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ON AN OPTIMAL DECOMPOSITION IN ZYGMUND SPACES
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Abstract. An optimal decomposition formula for the norm in the Orlicz
space L(log L)α is given. New proofs of some results involving L(log L)α


spaces are given and the decomposition is applied to apriori estimates for
elliptic partial differential equations with the right-hand side in Zygmund
classes.
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1. Introduction


A lot of attention has always been paid to various expressions for the norm in
Orlicz spaces (Luxemburg norm, “dual” norm, Amemyia norm, see, e.g., [24],
[28], [25]); indeed, the definition of a norm is one of very peculiar features of
these spaces, which sometimes makes things rather difficult and – by the rule
of thumb – frequently prevents one from straightforward usage of the Lp-space
techniques and approach.


In general, the idea of decomposition has turned out to be highly fruitful in
many areas of analysis. It is often helpful to consider functions decomposed
into suitable elementary pieces which are easier to handle. In connection with
extrapolation procedures there is even a chance to consider not only these small
pieces in a given space, but also to treat them as elements of spaces “in prox-
imity” of the considered space. We shall see that it is natural to arrive at
L(log L)α via the scale of Lp-spaces with p > 1, breaking functions into suitable
little pieces belonging to “better” Lp-spaces.


This has been done at the abstract extrapolation theory level in Jawerth and
Milman [22], see also Milman [26]. The identification of the result of the Σ-
method applied to Lp-spaces is done via including the K-functional into the
considerations and then employing the fact that Zygmund spaces can also be
interpreted as special Lorentz–Zygmund spaces (see [1, Chapter 4]).


A functional analysis argument leads to the same expression in Edmunds and
Triebel [7] for the range 1 < p < ∞. Here, the key estimate for extrapolation
characterization of Lp(log L)−α, 1 < p < ∞ and α > 0, is the estimate c1‖f‖p1 ≤
‖f‖p1,p ≤ c2‖f‖p2 with suitable p1 < p2 < p, relating the Lorentz and Lebesgue
norms. Then a duality argument is used for spaces Lp(log L)α, α > 0. The case
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p = 1 in [8] requires an extra effort since Lexp t1/α is not the predual of L(log L)α


(cf. also Remark 3.7). In this connection let us also recall Fiorenza [9], where
it has been shown in another situation that in some cases the norm in a dual
space can be expressed in terms of a suitable decomposition.


The plan of the paper is the following: In Section 2 we introduce the no-
tation and recall some relevant result framing our considerations. Section 3
contains the main results and their proofs. In the concluding Section 4 we give
some examples showing how the decomposition norm can be employed to get
straightforward proofs of some results involving L log L-spaces and some new
apriori estimates for elliptic partial differential equations.


2. Preliminaries


In the sequel we assume that Ω is an open bounded subset of RN of Lebesgue
measure |Ω| = 1. If not otherwise specified, all the norms and all the spaces are
tacitly assumed to concern Lebesgue measurable functions defined a.e. in Ω.
All positive constants whose exact value is not important for our purposes are
denoted by c, occasionally with additional subscripts within the same formula
or the same proof.


Let either α ∈ R and 1 < r < ∞ or α ≥ 0 and r = 1. The Orlicz space
Lr(log L)α is defined as the Banach space of all measurable functions f on Ω
such that the following (Luxemburg) norm


‖f‖Lr(log L)α = inf


{
λ > 0 :


∫


Ω


( |f |
λ


)r


logα
(
e +


( |f |
λ


)r)
dx < 1


}


is finite. If α = 0 then the space Lr(log L)α reduces to the Lebesgue space Lr


whose norm is denoted simply by ‖ · ‖r. If r = 1 and α > 0, we do speak
about the Zygmund classes. We shall not discuss the case r = ∞, α < 0; this
leads to exponential Orlicz spaces Lexp t1/α


(and gives justification to alternative
notation L∞(log L)α for them). Sometimes another notation is employed: for
β > 0, the space EXPβ (or simply EXP if β = 1) is defined as the Banach space
of all measurable functions f on Ω such that


‖f‖EXPβ
= inf


{
λ > 0 :


∫


Ω


e(|f |/λ)β


dx < 2


}


is finite. Later we shall make use of the well-known extrapolation characteriza-
tion of EXPβ as of the space consisting of all f such that


sup
k∈N


‖f‖k


k1/β
< ∞ (2.1)


(see, e.g., [14, Exercise 17, p. 279]). Observe that the sup on the left hand side
is an equivalent norm in EXPβ.


