Georgian Mathematical Journal

Volume 9 (2002), Number 2, 295-301

GEOMETRY OF MODULUS SPACES

R. KHALIL, D. HUSSEIN, AND W. AMIN

Abstract

Let ϕ be a modulus function, i.e., continuous strictly increasing function on $[0, \infty)$, such that $\phi(0)=0, \phi(1)=1$, and $\phi(x+y) \leq \phi(x)+\phi(y)$ for all x, y in $[0, \infty)$. It is the object of this paper to characterize, for any Banach space X, extreme points, exposed points, and smooth points of the unit ball of the metric linear space $\ell^{\phi}(X)$, the space of all sequences $\left(x_{n}\right)$, $x_{n} \in X, n=1,2, \ldots$, for which $\sum \phi\left(\left\|x_{n}\right\|\right)<\infty$. Further, extreme, exposed, and smooth points of the unit ball of the space of bounded linear operators on $\ell^{p}, 0<p<1$, are characterized.

2000 Mathematics Subject Classification: Primary: 47B38; Secondary: 48A65.
Key words and phrases: Extreme point, exposed point, smooth point, modulus function.
0. Introduction. Let $\phi:[0, \infty) \longrightarrow[0, \infty)$ be a continuous function. We call ϕ a modulus function if:
(i) $\phi(x)=0$ if and only if $x=0$;
(ii) ϕ is increasing;
(iii) $\phi(x+y) \leq \phi(x)+\phi(y)$.

The functions $\phi(x)=x^{p}, p \in(0,1)$, and $\phi(x)=\ln (1+x)$ are modulus functions.

For a modulus function ϕ, we let ℓ^{ϕ} denote the space of all real-valued sequences $\left(x_{n}\right)$ for which $\sum \phi\left(\left|x_{n}\right|\right)<\infty$. For $x, y \in \ell^{\phi}, d(x, y)=\sum \phi\left(\left|x_{n}-y_{n}\right|\right)$ is a metric on ℓ^{ϕ}. For $x \in \ell^{\phi}$ we let $\|x\|_{\phi}$ denote $d(x, 0)$. The space $\left(\ell^{\phi},\| \|_{\phi}\right)$ is a metric linear space. These spaces were initiated by Ruckle [4].

Throughout this paper, R denotes the set of real numbers. If X is a Banach space, X^{*} will denote the dual of X. If $x^{*} \in X^{*}$ and $x \in X$, we let $\left\langle x^{*}, x\right\rangle$ denote the value of x^{*} at x. We let ℓ^{p} denote the space of all (real) sequences $\left(x_{n}\right)$ for which $\sum\left|x_{n}\right|^{p}<\infty, 0<p<\infty$. For $x \in \ell^{p}$, we let

$$
\|x\|_{p}= \begin{cases}\left(\sum\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} & \text { if } 1 \leq p<\infty \\ \sum\left|x_{i}\right|^{p} & \text { if } 0<p<1\end{cases}
$$

So $\|x\|_{1}$ is the 1 -norm of x in ℓ^{1}. For $p=\infty, \ell^{\infty}$ is the space of all bounded (real) sequences. If $x \in \ell^{\infty}$, we let $\|x\|_{\infty}=\sup \left|x_{i}\right|$.

Let us summarize the basic properties of ($\ell^{\phi},\| \| \|_{\phi}$) in

Theorem A. Let ϕ be any modulus function. Then:
(1) $\left(\ell^{\phi},\| \|_{\phi}\right)$ is a complete metric linear space.
(2) If $\|x\|_{\phi} \leq \phi(a)$, then $\|x\|_{1} \leq a$.
(3) $\ell^{\phi} \subseteq \ell^{1}$, and the inclusion map $I: \ell^{\phi} \longrightarrow \ell^{1}$ is continuous.
(4) If $\phi(1)=1$, then for every $x \in \ell^{\phi}$ there exists $r>0$ such that $\|r x\|_{\phi}=1$.
(5) There exist α and a in $[0, \infty)$ such that $\phi(x)>\alpha x$ for all $x \in[0, a)$.

Proof. The proof of (1) is in [4]. Statements (2) and (3) are easy to handle. Statement (5) is in [5]. So we prove only (4).

There are two cases:either $\|x\|_{\phi}<1$ or $\|x\|_{\phi}>1$. If $\|x\|_{\phi}>1$, define F : $[0,1] \longrightarrow[0, \infty)$ by $F(t)=\|t x\|_{\phi}$. Then F is continuous with $F(0)=0$ and $F(1)>1$. By the intermediate value theorem there is $r \in(0,1)$ such that $F(r)=1$. Hence $\|r x\|_{\phi}=1$. The other case follows from statement (2) and the assumption $\phi(1)=1$.

