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GEOMETRY OF MODULUS SPACES


R. KHALIL, D. HUSSEIN, AND W. AMIN


Abstract. Let φ be a modulus function, i.e., continuous strictly increasing
function on [0,∞), such that φ(0) = 0, φ(1) = 1, and φ(x + y) ≤ φ(x) + φ(y)
for all x, y in [0,∞). It is the object of this paper to characterize, for any
Banach space X, extreme points, exposed points, and smooth points of the
unit ball of the metric linear space `φ(X), the space of all sequences (xn),
xn ∈ X, n = 1, 2, . . . , for which


∑
φ(‖xn‖) < ∞. Further, extreme, exposed,


and smooth points of the unit ball of the space of bounded linear operators
on `p, 0 < p < 1, are characterized.
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0. Introduction. Let φ : [0,∞) −→ [0,∞) be a continuous function. We call
φ a modulus function if:


(i) φ(x) = 0 if and only if x = 0;
(ii) φ is increasing;
(iii) φ(x + y) ≤ φ(x) + φ(y).


The functions φ(x) = xp, p ∈ (0, 1), and φ(x) = ln(1 + x) are modulus
functions.


For a modulus function φ, we let `φ denote the space of all real-valued se-
quences (xn) for which


∑
φ(|xn|) < ∞. For x, y ∈ `φ, d(x, y) =


∑
φ(|xn − yn|)


is a metric on `φ. For x ∈ `φ we let ‖x‖φ denote d(x, 0). The space (`φ, ‖‖φ) is


a metric linear space. These spaces were initiated by Ruckle [4].
Throughout this paper, R denotes the set of real numbers. If X is a Banach


space, X∗ will denote the dual of X. If x∗ ∈ X∗ and x ∈ X, we let 〈x∗, x〉
denote the value of x∗ at x. We let `p denote the space of all (real) sequences
(xn) for which


∑ |xn|p < ∞, 0 < p < ∞. For x ∈ `p, we let


‖x‖p =







(
∑ |xi|p)


1
p if 1 ≤ p < ∞,


∑ |xi|p if 0 < p < 1.


So ‖x‖1 is the 1-norm of x in `1. For p = ∞, `∞ is the space of all bounded
(real) sequences. If x ∈ `∞, we let ‖x‖∞ = sup


i
|xi|.


Let us summarize the basic properties of (`φ, ‖ ‖φ) in
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Theorem A. Let φ be any modulus function. Then:
(1) (`φ, ‖ ‖φ) is a complete metric linear space.


(2) If ‖x‖φ ≤ φ(a), then ‖x‖1 ≤ a.


(3) `φ ⊆ `1, and the inclusion map I : `φ −→ `1 is continuous.
(4) If φ(1) = 1, then for every x ∈ `φ there exists r > 0 such that ‖rx‖φ = 1.


(5) There exist α and a in [0,∞) such that φ(x) > αx for all x ∈ [0, a).


Proof. The proof of (1) is in [4]. Statements (2) and (3) are easy to handle.
Statement (5) is in [5]. So we prove only (4).


There are two cases:either ‖x‖φ < 1 or ‖x‖φ > 1. If ‖x‖φ > 1, define F :


[0, 1] −→ [0,∞) by F (t) = ‖tx‖φ. Then F is continuous with F (0) = 0 and


F (1) > 1. By the intermediate value theorem there is r ∈ (0, 1) such that
F (r) = 1. Hence ‖rx‖φ = 1. The other case follows from statement (2) and the


assumption φ(1) = 1.


Let X be a Banach space. A linear mapping T :`φ −→ X is called bounded
if there exists λ > 0 such that ‖Tx‖ ≤ λ for all x in `φ for which ‖x‖φ ≤
1. We let L(`φ, X) denote the space of all bounded linear operators on `φ


with values in X. We let (`φ)∗ denote L(`φ, R). For T ∈ L(`φ, X) we set
‖T‖ = sup{‖Tx‖ : ‖x‖φ ≤ 1}. For the case 0 < p < 1 we let B(`p, `p) denote


the space of linear operators on `p for which ‖Tx‖p ≤ λ ‖x‖p for all x ∈ `p


with some λ depending on T . Since a|b|p =
∣∣∣a


1
p b


∣∣∣
p


for a > 0, it follows that


sup{‖Tx‖p : ‖x‖p ≤ 1} = inf{λ : ‖Tx‖p ≤ λ ‖x‖p for all x ∈ `p}. Hence


B(`p, `p) = L(`p, `p).
For a modulus function φ and a Banach space X, we set `φ(X) = {(xn) : xn ∈


X and
∑


φ(‖xn‖) < ∞}.If x = (xn) ∈ `φ(X), then we define ‖x‖φ =
∑


φ(‖xn‖).
It is easy to check that (`φ(X), ‖‖φ) is a complete metric linear space.