We use the notation λj = (2j)′ = (1 − 2−j)−1, j ∈ N. For later use let us
recall the formulas from [7] and [8] for the norm in Lr(log L)α: if 1 ≤ r < ∞,
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J ∈ N, then the functional


‖g‖r,α = inf
|g|=


∑∞
j=J


gj


( ∞∑


j=J


2jα‖gj‖r
rλj


)1/r


(2.2)


defines a norm in Lr(log L)α equivalent to the Luxemburg norm. Clearly, any
sequence (gj) such that for some j the function gj is not in Lrλj makes no contri-
bution to the computation of the infimum, therefore without loss of generality
we may assume that gj ∈ Lrλj for all j ≥ J . Plainly, we can assume that J = 1.
Also, we shall restrict ourself to representations of |g| as sums of non-negative
functions gj and we shall consider only non-negative functions in more general
representations of type |g|1/q =


∑ |gj|1/q (q ≥ 1) later; it is easy to see that the
infimum remains to be the same (provided the powers have sense). We call such
decompositions admissible and in the sequel all the infima over decompositions
of |g| will be taken over admissible decompositions without an explicit recalling
this assumption. Note that some more delicate considerations about similar
decompositions into sign-changing functions can be found in [9].


The non-increasing rearrangement of a non-negative measurable function f
on Ω is defined as f ∗(t) = inf{λ > 0; m(f, λ) ≤ t}, t > 0, where m(f, λ) =
|{x ∈ Ω; f(x) > λ}|, or, alternatively, in terms of the function f , as f ∗(t) =
sup|E|=t ess inf


x∈E
f(x), t ∈ (0, 1] (see [12]). These definitions yield functions, which


are equal up to a countable subset of (0, 1), thus the difference between them
can be neglected as far as their integration is concerned. It can be easily proved
that f ∗ is non-negative and non-increasing on (0, 1) and vanishing for t ≥ 1.
Moreover, Orlicz spaces are rearrangement-invariant , that is, the norm of a
function in an Orlicz space is preserved when considering its non-increasing
rearrangement. For more details about non-increasing rearrangements we refer
to [1], [19], [33], [34].


We refer to [23], [28], [16], and [24] for the theory of Orlicz spaces and integral
operators acting on them.


Remark 2.1. Let us recall, for completeness, various known formulas for
norms of a function f ∈ L(log L), all of them equivalent to the Luxemburg
norm of f ; for simplicity, we restrict ourselves here to the case Ω = [0, 1]. The
list follows:


inf


{
λ > 0 :


1∫


0


(|f(t)|/λ) log(A + (|f(t)|/λ)) dt < B


}
for any A ≥ 1, B > 0;


sup


{ 1∫


0


f(t)g(t) dt : ‖g‖EXP ≤ 1


}
(the Orlicz norm, or the dual norm);


1∫


0


(
1


t


t∫


0


f ∗
)


dt;
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1∫


0


f ∗(t) log(1/t) dt;


1∫


0


f(t) log
(
e +


f(t)
∫ 1
0 f


)
dt;


inf


{
1


λ
+


1∫


0


λ|f | log(e + λ|f |) dx : λ > 0


}
(the Amemyia norm).


The first expression is clear from the well-known imbedding theorems in Orlicz
spaces and the second can be found, e.g., in [24]. The norms in the third
and fourth line in terms of f ∗ appear for instance in [1, Chapter 4], and their
equivalence follows from Herz’s theorem (see, e.g., [1, Chapter 3, Theorem 3.8]).
The last two expressions for the norm can be found, for instance, in [3] and [25].


Remark 2.2. The norms
∫ 1
0 f ∗(t) log(1/t) dt above, and/or, more generally,∫ 1


0 f ∗(t)[log(1/t)]α dt in L(log L)α give information about the right compensation
for the growth rate of the Lp-norm of a function in L(log L)α as p → 1. Namely,
we have


1∫


0


f ∗(t)
[
log(1/t)


]α
dt ≤ ‖f‖p


( 1∫


0


(
log(1/t)


)αp′
dt


)1/p′


= ‖f‖p


( ∞∫


0


ξαp′e−ξ dξ


)1/p′


= ‖f‖p[Γ (αp′ + 1)]1/p′ = ‖f‖p(αp′)1/p′ [Γ (αp′)]1/p′ ,


where Γ is the gamma-function. According to Stirling’s formula we have


[Γ (αp′)]1/p ∼
[√


2π(αp′)αp′−1/2e−αp′
]1/p′ ∼ (p′)α−1/(2p′) ∼ (p′)α


as p′ →∞. Altogether


‖f‖L(log L)α ≤ c(p′)α‖f‖p as p → 1 (2.3)


with some c independent of p and f .