Let X be a Banach space. A linear mapping $T: \ell^{\phi} \longrightarrow X$ is called bounded if there exists $\lambda>0$ such that $\|T x\| \leq \lambda$ for all x in ℓ^{ϕ} for which $\|x\|_{\phi} \leq$ 1. We let $L\left(\ell^{\phi}, X\right)$ denote the space of all bounded linear operators on ℓ^{ϕ} with values in X. We let $\left(\ell^{\phi}\right)^{*}$ denote $L\left(\ell^{\phi}, R\right)$. For $T \in L\left(\ell^{\phi}, X\right)$ we set $\|T\|=\sup \left\{\|T x\|:\|x\|_{\phi} \leq 1\right\}$. For the case $0<p<1$ we let $B\left(\ell^{p}, \ell^{p}\right)$ denote the space of linear operators on ℓ^{p} for which $\|T x\|_{p} \leq \lambda\|x\|_{p}$ for all $x \in \ell^{p}$ with some λ depending on T. Since $a|b|^{p}=\left|a^{\frac{1}{p}} b\right|^{p}$ for $a>0$, it follows that $\sup \left\{\|T x\|_{p}:\|x\|_{p} \leq 1\right\}=\inf \left\{\lambda:\|T x\|_{p} \leq \lambda\|x\|_{p}\right.$ for all $\left.x \in \ell^{p}\right\}$. Hence $B\left(\ell^{p}, \ell^{p}\right)=L\left(\ell^{p}, \ell^{p}\right)$.

For a modulus function ϕ and a Banach space X, we set $\ell^{\phi}(X)=\left\{\left(x_{n}\right): x_{n} \in\right.$ X and $\left.\sum \phi\left(\left\|x_{n}\right\|\right)<\infty\right\}$.If $x=\left(x_{n}\right) \in \ell^{\phi}(X)$, then we define $\|x\|_{\phi}=\sum \phi\left(\left\|x_{n}\right\|\right)$. It is easy to check that $\left(\ell^{\phi}(X),\| \| \|_{\phi}\right)$ is a complete metric linear space.

Extreme points of the unit ball of $L\left(\ell^{p}, \ell^{p}\right), 1<p<\infty$, have been studied extensively by many authors ([6]-[10] and others). A full characterization of extreme points of the unit ball of $L\left(\ell^{p}, \ell^{p}\right), 1<p<\infty$, is still an open problem.

In this paper we characterize extreme,exposed, and smooth points of the unit balls of $\ell^{\phi}, \ell^{\phi}(X)$ and $L\left(\ell^{p}, \ell^{p}\right), 0<p<1$.

1. Basic Structure of Spaces $\ell^{\phi}(X)$. Throughout this paper we will assume that:
(i) ϕ is strictly increasing;
(ii) $\phi(1)=1$.

Let M denote the class of all modulus functions satisfying (i) and (ii). We set $\left(\ell^{\phi}(X)\right)^{*}=L\left(\ell^{\phi}, R\right)$, where R is the set of real numbers.

Theorem 1.1. Let $\phi \in M$ and X be any Banach space. Then $\left[\ell^{\phi}(X)\right]^{*}$ is isometrically isomorphic to $\ell^{\infty}\left(X^{*}\right)$.

Proof. Let $F \in \ell^{\infty}\left(X^{*}\right)$. So $F=\left(x_{1}^{*}, x_{2}^{*}, \ldots\right)$ with $x_{i}^{*} \in X^{*}$ and $\sup \left\|x_{i}^{*}\right\|<\infty$.
Define $\widetilde{F}: \ell^{\phi}(X) \longrightarrow R$ such that for $x=\left(x_{i}\right) \in \ell^{\phi}(X), \widetilde{F}(x)=\sum\left\langle x_{i}, x_{i}^{*}\right\rangle$.