Extreme points of the unit ball of L(`p, `p), 1 < p < ∞, have been studied
extensively by many authors ([6]–[10] and others). A full characterization of
extreme points of the unit ball of L(`p, `p), 1 < p < ∞, is still an open problem.


In this paper we characterize extreme,exposed, and smooth points of the unit
balls of `φ, `φ(X) and L(`p, `p), 0 < p < 1.


1. Basic Structure of Spaces `φ(X). Throughout this paper we will assume
that:


(i) φ is strictly increasing;
(ii) φ(1) = 1.


Let M denote the class of all modulus functions satisfying (i) and (ii). We
set (`φ(X))∗ = L(`φ, R), where R is the set of real numbers.


Theorem 1.1. Let φ ∈ M and X be any Banach space. Then [`φ(X)]∗ is
isometrically isomorphic to `∞(X∗).


Proof. Let F ∈ `∞(X∗). So F = (x∗1, x
∗
2, . . . ) with x∗i ∈ X∗ and sup


i
‖x∗i ‖ < ∞.


Define F̃ : `φ(X) −→ R such that for x = (xi) ∈ `φ(X), F̃ (x) =
∑〈xi, x


∗
i 〉.
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Hence
∣∣∣F̃ (x)


∣∣∣ ≤ ∑ ‖xi‖ ‖x∗i ‖ ≤ ‖F‖∑ ‖xi‖. Now for any function φ in M one


can easily show that `φ(X) ⊆ `1(X). Further, if ‖f‖φ = 1, then ‖f‖1 ≤ 1. Thus
∥∥∥F̃


∥∥∥ ≤ ‖F‖ (∗)
On the other hand, if F̃ ∈ [`φ(X)]∗, then we define x∗i in X∗ as : x∗i (x) =


F̃ (0, 0, . . . , 0, x, 0, . . .) where x appears in the ith coordinate. Set F =(x∗1, x
∗
2, . . .).


Then since sup
i
‖x∗i ‖ ≤


∥∥∥F̃
∥∥∥, we obtain F ∈ `∞(X∗) and ‖F‖∞ ≤


∥∥∥F̃
∥∥∥ . This


together with (∗) gives ‖F‖∞ =
∥∥∥F̃


∥∥∥ . Thus the mapping J : `∞(X∗) −→
[`φ(X)]∗, J(F ) = F̃ is linear onto and an isometry. This ends the proof.


As a consequence we get


Corollary 1.2. (`φ)∗ = `∞.


Remark 1. If φ(x+y) < φ(x)+φ(y) for any x > 0, y > 0, then there are some
elements x of `φ such that there is no x∗in `∞ for which 〈x, x∗〉 = ‖x‖ ‖x∗‖ .
Indeed, if ‖x‖φ = 1, then the continuity of φ, being strictly increasing and


φ(1) = 1, implies that ‖x‖1 = 1 unless x has only one nonzero coordinate.
So for x with more than one nonzero terms there cannot exist x∗ in `∞ which
attains its norm at x. However, if x has only one nonzero coordinate, then
‖x‖1 = ‖x‖φ , if ‖x‖φ = 1 and such x∗ exists.


2. Geometry of B1(`
φ(X)). A point x of a set K of a metric linear space E is


called extreme if there exist no y and z in K such that y 6= z and x = 1
2
(y + z).


The point x in B1(E) is called exposed if there exists f ∈ B1(E
∗) such that


f(x) = d(x, 0), and f(y) < d(y, 0) for all y in B1(E), y 6= x. We call x a smooth
point of B1(E) if there exists a unique f ∈ B1(E


∗) such that f(x) = d(x, 0).
In this section we will characterize extreme, exposed, and smooth points of


B1(`
φ(X)) for any Banach space X.


Theorem 2.1. Let φ ∈ M .The following statements are equivalent:
(i) f is an extreme point of B1(`


φ(X)).
(ii) f(n) = 0 for all n except for one coordinate, say, f(n0), and f(n0)


is an extreme point of B1(X).


