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QUASILINEARIZATION METHODS FOR NONLINEAR
PARABOLIC EQUATIONS WITH FUNCTIONAL


DEPENDENCE


A. BYCHOWSKA


Abstract. We consider a Cauchy problem for nonlinear parabolic equations
with functional dependence. We prove convergence theorems for a general
quasilinearization method in two cases: (i) the Hale functional acting only
on the unknown function, (ii) including partial derivatives of the unknown
function.
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1. Introduction


In the present paper we generalize some results of [9] concerning fast con-
vergence of non-monotone quasilinearization methods in two main direction:
(i) the Laplacian is replaced by a general leading differential term with Hölder
continuous coefficients, (ii) the continuity and Lipschitz conditions on a given
function are weakened to Carathéodory-type conditions and generalized Lips-
chitz conditions with Lipschitz constants replaced by integrable functions. We
study three cases:


(a) differential equations with functional dependence on the unknown func-
tion, (Section 2, Theorem 2.1);


(b) differential equations with functional dependence on the unknown func-
tion and on its spatial derivatives, (Section 3, Theorem 3.1);


(c) differential equations with functional dependence on the unknown func-
tion and on its spatial derivatives at the same point as leading differential
terms; in this case we do not impose continuous differentiability condi-
tion on the initial data, (Section 3, Theorem 3.2).


Our results are related to the previous existence results for a Cauchy problem
with functional dependence [10, 11] because the existence theorems are proved
by means of iterative methods, in particular, by the method of direct iterations.
Nonlinear comparison conditions have been inspired by the Ważewski’s fruitful
idea of the so-called comparison method [15]. Another important influence on
all iterative methods (also on quasilinearization methods) comes from the use
of weighted norms [12, 14] and differential inequalities [13, 14]. A monotone
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version of the direct iteration method provides sequences of functions slightly
faster convergent than those provided by its non-monotone version to an exact
solution [2, 5]. Among the monotone iterative methods one should distinguish
the Chaplygin method [1, 3], which produces significantly faster monotone se-
quences. The Chaplygin method starts from a pair (u(0), ū(0)) of upper and
lower solutions of the differential-functional problem (1), (2) below and pro-
vides monotone sequences (u(ν), ū(ν)) which tend uniformly to an exact solution
of this problem. One of these sequences fulfills similar differential-functional
equations as the quasilinearization method. We admit that a general theory of
monotone iterative techniques for various differential problems was given in [7].


There is yet another significant difference between our results and the results
of [1, 2, 3, 5, 12, 16], namely: we study differential-functional problems in un-
bounded domains, and therefore miss any compactness arguments. It turns out
that in unbounded domains too we derive suitable integral comparison inequal-
ities from which we deduce fast uniform convergence of the sequences of succes-
sive approximation. By the wide use of suitable weighted norms the obtained
convergence statements are global in t, i.e., there is no additional restriction on
the convergence interval.


We simplify some proofs of the theorems even when we restrict our results to
heat equations with a nonlinear and functional reaction term, cf. [9].


Note that differential-functional problems play an important role in many
applications. For numerous examples arising in biology, ecology, physics, engi-
neering we refer the reader to the monograph [16].


1.1. Formulation of the problem. We recall the basic properties of funda-
mental solutions and their applications to the existence and uniqueness theory
for the differential equations, see [4] to clarify the background of our main re-
sults.


Let E = (0, a]×Rn, E0 = [−τ0, 0]×Rn, Ẽ = E0 ∪ E, B = [−τ0, 0]× [−τ, τ ],
where a > 0, τ0, τ1, . . . , τn ∈ [0, +∞), and


τ = (τ1, . . . , τn), [−τ, τ ] = [−τ1, τ1]× · · · × [−τn, τn].


If u : E0∪E −→ R and (t, x) ∈ E, then the Hale-type functional u(t,x) : B −→ R
is defined by


u(t,x)(s, y) = u(t + s, x + y) for (s, y) ∈ B.


Since the present paper concerns bounded solutions (unbounded solutions must
be handled more carefully), we can replace the above domain B by any un-
bounded subset of E0, in particular all the results carry over to the case B := E0.


Let C(X) be the class of all continuous functions from a metric space X
into R, and CB(X) (CB(X)n) be the class of all continuous and bounded
functions from X into R (Rn). Denote by ∂0, ∂1, . . . , ∂n the operators of partial
derivatives with respect to t, x1, . . . , xn, respectively. Let ∂ = (∂1, . . . , ∂n) and
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∂jl = ∂j∂l (j, l = 1, 2, . . . , n). The differential operator P is defined by


Pu(t, x) = ∂0u(t, x)−
n∑


j,l=1


ajl(t, x)∂jlu(t, x).