The following lemma is a simple observation about the relation between Lux-
emburg norms in different Orlicz spaces. The function Φ appearing in the state-
ment can be any Young function (i.e., any real function on [0,∞), continuous,
increasing, convex, and such that lim


t→0
Φ(t)/t = lim


t→∞ t/Φ(t) = 0).


Lemma 2.3. For any p ≥ 1 and for any function f ∈ LΦ(tp) we have


‖f‖Φ(tp) = ‖fp‖1/p
Φ(t).


The proof of Lemma 2.3 follows immediately by using the definition of the
Luxemburg norm in a general Orlicz space LΦ.
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3. A decomposition Norm


Let M denote the set of all Lebesgue measurable functions on Ω.


Theorem 3.1. For any q ≥ 1 and α ≥ 0, the functional


g 7→ ‖g‖1,α,q = inf


|g|=
(∑∞


j=1
g
1/q
j


)q


∞∑


j=1


2jα‖gj‖λj


has the following properties:


(i) ‖g‖1,α,q ≥ 0, g ∈M;
(ii) ‖λg‖1,α,q = |λ|‖g‖1,α,q, g ∈M;
(iii) g ∈M, ‖g‖1,α,q = 0 ⇔ g = 0 a.e. in Ω;
(iv) ‖g + h‖1,α,q ≤ ‖g‖1,α,q + ‖h‖1,α,q, g, h ∈M.


Proof. The proof of (i) is immediate, and (ii) is easy. As to (iii), we prove that
if g ∈M, ‖g‖1,α,q = 0, then g = 0 a.e. in Ω.


Let us consider first the easy case q = 1. Given ε > 0, there exists (gj) such
that


‖g‖1 =
∥∥∥
∞∑


j=1


gj


∥∥∥
1
≤


∞∑


j=1


2jα‖gj‖λj
< ε


and therefore we get the assertion. If q > 1, we make use of the following
argument (in which, of course, we may assume g ≥ 0) which we develop now
only for α = 1, q = 2; the remaining cases can be treated similarly.


Fix 0 < H < 1 and a decomposition g =
( ∑∞


j=1 g
1/2
j


)2
. We claim that∣∣∣{g > 20H}


∣∣∣ ≤
∣∣∣ ⋃∞


j=1{gj > (2/3)jH}
∣∣∣. Indeed, if this is not true, then there


exists a set E ⊆ Ω of positive measure such that g(x) > 20H for a.e. x ∈ E,
gj(x) ≤ (2/3)jH for a.e. x ∈ E and for every j ∈ N. Therefore


g =
( ∞∑


j=1


g
1/2
j


)2


≤
[ ∞∑


j=1


(
(2/3)jH


)1/2
]2


< 20H for a.e. x ∈ E,


which is absurd. Our claim is proved and therefore we have also


∣∣∣{g > 20H}
∣∣∣ ≤


∞∑


j=1


∣∣∣{gj > (2/3)jH}
∣∣∣.


Now we estimate |{gj > (2/3)jH}| for a particular choice of (gj). Let us fix
0 < ε < 1, and denote again by (gj) a sequence such that


g =
( ∞∑


j=1


g
1/2
j


)2


and
∞∑


j=1


2j‖gj‖λj
< ε.


We have 2j‖gj‖λj
< ε, j ∈ N, and therefore


2jλj


∣∣∣{gj > (2/3)jH}
∣∣∣
(
(2/3)jH


)λj ≤ 2jλj


∫


{gj>(2/3)jH}
g


λj


j dx < ε.
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Our estimate follows because
∣∣∣{gj > (2/3)jH}


∣∣∣ ≤ ε2−jλj


(
3j


2jH


)λj


≤ ε(3/4)j


H2
, j ∈ N.


Hence
∣∣∣{g > 20H}


∣∣∣ ≤
∞∑


j=1


∣∣∣{gj > (2/3)jH}
∣∣∣ ≤ ε


H2


∞∑


j=1


(
3


4


)j


≤ 3ε


H2
.


This inequality implies |{g > 20H}| = 0 for all 0 < H < 1. Therefore g = 0 for
a.e. x ∈ Ω and (iii) is proved.