Proof. (i)−→(ii). Let f be extreme and, if possible, assume that f does not
vanish at n1 and n2. Define


g(n) =







f(n), n 6= n1, n2,
‖f(n1)‖+‖f(n2)‖


‖f(n1)‖ f(n1), n = n1,


0, n = n2,


h(n) =







f(n), n 6= n1, n2,
‖f(n1)‖+‖f(n2)‖


‖f(n2)‖ f(n2), n = n2,


0, n = n1.







298 R. KHALIL, D. HUSSEIN, AND W. AMIN


Then g 6= h. Further,


‖g‖φ =
∑


φ(‖g(n)‖) ≤ ∑
φ ‖f(n)‖ ≤ 1.


Similarly, ‖h‖φ ≤ 1. Now


f =
‖f(n1)‖


‖f(n1)‖+ ‖f(n2)‖ g +
‖f(n2)‖


‖f(n1)‖+ ‖f(n2)‖ h = tg + (1− t)h, 0 < t < 1,


where t = ‖f(n1)‖
‖f(n1)‖+‖f(n2)‖ .


Hence f is not an extreme point. Thus f must be of the form


f(n) = δnn0 · x0,


where δij stands for the Kronecker’s delta.
Now we claim that x0 is an extreme point of B1(X). Indeed, ‖f‖φ = 1 =


φ(‖x0‖). Since φ is strictly increasing, we have ‖x0‖ = 1. If x0 is not an extreme
point, then x0 = 1


2
(y + z) for some y and z in B1(X). Then one can construct


f1 and f2 in B1(`
φ(X)) such that f = 1


2
(f1 + f2). Hence x0 must be extreme.


Conversely: (ii)−→(i). Let f(n) = δnn0 ·x with x an extreme point of B1(X).
If f is not extreme, then there exist g and h in B1(`


φ(X)) such that f = 1
2
(g+h).


But then g(n0) = h(n0) = x since x is an extreme point. Since ‖x‖ = 1 and
φ is strictly increasing and φ(1) = 1, we have g(n) = h(n) = 0 for all n 6= n0.
But this implies that f = g = h, and f is extreme. This ends the proof of the
theorem.


As a corollary, we get


Theorem 2.2. A point x is an extreme point of B1(`
φ) if and only if xn = 0


for all n except for one n, say, n0, and |xn0| = 1.


Proof. Take R for X.


As for the exposed points we have


Theorem 2.3. Let f ∈ B1(`
φ(X)). The following statements are equivalent:


(i) f is an exposed point.
(ii) f(n) = δnn0 · x and x is an exposed point of B1(X).


Proof. (i)−→(ii). Let f be exposed. Then f is an extreme point. Hence
f(n)δnn0 · x with x an extreme point of B1(X). If x is not exposed, then for
every x∗ ∈ B1(X


∗) with x∗(x) = 1, there exists z ∈ B1(X) such that x∗(z) = 1
and z 6= x. Now let F ∈ [`φ(X)]∗ = `∞(X∗) such that ‖F‖ = 1, and F (f) = 1.
In that case, if F = (x∗1, x


∗
2, . . . ), then F (f) = x∗n0


(x) = 1. Since x is not
exposed, there exists z 6= x in B1(X) such that x∗n0


(z) = 1. But then F (g) = 1,
where g(n) = δnn0 · z and f is not exposed. Hence x must be exposed in B1(X).


Conversely: (ii)−→(i). Let f = δnn0 · x with x exposed in B1(X). If x∗ is
the functional that exposes x, then one can easily see that F (n) = δnn0 · x∗ is
the functional that exposes f . This ends the proof.


Theorem 2.3 readily implies
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Theorem 2.4. An element f is an exposed point of B1(`
φ) if and only if f


is extreme.


As for smooth points we have


Theorem 2.5. B1(`
φ(X)) has no smooth points for any Banach space X.


Proof. Let f ∈ B1(`
φ(X)). If there exists F ∈ B1(`


∞(X∗)) such that F (f) = 1,
then by Remark 1 f must have only one nonzero coordinate, say, f(n0) = xn0 .
Since φ(1) = 1, it follows that ‖xn0‖ = 1. Consider the functionals:


F1(n) = δnn0 · x∗with x∗(xn0) = 1,


F2(n) = δnn0 · x∗ + δn,n0+1 · z∗ with ‖z∗‖ = 1.