Hence $|\widetilde{F}(x)| \leq \sum\left\|x_{i}\right\|\left\|x_{i}^{*}\right\| \leq\|F\| \sum\left\|x_{i}\right\|$. Now for any function ϕ in M one can easily show that $\ell^{\phi}(X) \subseteq \ell^{1}(X)$. Further, if $\|f\|_{\phi}=1$, then $\|f\|_{1} \leq 1$. Thus

$$
\begin{equation*}
\|\widetilde{F}\| \leq\|F\| \tag{*}
\end{equation*}
$$

On the other hand, if $\widetilde{F} \in\left[\ell^{\phi}(X)\right]^{*}$, then we define x_{i}^{*} in X^{*} as : $x_{i}^{*}(x)=$ $\widetilde{F}(0,0, \ldots, 0, x, 0, \ldots)$ where x appears in the i th coordinate. Set $F=\left(x_{1}^{*}, x_{2}^{*}, \ldots\right)$. Then since $\sup _{i}\left\|x_{i}^{*}\right\| \leq\|\widetilde{F}\|$, we obtain $F \in \ell^{\infty}\left(X^{*}\right)$ and $\|F\|_{\infty} \leq\|\widetilde{F}\|$. This together with $(*)$ gives $\|F\|_{\infty}=\|\tilde{F}\|$. Thus the mapping $J: \ell^{\infty}\left(X^{*}\right) \longrightarrow$ $\left[\ell^{\phi}(X)\right]^{*}, J(F)=\widetilde{F}$ is linear onto and an isometry. This ends the proof.

As a consequence we get
Corollary 1.2. $\left(\ell^{\phi}\right)^{*}=\ell^{\infty}$.
Remark 1. If $\phi(x+y)<\phi(x)+\phi(y)$ for any $x>0, y>0$, then there are some elements x of ℓ^{ϕ} such that there is no x^{*} in ℓ^{∞} for which $\left\langle x, x^{*}\right\rangle=\|x\|\left\|x^{*}\right\|$. Indeed, if $\|x\|_{\phi}=1$, then the continuity of ϕ, being strictly increasing and $\phi(1)=1$, implies that $\|x\|_{1}=1$ unless x has only one nonzero coordinate. So for x with more than one nonzero terms there cannot exist x^{*} in ℓ^{∞} which attains its norm at x. However, if x has only one nonzero coordinate, then $\|x\|_{1}=\|x\|_{\phi}$, if $\|x\|_{\phi}=1$ and such x^{*} exists.
2. Geometry of $B_{1}\left(\ell^{\phi}(X)\right)$. A point x of a set K of a metric linear space E is called extreme if there exist no y and z in K such that $y \neq z$ and $x=\frac{1}{2}(y+z)$. The point x in $B_{1}(E)$ is called exposed if there exists $f \in B_{1}\left(E^{*}\right)$ such that $f(x)=d(x, 0)$, and $f(y)<d(y, 0)$ for all y in $B_{1}(E), y \neq x$. We call x a smooth point of $B_{1}(E)$ if there exists a unique $f \in B_{1}\left(E^{*}\right)$ such that $f(x)=d(x, 0)$.

In this section we will characterize extreme, exposed, and smooth points of $B_{1}\left(\ell^{\phi}(X)\right)$ for any Banach space X.

Theorem 2.1. Let $\phi \in M$.The following statements are equivalent:
(i) f is an extreme point of $B_{1}\left(\ell^{\phi}(X)\right)$.
(ii) $f(n)=0$ for all n except for one coordinate, say, $f\left(n_{0}\right)$, and $f\left(n_{0}\right)$ is an extreme point of $B_{1}(X)$.

Proof. (i) \longrightarrow (ii). Let f be extreme and, if possible, assume that f does not vanish at n_{1} and n_{2}. Define

$$
\begin{aligned}
& g(n)= \begin{cases}f(n), & n \neq n_{1}, n_{2}, \\
\left\|f\left(n_{1}\right)\right\|+\left\|f\left(n_{2}\right)\right\| \\
\|, & \left\|f\left(n_{1}\right)\right\| \\
0 & \left.n=n_{1}\right),\end{cases} \\
& h(n)= \begin{cases}f(n), & n \neq n_{2}, \\
\frac{\left\|f\left(n_{1}\right)\right\|+\left\|f\left(n_{2}\right)\right\|}{\left\|f\left(n_{2}\right)\right\|} f\left(n_{2}\right), & n=n_{2}, \\
0, & n=n_{1} .\end{cases}
\end{aligned}
$$

