ CÃ R̃. Then, there
is at least one z∗ ∈ R ∩ D such that ψ(z∗) = z∗.


Proof. Let h : R2 → R2 be a homeomorphism such that h(Q) = R, h(Q−
l ) = R−


l


and h(Q−
r ) = R−


r and consider the map


φ(x) := h−1(ψ(h(x)), x ∈ E := h−1(D).


By the assumptions on (D, ψ) and observing also that h and h−1 take bounded
sets to bounded sets, is is straightforward to check that (E , φ) : (Q,Q−) CÃ
(Q,Q−).


For φ = (φ1, φ2) and x = (x1, x2), let us consider the set


S =
{
x ∈ E ∩Q : φ1(x) = x1 , |φ2(x)| ≤ 1


}
.


The properness of (E , φ) on Q implies that S is closed.
Let γ : [0, 1] → Q be a continuous map such that γ(0) ∈ Q−


l and γ(1) ∈ Q−
r .


By the “stretching” hypothesis, there are t1 , t2 ∈ [0, 1] such that φ(γ(t1)) ∈ Q−
l


and φ(γ(t2)) ∈ Q−
r . Moreover, if we denote by I ⊂ [0, 1] the interval determined


by t1 and t2 , we can also assume that γ(I) ⊂ E and φ(γ(I)) ⊂ Q.
Hence, φ1(γ(t1)) ≤ γ1(t1) and φ1(γ(t2)) ≥ γ1(t2) and therefore there is some


t0 ∈ I such that φ1(γ(t0)) = γ1(t0). As φ(γ(t0)) ∈ Q, we also have that
|φ2(γ(t0))| ≤ 1.


In this manner, we have proved that any path contained in Q and joining
Q−


l with Q−
r intersects the set S. By Lemma 4, it follows that S contains a


continuum C joining Q+
b with Q+


t . From the definition of S it also follows that


φ2(C) ⊂ [−1, 1]
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and hence x2−φ2(x1, x2) ≤ 0 for (x1, x2) ∈ C∩Q+
b , as well as x2−φ2(x1, x2) ≥ 0


for (x1, x2) ∈ C ∩ Q+
t . Then, the Bolzano theorem guarantees the existence of


a w∗ = (w∗
1, w


∗
2) ∈ C such that φ2(w


∗) = w∗
2 . From the definition of S we can


conclude that


φ(w∗) = w∗ .


Clearly, z∗ := h(w∗) ∈ D∩R is a fixed point of ψ. This concludes the proof.


Theorem 7. Suppose that there are two oriented cells R̃0 = (R0,R−
0 ), and


R̃1 = (R1,R−
1 ), with R0 ∩ R1 = ∅. Let ψ : R2 ⊃ Dψ → R2 be a continuous


map and assume that there is a set D ⊂ R2, such that


(D, ψ) : R̃i CÃ R̃j


for each i, j ∈ {0, 1}. Then, the following conclusions hold:


(r1) for each i = 0, 1, the map ψ has at least one fixed point z̃i ∈ D ∩Ri ;
(r2) for each i = 0, 1 and for any finite sequence δ = (δ1, . . . , δk), with k ≥ 1


and δj ∈ {0, 1} (for all j = 1, . . . , k), there are points z̃(i,�) ∈ D ∩ Ri


which are fixed points of ψk+1 and satisfy


ψj(z̃(i,�)) ∈ Rδj
, ∀ j = 1, . . . , k;


(r3) for each i = 0, 1 and for any sequence δ = (δ1, δ2, . . . ), with δj ∈ {0, 1}
(∀ j ∈ N), there is a continuum Γ�i ⊂ Ri , with Γ�i intersecting both the
components of R+


i , such that for each z ∈ Γ�i , it follows that


ψj(z) ∈ Rδj
, ∀ j ∈ N;


(r4) for any doubly-infinite sequence δ = (. . . , δ−2, δ−1, δ0, δ1, δ2, . . . ), with
δj ∈ {0, 1} (∀ j ∈ N), there is a double-sided sequence of points


z̃� = (. . . , z̃−2, z̃−1, z̃0, z̃1, z̃2, . . . ),


with z̃j ∈ D ∩Rδj
such that


ψ(z̃j) = z̃j+1 , ∀ j ∈ Z.


Proof. The proof of (r1) and (r2) is a direct consequence of Theorem 6. For
the proof of (r3) and (r4) we have only to repeat that of Theorem 2 with Ri


playing the same role of Wi .


Remark 5. We notice that the hypothesis that R0 ∩ R1 = ∅ is assumed
here only in order to avoid the possibility of “trivial” cases for the sequence
(z̃)j as well as to have different fixed points for the map ψ and its iterates. The
condition of non-intersection for the cells can be avoided if we have some control
on the sequence of points which enter in R0 ∩R1 after some step. Sometimes,
this will be not a difficult task, for instance, when R0∩R1 is a sufficiently small
set (e.g., a singleton).


The same remark clearly applies to Theorem 2 and Theorem 4 with respect
to W0 and W1 .
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Remark 6. The argument we have used in the proof of Theorem 2 can be
applied in order to show the well known fact that an expanding self-map of the
unit interval produces a very complicated dynamics through its iterates [42].