Finally, we prove the triangle inequality (iv). First, we have


inf
|g+h|≤


(∑∞
j=1


z
1/q
j


)q


∞∑


j=1


2jα‖zj‖λj
≤ inf


|g|=
(∑∞


j=1
g
1/q
j


)q


|h|=
(∑∞


j=1
h
1/q
j


)q


∞∑


j=1


2jα‖gj + hj‖λj
.


This is easy to see: if (gj), (hj) are such that


|g| =
( ∞∑


j=1


g
1/q
j


)q


and |h| =
( ∞∑


j=1


h
1/q
j


)q


,


then for zj = gj + hj, j ∈ N, we have


|g + h| ≤ |g|+ |h| ≤
( ∞∑


j=1


z
1/q
j


)q


,


where we used Minkowski’s inequality with an exponent between 0 and 1 (see,
e.g., [19, n. 25, (2.11.5), p. 31]). Now we have


‖g + h‖1,α,q = inf
|g+h|=


(∑∞
j=1


z
1/q
j


)q


∞∑


j=1


2jα‖zj‖λj
= inf


|g+h|≤
(∑∞


j=1
z
1/q
j


)q


∞∑


j=1


2jα‖zj‖λj


≤ inf
|g|=


(∑∞
j=1


g
1/q
j


)q


|h|=
(∑∞


j=1
h
1/q
j


)q


∞∑


j=1


2jα‖gj + hj‖λj


≤ inf
|g|=


(∑∞
j=1


g
1/q
j


)q


|h|=
(∑∞


j=1
h
1/q
j


)q




∞∑


j=1


2jα‖gj‖λj
+


∞∑


j=1


2jα‖hj‖λj






= inf
|g|=


(∑∞
j=1


g
1/q
j


)q


∞∑


j=1


2jα‖gj‖λj
+ inf
|h|=


(∑∞
j=1


h
1/q
j


)q


∞∑


j=1


2jα‖hj‖λj


= ‖g‖1,α,q + ‖h‖1,α,q


and therefore (iv) is also proved.
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Next step is to prove that the norm defined in Theorem 3.1 is equivalent to
the Luxemburg norm in L(log L)α. We shall make use of


Lemma 3.2. Let Φ be any Young function. If N (f) is a norm in X = {f ∈
L1 : N (f) < ∞} and if


f ∈ L1 7→
[
N (|f |p)


]1/p


is a norm in LΦ(tp) equivalent to the Luxemburg norm, then X = LΦ(t) and


f ∈ L1 7→ N (f)


is a norm in LΦ(t) equivalent to the Luxemburg norm.


Proof. We know that there exist c1, c2 > 0 such that


c1‖f‖Φ(tp) ≤ [N (|f |p)]1/p ≤ c2‖f‖Φ(tp), f ∈ LΦ(tp).


Therefore c1‖|f |1/p‖Φ(tp) ≤ [N (f)]1/p ≤ c2‖|f |1/p‖Φ(tp), f ∈ LΦ(t). In view of


Lemma 2.3, c1‖f‖1/p
Φ(t) ≤ [N (f)]1/p ≤ c2‖f‖1/p


Φ(t), f ∈ LΦ(t). Hence cp
1‖f‖Φ(t) ≤


N (f) ≤ cp
2‖f‖Φ(t), f ∈ LΦ(t).


Proposition 3.3. Let q > 1. Then ‖ · ‖1,α,q is equivalent to the Luxemburg
norm of L(log L)α.


Proof. We have


‖gq‖1/q
1,α,q = inf


|g|q=


(∑∞
j=1


g
1/q
j


)q


( ∞∑


j=1


2jα‖gj‖λj


)1/q


= inf
|g|=


∑∞
j=1


γj


( ∞∑


j=1


2jα‖γq
j‖λj


)1/q


= inf
|g|=


∑∞
j=1


γj


( ∞∑


j=1


2jα‖γj‖q
qλj


)1/q


.


By (2.2) the last quantity is equivalent to the Luxemburg norm in Lq(log L)α.
Therefore, by virtue of Lemma 3.2, we get the assertion.