Then $g \neq h$. Further,

$$
\|g\|_{\phi}=\sum \phi(\|g(n)\|) \leq \sum \phi\|f(n)\| \leq 1 .
$$

Similarly, $\|h\|_{\phi} \leq 1$. Now

$$
f=\frac{\left\|f\left(n_{1}\right)\right\|}{\left\|f\left(n_{1}\right)\right\|+\left\|f\left(n_{2}\right)\right\|} g+\frac{\left\|f\left(n_{2}\right)\right\|}{\left\|f\left(n_{1}\right)\right\|+\left\|f\left(n_{2}\right)\right\|} h=t g+(1-t) h, \quad 0<t<1
$$

where $t=\frac{\left\|f\left(n_{1}\right)\right\|}{\left\|f\left(n_{1}\right)\right\|+\left\|f\left(n_{2}\right)\right\|}$.
Hence f is not an extreme point. Thus f must be of the form

$$
f(n)=\delta_{n n_{0}} \cdot x_{0}
$$

where $\delta_{i j}$ stands for the Kronecker's delta.
Now we claim that x_{0} is an extreme point of $B_{1}(X)$. Indeed, $\|f\|_{\phi}=1=$ $\phi\left(\left\|x_{0}\right\|\right)$. Since ϕ is strictly increasing, we have $\left\|x_{0}\right\|=1$. If x_{0} is not an extreme point, then $x_{0}=\frac{1}{2}(y+z)$ for some y and z in $B_{1}(X)$. Then one can construct f_{1} and f_{2} in $B_{1}\left(\ell^{\phi}(X)\right)$ such that $f=\frac{1}{2}\left(f_{1}+f_{2}\right)$. Hence x_{0} must be extreme.

Conversely: (ii) $\longrightarrow(\mathbf{i})$. Let $f(n)=\delta_{n n_{0}} \cdot x$ with x an extreme point of $B_{1}(X)$. If f is not extreme, then there exist g and h in $B_{1}\left(\ell^{\phi}(X)\right)$ such that $f=\frac{1}{2}(g+h)$. But then $g\left(n_{0}\right)=h\left(n_{0}\right)=x$ since x is an extreme point. Since $\|x\|=1$ and ϕ is strictly increasing and $\phi(1)=1$, we have $g(n)=h(n)=0$ for all $n \neq n_{0}$. But this implies that $f=g=h$, and f is extreme. This ends the proof of the theorem.

As a corollary, we get
Theorem 2.2. A point x is an extreme point of $B_{1}\left(\ell^{\phi}\right)$ if and only if $x_{n}=0$ for all n except for one n, say, n_{0}, and $\left|x_{n_{0}}\right|=1$.
Proof. Take R for X.
As for the exposed points we have
Theorem 2.3. Let $f \in B_{1}\left(\ell^{\phi}(X)\right)$. The following statements are equivalent:
(i) f is an exposed point.
(ii) $f(n)=\delta_{n n_{0}} \cdot x$ and x is an exposed point of $B_{1}(X)$.

Proof. (i) $\longrightarrow(i i)$. Let f be exposed. Then f is an extreme point. Hence $f(n) \delta_{n n_{0}} \cdot x$ with x an extreme point of $B_{1}(X)$. If x is not exposed, then for every $x^{*} \in B_{1}\left(X^{*}\right)$ with $x^{*}(x)=1$, there exists $z \in B_{1}(X)$ such that $x^{*}(z)=1$ and $z \neq x$. Now let $F \in\left[\ell^{\phi}(X)\right]^{*}=\ell^{\infty}\left(X^{*}\right)$ such that $\|F\|=1$, and $F(f)=1$. In that case, if $F=\left(x_{1}^{*}, x_{2}^{*}, \ldots\right)$, then $F(f)=x_{n_{0}}^{*}(x)=1$. Since x is not exposed, there exists $z \neq x$ in $B_{1}(X)$ such that $x_{n_{0}}^{*}(z)=1$. But then $F(g)=1$, where $g(n)=\delta_{n n_{0}} \cdot z$ and f is not exposed. Hence x must be exposed in $B_{1}(X)$.

Conversely: $(\mathrm{ii}) \longrightarrow(\mathbf{i})$. Let $f=\delta_{n n_{0}} \cdot x$ with x exposed in $B_{1}(X)$. If x^{*} is the functional that exposes x, then one can easily see that $F(n)=\delta_{n n_{0}} \cdot x^{*}$ is the functional that exposes f. This ends the proof.

Theorem 2.3 readily implies

Theorem 2.4. An element f is an exposed point of $B_{1}\left(\ell^{\phi}\right)$ if and only if f is extreme.