Then, F1 and F2 are two different elements in B2(`
φ(X)) such that F1(f) =


F2(f) = 1. Thus f is not smooth. This ends the proof.


It follows that B1(`
φ) has no smooth points.


3. Geometry of B1(L(`p)), 0 < p < 1. The characterization of the extreme
points of B1(L(`p)), 1 < p < ∞, is still an open difficult problem [1], [3]. In this
section we give a complete description of the extreme points and the exposed
points of the unit ball of L(`p) for 0 < p < 1. We remark that Kalton, [2],
studied isomorphisms of and some classes of operators on `p, 0 < p < 1.


Theorem 3.1. Let T ∈ B1(L(`p)), 0 < p < 1. The following statements are
equivalent:


(i) T is an extreme point.
(ii) T is a permutation on the basis elements.


Proof. (ii)−→(i). Let T be a permutation of the basis elements e1, e2, . . . .
If T is not extreme, then there exists S ∈ B1(L(`p)) such that S 6= 0 and
‖S ± T‖ ≤ 1. Thus ‖(S ± T )x‖ ≤ 1 for all x in B1(`


p). Thus, in particular,
‖Sen ± Ten‖ ≤ 1 for all n. Since ‖S‖ ≤ 1, it follows that Ten is not extreme
for those n for which Sen 6= 0. Since S 6= 0, we get a contradiction, noting that
±en are the extreme points of `p. Thus T must be extreme.


Conversely: (i)−→(ii). Let T be an extreme element of B1(L(`p)), but, if
it is possible, assume there exists k0 such that Tek0 is not a basis element and
hence not an extreme element of B1(`


p). Thus there exists z in B1(`
p) such that


‖Tek0 ± z‖ ≤ 1. Define the operator S on `p as S = ek0 ⊗ z, so Sx = xk0z.
Then


‖(S ± T )x‖p =
∥∥∥(S ± T )(


∑
xiei)


∥∥∥
p


=
∥∥∥
∑


xi(S ± T )ei


∥∥∥
p


≤ ∑ |xi|p ‖(S ± T )ei‖p .


But


(S ± T )ei =







Te0, i 6= k0,


z ± Tek0 , i = k0.
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Thus in either case we have ‖(S ± T )ei‖ ≤ 1 for all i. So ‖(S ± T )x‖ ≤∑ |xi|p. It follows that ‖S ± T‖ ≤ 1, and T is not extreme, which contradicts
the assumption. So T must be a permutation. This ends the proof.


To characterize the exposed points, we need


Theorem 3.2. L(`p) is isometrically isomorphic to `∞(`p).


Proof. Let f ∈ `∞(`p). Then f : N −→ `p with sup
n
‖f(n)‖p < ∞. Define T :


`p −→ `p, by Tx =
∑


xkf(k). Then ‖Tx‖p ≤
∑ ‖xpf(k)‖p ≤


∑ |xk|p ‖f(k)‖p ≤
‖f‖∞ ‖x‖p. Thus ‖T‖ ≤ ‖f‖∞. But Tek = f(k). So ‖f(k)‖p = ‖Tek‖p ≤ ‖T‖.
It follows that ‖f‖∞ ≤ ‖T‖ .Hence ‖f‖∞=‖T‖ .


On the other hand, let T ∈ L(`p). Define f(n) = Tep. Then one can easily
show that f ∈ `∞(`p) and ‖f‖∞=‖T‖. This ends the proof.


Now for the exposed points we have


Theorem 3.3. Let T ∈ B1(L(`p)). The following statements are equivalent:
(i) T is exposed.
(ii) T is extreme.


Proof. That (i)−→(ii) is immediate.
For the converse, let T be an extreme point. By Theorem 3.1, T is a permuta-


tion of the basis elements. Let f be the function corresponding to T as in Theo-
rem 3.2. Thus f(n) = ±ek(n). Define G : L(`p) −→ R, G(S) =


∑
tn〈f(n), g(n)〉,


where 0 < tn,
∑


tn = 1, and g is the element in `∞(`p) that represents S as in
Theorem 3.2. Then, G is bounded and ‖G‖ ≤ 1. Further G(T ) = 1. Now, if it
is possible, assume there exists some S in B1(L(`p)) such that G(S) = 1. Then∑


tn〈f(n), g(n)〉 = 1. This implies that 〈f(n), g(n)〉 = 1. Since f(n) = ek(n), it
follows that g(n) = f(n), and so S = T . Hence T is exposed. This ends the
proof.
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