Our next step will be to prove that Proposition 3.3 remains true for q = 1.
At the same time we find an optimal decomposition of g into a sum; this is the
core of the paper. We observe that one inequality of the equivalence of ‖g‖1,α,1


to the Luxemburg norm can be proved as a corollary of Proposition 3.3. We
shall use, however, another argument, independent of [7], and we prefer to prove
both inequalities in the desired equivalence in a direct way, giving us additional
information about how to decompose a function in order to get an expression
equivalent to the norm in L(log L)α. Let us recall the well-known fact that
f ∈ EXPβ if and only if supk∈N k−1/β‖f‖k < ∞ and that the latter expression
is an equivalent norm in EXPβ. (See, e.g., [14, Chapter VI, Exercise 17].)
Moreover, this statement can be improved (see [6]), namely, f ∈ EXPβ if and
only if supk∈N k−1/β‖fχIk


‖k < ∞, where χIk
is the characteristic function of the


interval (ek, ek−1), k = 1, 2, . . . (and one gets an equivalent norm in this way,
too).
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Theorem 3.4. Let α > 0. Then


‖g‖1,α,1 = inf
|g|=


∑∞
j=1


gj


∞∑


j=1


2jα‖gj‖λj
(3.1)


and the Luxemburg norm are equivalent in L(log L)α.


Proof. We may assume that g ≥ 0 and without loss of generality, we consider
the case Ω = (0, 1) ⊂ RN1. Moreover, in order to show the first inequality we
may consider the “dual norm” in L(log L)α instead of the Luxemburg norm:


‖g‖L(log L)α = sup


{ 1∫


0


f(t)g(t) dt : ‖f‖EXP1/α
≤ 1


}
.


Fix any decomposition g =
∑∞


j=1 gj. If g ∈ L(log L)α, then for any ε > 0 let
fε ∈ EXP1/α, ‖fε‖EXP1/α


≤ 1, fε ≥ 0, be such that


‖g‖L(log L)α − ε ≤
1∫


0


fεg dx.


If g /∈ L(log L)α, then one can put any positive number instead of ‖g‖L(log L)α−ε.
Then


‖g‖L(log L)α − ε =
∞∑


j=1


1∫


0


fεgj dx =
∞∑


j=1


1∫


0


fε


2jα
2jαgj dx


≤
∞∑


j=1


∥∥∥∥
fε


2jα


∥∥∥∥
2j


2jα‖gj‖λj
≤ ‖fε‖EXP1/α


∞∑


j=1


2jα‖gj‖λj
≤


∞∑


j=1


2jα‖gj‖λj
,


where the last but one inequality follows from the standard extrapolation char-
acterization of EXP1/α (see (2.1)). This yields


‖g‖L(log L)α ≤
∞∑


j=1


2jα‖gj‖λj
.


Since the decomposition of g as g =
∞∑


j=1
gj can be arbitrary, we also have


‖g‖L(log L)α ≤ inf
|g|=


∑∞
j=1


gj


∞∑


j=1


2jα‖gj‖λj
.


On the other hand, if g ∈ L log L, then we have the following estimate, in
which k′ denotes the Hölder conjugate exponent of k. To avoid unnecessary
technicalities and clumsy formulas, for k = 2 read (k − 1)′ in the following
estimates as any number greater than 4′ = 4/3. We have


‖g‖L(log L)α ≥ c


1∫


0


g∗(t)[log(1/t)]α dt
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≥ c
∞∑


k=2


e−k+1∫


e−k


g∗(t)[log(1/t)]α dt ≥ c
∞∑


k=2


kαg∗(e−k+1)e−k


≥ c
∞∑


k=2


kα
( e−k+2∫


e−k+1


[g∗(t)](k−1)′ dt
) 1


(k−1)′
e−k


[
e−k+1(e− 1)


]− 1
(k−1)′


≥ c
∞∑


k=2


kα
( e−k+2∫


e−k+1


[g∗(t)](k−1)′ dt
) 1


(k−1)′


= c
∞∑


j=1


2j+1−1∑


k=2j


kα
( e−k+2∫


e−k+1


[g∗(t)](k−1)′ dt
) 1


(k−1)′


≥ c
∞∑


j=1


2j+1−1∑


k=2j


2jα
( e−k+2∫


e−k+1


[g∗(t)](k−1)′ dt
) 1


(k−1)′


≥ c
∞∑


j=1


2jα
2j+1−1∑


k=2j


( e−k+2∫


e−k+1


[g∗(t)](k−1)′ dt
) 1


(k−1)′
.


Now, by Hölder inequality,


( e−k+2∫


e−k+1


[g∗(t)](k−1)′ dt


) 1
(k−1)′


≥
( e−k+2∫


e−k+1


[g∗(t)](2
j+1)′ dt


) 1


(2j+1)′ [
e−k+2 − e−k+1


][(2j+1)′/(k−1)′]−1
.