As for smooth points we have
Theorem 2.5. $B_{1}\left(\ell^{\phi}(X)\right)$ has no smooth points for any Banach space X.
Proof. Let $f \in B_{1}\left(\ell^{\phi}(X)\right)$. If there exists $F \in B_{1}\left(\ell^{\infty}\left(X^{*}\right)\right)$ such that $F(f)=1$, then by Remark $1 f$ must have only one nonzero coordinate, say, $f\left(n_{0}\right)=x_{n_{0}}$. Since $\phi(1)=1$, it follows that $\left\|x_{n_{0}}\right\|=1$. Consider the functionals:

$$
\begin{aligned}
& F_{1}(n)=\delta_{n n_{0}} \cdot x^{*} \text { with } x^{*}\left(x_{n_{0}}\right)=1 \\
& F_{2}(n)=\delta_{n n_{0}} \cdot x^{*}+\delta_{n, n_{0}+1} \cdot z^{*} \quad \text { with } \quad\left\|z^{*}\right\|=1
\end{aligned}
$$

Then, F_{1} and F_{2} are two different elements in $B_{2}\left(\ell^{\phi}(X)\right)$ such that $F_{1}(f)=$ $F_{2}(f)=1$. Thus f is not smooth. This ends the proof.

It follows that $B_{1}\left(\ell^{\phi}\right)$ has no smooth points.
3. Geometry of $B_{1}\left(L\left(\ell^{p}\right)\right), 0<p<1$. The characterization of the extreme points of $B_{1}\left(L\left(\ell^{p}\right)\right), 1<p<\infty$, is still an open difficult problem [1], [3]. In this section we give a complete description of the extreme points and the exposed points of the unit ball of $L\left(\ell^{p}\right)$ for $0<p<1$. We remark that Kalton, [2], studied isomorphisms of and some classes of operators on $\ell^{p}, 0<p<1$.

Theorem 3.1. Let $T \in B_{1}\left(L\left(\ell^{p}\right)\right), 0<p<1$. The following statements are equivalent:
(i) T is an extreme point.
(ii) T is a permutation on the basis elements.

Proof. (ii) $\longrightarrow(\mathbf{i})$. Let T be a permutation of the basis elements e_{1}, e_{2}, \ldots If T is not extreme, then there exists $S \in B_{1}\left(L\left(\ell^{p}\right)\right)$ such that $S \neq 0$ and $\|S \pm T\| \leq 1$. Thus $\|(S \pm T) x\| \leq 1$ for all x in $B_{1}\left(\ell^{p}\right)$. Thus, in particular, $\left\|S e_{n} \pm T e_{n}\right\| \leq 1$ for all n. Since $\|S\| \leq 1$, it follows that $T e_{n}$ is not extreme for those n for which $S e_{n} \neq 0$. Since $S \neq 0$, we get a contradiction, noting that $\pm e_{n}$ are the extreme points of ℓ^{p}. Thus T must be extreme.

Conversely: (i) $\longrightarrow(\mathbf{i i})$. Let T be an extreme element of $B_{1}\left(L\left(\ell^{p}\right)\right)$, but, if it is possible, assume there exists k_{0} such that $T e_{k_{0}}$ is not a basis element and hence not an extreme element of $B_{1}\left(\ell^{p}\right)$. Thus there exists z in $B_{1}\left(\ell^{p}\right)$ such that $\left\|T e_{k_{0}} \pm z\right\| \leq 1$. Define the operator S on ℓ^{p} as $S=e_{k_{0}} \otimes z$, so $S x=x_{k_{0}} z$. Then

$$
\begin{aligned}
\|(S \pm T) x\|_{p} & =\left\|(S \pm T)\left(\sum x_{i} e_{i}\right)\right\|_{p}=\left\|\sum x_{i}(S \pm T) e_{i}\right\|_{p} \\
& \leq \sum\left|x_{i}\right|^{p}\left\|(S \pm T) e_{i}\right\|_{p}
\end{aligned}
$$

But

$$
(S \pm T) e_{i}= \begin{cases}T e_{0}, & i \neq k_{0} \\ z \pm T e_{k_{0}}, & i=k_{0}\end{cases}
$$

Thus in either case we have $\left\|(S \pm T) e_{i}\right\| \leq 1$ for all i. So $\|(S \pm T) x\| \leq$ $\sum\left|x_{i}\right|^{p}$. It follows that $\|S \pm T\| \leq 1$, and T is not extreme, which contradicts the assumption. So T must be a permutation. This ends the proof.