Let f : [0, 1] → [0, +∞) be a continuous function such that f(0) = f(1) = 0
and suppose that f(c) ≥ 1 for some c ∈ ]0, 1[ . Let us set W1 = [0, a] and
W2 = [b, 1], where a = min{t ∈ [0, 1] : f(t) = 1} and b = max{t ∈ [0, 1] :
f(t) = 1}. Then it is easy to see that an expansion arc property holds and all
the consequences of Theorem 7 hold in this one-dimensional case. (see [34], [38]
for the same situation). To be more precise, if a < b (which is surely true when
f(c) > 1), we enter in the setting of disjoint cells. Otherwise, if f(c) = 1 and
a = c = b, we could apply Theorem 7 with Remark 5 and produce any sequence
of symbols “left-right” (where “left” means “in the interval [0, a]” and “right”
means “in the interval [b, 1]”) as we know that the only sequences which have
a term zi = c, must be identically equal to zero since then.
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5. A. Ávila and P.L. Felmer, Periodic and subharmonic solutions for a class of second
order Hamiltonian systems. Dynam. Systems Appl. 3(1994), 519–536.


6. A. K. Ben-Naoum, C. Troestler and M. Willem, Existence and multiplicity
results for homogeneous second order differential equations. J. Differential Equations
112(1994), 239–249.


7. H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite
elliptic problems and nonlinear Liouville theorems. Topol. Methods Nonlinear Anal.
4(1994), 59–78.







CHAOTIC DYNAMICS FOR NONLINEAR HILL’S EQUATIONS 363


8. H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods
for indefinite superlinear homogeneous elliptic problems. NoDEA Nonlinear Differential
Equations Appl. 2(1995), 553–572.


9. N.P. Bhatia, Some oscillation theorems for second order differential equations. J. Math.
Anal. Appl. 15 (1966), 442–446.


10. L.E. Bobisud, Oscillation of nonlinear second-order equations. Proc. Amer. Math. Soc.
23(1969), 501–505.


11. T. Burton and R. Grimmer, On continuability of solutions of second order differential
equations. Proc. Amer. Math. Soc. 29(1971), 277–283.


12. G. J. Butler, On the oscillatory behaviour of a second order nonlinear differential
equation. Ann. Mat. Pura Appl. (4) 105(1975), 73–92.


13. G. J. Butler, Oscillation theorems for a nonlinear analogue of Hill’s equation. Quart.
J. Math. Oxford Ser. (2) 27(1976), 159–171.


14. G. J. Butler, Rapid oscillation, nonextendability, and the existence of periodic solu-
tions to second order nonlinear differential equations. J. Differential Equations 22(1976),
467–477.


15. G. J. Butler, The existence of continuable solutions of a second order differential
equation. Canad. J. Math. 29(1977), 472–479. Erratum: “The existence of continuable
solutions of a second order differentiable equation”, Canad. J. Math. 31(1979), 448.


16. A. Capietto, W. Dambrosio and D. Papini, Superlinear indefinite equations on the
real line and chaotic dynamics. J. Differential Equations (to appear).


17. M. C. Carbinatto, J. Kwapisz and K. Mischaikow, Horseshoes and the Conley
index spectrum. Ergodic Theory Dynam. Systems 20(2000), 365–377.


18. M. C. Carbinatto and K. Mischaikow, Horseshoes and the Conley index spectrum.
II. The theorem is sharp. Discrete Contin. Dynam. Systems 5(1999), 599–616.


19. C. V. Coffman and D. F. Ullrich, On the continuability of solutions of a certain
nonlinear differential equation. Monatsh. Math. 71(1967), 385–392.


20. C. Conley, An application of Wazewski’s method to a non–linear boundary value
problem which arises in population genetics. J. Math. Biol. 2(1975), 241–249.


21. K. Deimling, Nonlinear functional analysis. Springer-Verlag, Berlin–Heidelberg, 1985.


22. Y. Ding and M. Girardi, Periodic and homoclinic solutions to a class of Hamiltonian
systems with the potentials changing sign. Dynamic Systems Appl. 2(1993), 131–145.


23. T. Ding and F. Zanolin, Periodic solutions of Duffing’s equations with superquadratic
potential. J. Differential Equations 97(1992), 328–378.


24. K. J. Falconer, The geometry of fractal sets. Cambridge Tracts in Mathematics, 85,
Cambridge University Press, Cambridge, 1986.


25. M. Girardi and M. Matzeu, Existence and multiplicity results for periodic solutions
of superquadratic Hamiltonian systems where the potential changes sign. NoDEA Non-
linear Differential Equations Appl. 2(1995), 35–61.


26. M. Girardi and M. Matzeu, Some results about periodic solutions of second order
Hamiltonian systems where the potential has indefinite sign. Nonlinear partial differ-
ential equations (Fès, 1994), 147–154, Pitman Res. Notes Math. Ser., 343, Longman,
Harlow, 1996.


27. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields. Revised and corrected reprint of the 1983 original. Applied
Mathematical Sciences, 42. Springer-Verlag, New York, 1990.







364 DUCCIO PAPINI AND FABIO ZANOLIN


28. J. K. Hale, Ordinary Differential Equations. R.E. Krieger Publishing Co., Huntington,
New York, 1980.


29. P. Hartman, On boundary value problems for superlinear second order differential
equations. J. Differential Equations 26(1977), 37–53.


30. S. P. Hastings and W.C. Troy, A shooting approach to chaos in the Lorenz equations.
J. Differential Equations 127(1996), 41–53.


31. J. G Hocking and G. S. Young, Topology. Addison-Wesley Publishing Co., Inc.,
Reading, Mass.-London, 1961.


32. J. H. Hubbard, The forced damped pendulum: chaos, complications and control.
Amer. Math. Monthly 106(1999), 741–758.


33. H. Jacobowitz, Periodic solutions of x′′ + f(t, x) = 0 via the Poincaré-Birkhoff the-
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