Elementary estimates show that the second term on the right-hand side is equiv-
alent to a positive constant as k → ∞. Hence the norm in L(k−1)′ can be es-
timated by the norm in L(2j+1)′ from below for j = 2j, . . . , 2j+1 − 1 and the
constant in the estimate remains the same for all k ∈ N. Now it suffices to
apply the triangle inequality to conclude that


‖g‖L(log L)α ≥ c
∞∑


j=1


2jα
( e−2j+2∫


e−2j+1+2


[g∗(t)](2
j+1)′ dt


) 1


(2j+1)′


≥ c inf
|g|=


∑∞
j=1


gj


∞∑


j=1


2jα‖gj‖λj
.


The theorem is proved.
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Corollary 3.5. Let α > 0. Then


‖f‖L(log L) ≈
∞∑


j=1


2jα‖f ∗‖(2j)′,Jj
, (3.2)


where (2j)′ = 2j/(2j − 1), Jj = (e−2j+1+2, e−2j+2), j = 1, . . . .


Remark 3.6. After proving Theorem 3.4 it is clear that every member of the
last chain of inequalities of the proof is equivalent to the Luxemburg norm in
L log L. The decomposition in (3.2) is one of them and since it can be considered
as a particular argument of the infimum in (3.1), we have actually found one
of the “best”, or “optimal” decompositions realizing the infimum in (3.1) up to
an equivalence. Note that we do not know whether there exist decompositions
which realize exactly the infimum.


Remark 3.7. Expression (3.2) permits, in particular, an interpretation of the
norm in L log L as a norm of a special sequence in `1.


Let us recall the following notation for the spaces of sequences: c0 is the space
of all numerical sequences converging to zero, equipped with the sup norm, `1


is the space of all numerical absolutely convergent sequences (and the sum of
the series is the norm), `∞ is the space of all numerical bounded sequences with
the sup norm. The links between spaces of functions and spaces of sequences
could be illustrated by the following scheme, also summarizing the other known
results. We shall denote by exp the closure of L∞ in EXP. Then we have


g ∈ exp f ∈ L log L h ∈ EXP


m m m
‖g‖k,Ik


k
∈ c0 2j‖f ∗‖(2j)′,Ij


∈ `1
‖h‖k,Ik


k
∈ `∞


These three equivalencies express some characterizations of the spaces in ques-
tion. For the first one in “global” terms of k−1‖g‖k, see [4], [15], [13], [29]. Let
us note that this follows directly in terms of k−1‖g‖k and k−1‖g‖k,Ik


from the
fact that sup k−1‖f‖k and sup k−1‖f‖k,Ik


respectively is an equivalent norm in
EXP. Indeed, if g ∈ exp, then for any ε > 0 there exists h ∈ L∞ such that
sup k−1‖g − h‖k,Ik


≤ ε. Since k−1‖h‖k,Ik
→ 0 as k → ∞, we get k−1‖g‖k,Ik


≤
k−1‖g−h‖k,Ik


+k−1‖h‖k,Ik
< ε for large k. The second equivalence is contained


in our Theorem 3.4, and the third one is due to Edmunds and Krbec ([6]).
Observe that the spaces in the first and the second row are the preduals of


the spaces occurring in the second and the third row, respectively.


4. Applications


Let us begin by recalling the following result (see, e.g., [33, Theorem 3.3,
p. 124]).
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Theorem 4.1. If A is a sublinear operator bounded in Lp, 1 < p ≤ p0 < ∞
such that


‖Af‖p ≤ c1p
1/β‖f‖p, f ∈ Lp, p > 1,


for some β > 0 and c1 independent of p and f , then Af ∈ EXPβ for all f ∈ L∞.


After our Theorem 3.4 we can prove a “dual” result, namely, we derive esti-
mates of operators in logarithmic spaces starting from analogous estimates in
Lebesgue spaces. A central role is played by the order of infinity of the constant
in the Lp estimates.


Theorem 4.2. If H is a subadditive operator acting on L1 and such that


‖Hg‖r(p) ≤ c1


(p− 1)β
‖g‖p, g ∈ Lp, 1 < p ≤ p0 < ∞,


for some constants c1 > 0, β ≥ 0, 1 < p0 < ∞, independent of p, g and for
some r : [1, p0] → [1,∞) such that p ≤ r(1)p ≤ r(p), for every p ∈ [1, p0],
independent of g, then there is c2 > 0 such that for any α ≥ β,


‖Hf‖Lr(1)(log L)r(1)(α−β) ≤ c2‖f‖L(log L)α , f ∈ L∞, f ≥ 0,


the inequality is true with c2 = c1 if the norms in the logarithmic spaces consid-
ered are given by (2.2) and (3.1).