To characterize the exposed points, we need
Theorem 3.2. $L\left(\ell^{p}\right)$ is isometrically isomorphic to $\ell^{\infty}\left(\ell^{p}\right)$.
Proof. Let $f \in \ell^{\infty}\left(\ell^{p}\right)$. Then $f: N \longrightarrow \ell^{p}$ with $\sup _{n}\|f(n)\|_{p}<\infty$. Define T : $\ell^{p} \longrightarrow \ell^{p}$, by $T x=\sum x_{k} f(k)$. Then $\|T x\|_{p} \leq \sum\left\|x_{p}^{n} f(k)\right\|_{p} \leq \sum\left|x_{k}\right|^{p}\|f(k)\|_{p} \leq$ $\|f\|_{\infty}\|x\|_{p}$. Thus $\|T\| \leq\|f\|_{\infty}$. But $T e_{k}=f(k)$. So $\|f(k)\|_{p}=\left\|T e_{k}\right\|_{p} \leq\|T\|$. It follows that $\|f\|_{\infty} \leq\|T\|$. Hence $\|f\|_{\infty}=\|T\|$.

On the other hand, let $T \in L\left(\ell^{p}\right)$. Define $f(n)=T e_{p}$. Then one can easily show that $f \in \ell^{\infty}\left(\ell^{p}\right)$ and $\|f\|_{\infty}=\|T\|$. This ends the proof.

Now for the exposed points we have
Theorem 3.3. Let $T \in B_{1}\left(L\left(\ell^{p}\right)\right)$. The following statements are equivalent:
(i) T is exposed.
(ii) T is extreme.

Proof. That (i) \longrightarrow (ii) is immediate.
For the converse, let T be an extreme point. By Theorem 3.1, T is a permutation of the basis elements. Let f be the function corresponding to T as in Theorem 3.2. Thus $f(n)= \pm e_{k(n)}$. Define $G: L\left(\ell^{p}\right) \longrightarrow R, G(S)=\sum t_{n}\langle f(n), g(n)\rangle$, where $0<t_{n}, \sum t_{n}=1$, and g is the element in $\ell^{\infty}\left(\ell^{p}\right)$ that represents S as in Theorem 3.2. Then, G is bounded and $\|G\| \leq 1$. Further $G(T)=1$. Now, if it is possible, assume there exists some S in $B_{1}\left(L\left(\ell^{p}\right)\right)$ such that $G(S)=1$. Then $\sum t_{n}\langle f(n), g(n)\rangle=1$. This implies that $\langle f(n), g(n)\rangle=1$. Since $f(n)=e_{k(n)}$, it follows that $g(n)=f(n)$, and so $S=T$. Hence T is exposed. This ends the proof.

Acknowledgment

The authors would like to thank the referee for a very careful reading of the manuscript. His suggestions and comments helped us to write the final version of the paper.

References

1. W. Deeb and R. Khalil, Exposed and smooth points of some classes of operators in $L\left(\ell^{p}\right), 1 \leq p<\infty$. J. Funct. Anal. 103(1992), 217-228.
2. N. J. Kalton, Isomorphisms between L_{p}-functions. J. Funct. Anal. 42(1981), 299-337.
3. R. Khalil, Smooth points of unit balls of operator and function spaces. Demonstr. Math. 29(1996), 723-732.
4. W. Ruckle, FK spaces in which the sequence of coordinate vector is bounded. Canadian J. Math. 25(1973), 973-978.
5. W. Deeb and R. Younis, Extreme points of a class of non-locally convex topological vector spaces. Math. Rep. Toyama Univ. 6(1983), 95-103.
6. W. Deeb and R. Khalil, Exposed and smooth points of some classes of operators in $L\left(\ell^{p}\right)$. J. Funct. Anal. 103(1992), 217-228.
7. R. GrZaslewicz, Extreme operators on 2-dimensional ℓ^{p}-spaces. Coll. Math. 44(1981), 209-215.
8. R. Grzaslewicz, A note on extreme contractions on ℓ^{p}-spaces. Portugal. Math. 40(1981), 413-419.
9. R. Khalil, A class of extreme contractions in $L\left(\ell^{p}\right)$. Annali di Mat. Pura ed Applic. 145(1988), 1-5.
10. C.-H. Kan, A class of extreme L^{p} contractions, $p \neq 1,2, \infty$. Illinois J. Math. $\mathbf{3 0}$ (1986), 612-635.
(Received 9.02.2001; revised 4.10.2001)
Authors' address:
Department of Mathematics
University of Jordan, Amman
Jordan
E-mail: roshdi@ju.edu.jo
hussein@ju.edu.jo
wamin@ju.edu.jo