Proof. Given f ∈ L∞, f ≥ 0, fix a decomposition f =
∑∞


j=1 fj, fj ≥ 0, j ∈ N.
For any ε > 0 there exists ν ∈ N such that we have, by using the inequality
r(1) ≤ r(1)p0 ≤ r(p0) and the assumption fj ≥ 0, j ∈ N,


‖Hf‖Lr(1)(log L)r(1)(α−β) ≤
∥∥∥∥∥H


( ν∑


j=1


fj


)∥∥∥∥∥
Lr(1)(log L)r(1)(α−β)


+ c


∥∥∥∥∥H
( ∞∑


j=ν+1


fj


)∥∥∥∥∥
r(p0)


≤
∥∥∥∥∥H


( ν∑


j=1


fj


)∥∥∥∥∥
Lr(1)(log L)r(1)(α−β)


+
cc1


(p0 − 1)β


∥∥∥∥∥
∞∑


j=ν+1


fj


∥∥∥∥∥
p0


≤
∥∥∥∥∥H


( ν∑


j=1


fj


)∥∥∥∥∥
Lr(1)(log L)r(1)(α−β)


+ ε.


Therefore


‖Hf‖Lr(1)(log L)r(1)(α−β) ≤ sup
m∈N


∥∥∥∥∥H
( m∑


j=1


fj


)∥∥∥∥∥
Lr(1)(log L)r(1)(α−β)


≤ sup
m∈N


∥∥∥∥
m∑


j=1


Hfj


∥∥∥∥∥
Lr(1)(log L)r(1)(α−β)


≤
( ∞∑


j=1


2r(1)(α−β)j


∥∥∥∥∥Hfj


∥∥∥∥∥
r(1)


r(1)λj


)1/r(1)


≤
∞∑


j=1


2(α−β)j‖Hfj‖r(λj) ≤ c1


∞∑


j=1


2(α−β)j


(2−jλj)β
‖fj‖λj
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≤ c1


∞∑


j=1


2αj‖fj‖λj
,


where the passage from the third line to the fourth one is justified by (2.2).
Observe, however, that one can drop the fourth line completely – the corre-
sponding argument for passing from the third line to the fifth one is estimate
(2.3). Taking the infimum over all admissible decompositions of f , we get the
assertion.


Let us recall the (local) maximal operator (see, e.g., [10]). For any measurable
function f on Ω, let


Mf(x) = sup
x∈Q


1


|Q|
∫


Q


|f(y)| dy, x ∈ Ω,


where the supremum is taken over all cubes Q in Ω containing x and with the
sides parallel to the coordinate axes. The following Hardy–Littlewood–Wiener
maximal theorem is well known:


‖Mf‖p ≤ c(p)‖f‖p, f ∈ Lp, 1 < p ≤ ∞,


where c(p) = O((p − 1)−1) as p → 1 (See, e.g., [32, Chapter 1], for the quan-
titative behaviour of the norms resulting from the interpolation of weak type
operators.)


Applying Theorem 4.2 to the maximal operator in the case r(p) = p, β = 1,
we get the following well-known result (see [31], [32, p. 23]), as a consequence
of the Hardy–Littlewood–Wiener maximal theorem and of the a.e. monotone
convergence properties of the maximal operator:


Corollary 4.3. Let α ≥ 0. Then there is c > 0 such that


‖Mg‖L(log L)α ≤ c‖g‖L(log L)α+1 for all g in L(log L)α+1.


We observe that it is known that Corollary 4.3 follows from an extrapolation
procedure (see, e.g., [33]), but we point out here that the proof of Theorem 4.2
follows immediately from the definition of the norm in L log L in terms of de-
composition.


A result equivalent to the previous one (see, e.g., [1]), that can be proved
independent of the concept of a non-increasing rearrangement (see also [19]),
is the limiting case of the Hardy inequality as p → 1. We shall get it as a
consequence of Theorem 4.1 when applied to the Hardy operator


f 7→ Tf =
1


x


x∫


0


f(t) dt, x ∈ (0, 1) ⊂ R1,


whose boundedness in Lp-spaces is given by the classical Hardy inequality


‖Tf‖p ≤ p


p− 1
‖f‖p.
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Corollary 4.4. For any f in L(log L)α+1(0, 1), α ≥ 0, we have


‖Tf‖L(log L)α(0,1) ≤ c‖f‖L(log L)α+1(0,1)


with c > 0 independent of f .


Let us now give another application of our extrapolation procedure in the the-
ory of partial differential equations, and let us consider as a model the Dirichlet
problem on a bounded open set Ω ⊂ RNn, n ≥ 3, with C1,1-boundary







div A(x)∇u = f in Ω,


u = 0 on ∂Ω,
(4.1)


where f ∈ Lp(Ω), 1 < p < n, and A = (aij)i,j=1...n is such that aij ∈
VMO∩L∞(RNn), aij = aji and there exist 0 < λ0 ≤ Λ0 < ∞ such that


λ0|ξ|2 ≤
∑


aijξiξj ≤ Λ0|ξ|2


for all ξ ∈ RNn and for a.e. x ∈ Ω. For the sake of simplicity, we shall also
assume that |Ω| = 1.


It is well known (see [2]) that there exists one and only one (weak) solution


u to the b.v.p. (4.1) in the Sobolev space W
1,np/(n−p)
0 (Ω). Moreover, this is not


true when p = 1 (see [11], [17]).


If f ∈ L(log L), the existence of a solution u in W
1,n/(n−1)
0 can be proved (see


[30]), and actually a better estimate of the norm of Du has been proved ([27])
by using duality techniques:


‖|Du|‖Ln/(n−1)(log L)−1+[nα/(n−1)] ≤ K‖f‖L(log L)α (4.2)


for all 0 < α ≤ 1. As an application of our Theorem 4.2, we prove estimate
(4.2) for any α ≥ (n− 1)/n, extending thus the validity of (4.2) for all α > 0.
We shall use the following result, due to Di Fazio ([5], see also [20], [21]):


Theorem 4.5. Under the above assumptions on A, if |F | ∈ Lp, 1 < p < ∞,
then the Dirichlet problem







div A(x)∇u = div F in Ω,


u = 0 on ∂Ω,


has a unique solution and, moreover, there exists a constant c such that


‖|∇u|‖p ≤ c‖|F |‖p. (4.3)


We note that the constant c in (4.3) can be chosen independent of p if p stays
away from 1 and ∞.


We can prove now


Lemma 4.6. Let 1 < p < n, f ∈ Lp, and let u be a solution of (4.1). Then


‖|∇u|‖np/(n−p) ≤ c


(p− 1)(n−1)/n
‖f‖p.
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Proof. Let us consider a solution F to the equation div F = f , which can be
expressed explicitly in terms of the vector Riesz potential


F (x) =
1


nωn


∫


Ω


x− y


|x− y|n f(y) dy,


where ωn is the measure of the unit ball in RNn (see [18]). By using the well-
known estimates which come out from the Hardy–Littlewood–Wiener maximal
theorem and the Sobolev inequality for Riesz potentials (see [34]) we get


‖|F |‖np/(n−p) ≤ c1


(p− 1)(n−p)/n
‖f‖p ≤ c2


(p− 1)(n−1)/n
‖f‖p,


which, by (4.3), yields


‖|∇u|‖np/(n−p) ≤ c3‖|F |‖np/(n−p) ≤ c4


(p− 1)(n−1)/n
‖f‖p,


i.e., we get the assertion.


We are going to prove


Corollary 4.7. If α > 0, f ∈ L(log L)α, and let u be a solution of (4.1).
Then the apriori estimate (4.2) holds for any α ≥ (n− 1)/n.


Proof. It is clear that the mapping H which maps a given f ∈ Lp into |Du| ∈
Lnp/(n−p), where u is a solution of (4.1), is subadditive, satisfies the assumption
of Theorem 4.2 with r(p) = np/(n − p), p0 = n and β = (n − 1)/n, by virtue
of Lemma 4.6. Hence Theorem 4.2 applies and, after extrapolation, using a
standard density argument, we get the inequality for all f ∈ L(log L)α, f ≥ 0.


Finally, writing f = f+ + f−, and calling u+, u− a solutions of (4.1) with f
replaced by f+, f− respectively, we have


‖|Du|‖Ln/(n−1)(log L)−1+[nα/(n−1)] = ‖|Du+ + Du−|‖Ln/(n−1)(log L)−1+[nα/(n−1)]


≤ ‖|Du+|‖Ln/(n−1)(log L)−1+[nα/(n−1)] + ‖|Du−|‖Ln/(n−1)(log L)−1+[nα/(n−1)]


≤ K‖f+‖L(log L)α + K‖f−‖L(log L)α ≤ 2K‖f‖L(log L)α .
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