We consider a Cauchy problem


Pu(t, x) = f(t, x, u(t,x)), (1)


u(t, x) = ϕ(t, x) on E0. (2)


The Cauchy problem (1), (2) reduces to the following integral equation:


u(t, x) =
∫


Rn


Γ(t, x, 0, y)ϕ(0, y)dy +


t∫


0


∫


Rn


Γ(t, x, s, y)f(s, y, u(s,y))dyds, (3)


where Γ(t, x, s, y) is a fundamental solution of the above parabolic problem. A


function u ∈ C(Ẽ) is called a classical solution of problem (1), (2) (in other
words, a C1,2 solution). If ∂0u, ∂ju, ∂jlu ∈ C(E), then u satisfies equation (1)


on E and the initial condition (2) on E0. A function u ∈ C(Ẽ) is called a C0


solution if u coincides with ϕ on E0, and it satisfies (3) on E. Any C0 solution u
whose derivatives ∂ju (j = 1, . . . , n) are continuous on E is called a C0,1 solution
of problem (1), (2). The notion of C0, C0,1, C1,2 weak solutions requires only
the existence of partial derivatives, being not necessarily continuous.


1.2. Existence and uniqueness. The supremum norm will be denoted by
‖ · ‖0. The symbol ‖ · ‖ stands for the Euclidean norm in Rn.


Assumption 1.1. Suppose that ajl ∈ CB(E) for j, l = 1, . . . , n, the opera-
tor P is parabolic, i.e.,


n∑


i,j=1


aij(t, x)ξiξj ≥ c′‖ξ‖2 for all (t, x) ∈ E, ξ ∈ Rn,


and the coefficients ajl satisfy the Hölder condition


|ajl(t, x)− ajl(t̃, x̃)| ≤ c′′(|t− t̃|
α
2 + ‖x− x̃‖α


) for j, l = 1, . . . , n,


where c′, c′′ > 0.


Lemma 1.1. If Assumption 1.1 is fulfilled, then there are k0, c0, c1, c2 > 0
such that


|Γ(t, x, s, y)| ≤ c0(t− s)−
n
2 exp


(
−k0‖x− y‖2


4(t− s)


)
,


|∂jΓ(t, x, s, y)| ≤ c1(t− s)−
(n+1)


2 exp


(
−k0‖x− y‖2


4(t− s)


)
,


|∂0Γ(t, x, s, y)| , |∂jlΓ(t, x, s, y)| ≤ c2(t− s)−
(n+2)


2 exp


(
−k0‖x− y‖2


4(t− s)


)
,


for all 0 ≤ s < t ≤ a and x, y ∈ Rn, j, l = 1, . . . , n.
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These estimates can be found in [6, 8].


Remark 1.1. Under Assumption 1.1, one obtains more general Hölder-type
estimates for the fundamental solution with any Hölder exponent δ ∈ (0, 1]


|Γ(t, x, s, y)− Γ(t̄, x̄, s, y)|


≤ c0+δ (t− s)−
n+δ


2 exp


(
−k0‖x− y‖2


4(t− s)


)
[|t− t̄| δ2 + ‖x− x̄‖δ],


|∂jΓ(t, x, s, y)− ∂jΓ(t̄, x̄, s, y)|


≤ c1+δ (t− s)−
(n+1+δ)


2 exp


(
−k0‖x− y‖2


4(t− s)


)
[|t− t̄| δ2 + ‖x− x̄‖δ]


for 0 ≤ s < t ≤ t̄ ≤ a and x, x̄, y ∈ Rn, j, l = 1, . . . , n.


From now on we assume that Assumption 1.1 holds. We write after [6, 8] and
[4] a basic existence result for a Cauchy problem without functional dependence,
f ≡ 0.


Lemma 1.2 ([4, Lemma 1.2]). If ϕ ∈ CB(E0), then there exists a classical


solution ϕ̃ ∈ CB(Ẽ) of the initial-value problem


Pu = 0, u Â ϕ,


where the symbol u Â ϕ means the same as u(t, x) = ϕ(t, x) for (t, x) ∈ E0.


We cite after [4] the following existence and uniqueness theorems. Let L1[0, a]
denote the set of all real Lebesgue integrable functions on [0, a].


Theorem 1.1 ([4, Theorem 2.1]). Let ϕ ∈ CB(E0), λ, mf , f(·, x, 0) ∈
L1[0, a], and f(t, ·, 0) ∈ C(Rn). Assume that |f(t, x, 0)| ≤ mf (t) and


|f(t, x, w)− f(t, x, w̄)| ≤ λ(t) ‖w − w̄‖0 on E × C(B). (4)


Then there exists a unique bounded C0 solution of problem (1), (2).


We omit the proof of this existence result. The detailed proof of this theorem,
as well as of the next one, is provided in [4]. The main idea of the proof can be
summarized as follows. Define the integral operator T : if u Â ϕ; then T u Â ϕ
is determined on E by the right-hand side of the integral equation (3). Then
the unique fixed-point u = T u is obtained by means of the Banach contraction
principle in suitable function spaces.


We formulate now the following assumption


Assumption 1.2. Suppose that


1) the functions λ1,mf,ϕ ∈ L1[0, a],
2) |f(t, x, ϕ̃(t,x))| ≤ mf,ϕ(t),
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3) the functions


t 7−→
t∫


0


1√
t− s


λ1(s) ds and t 7−→
t∫


0


1√
t− s


mf,ϕ(s) ds


are bounded.


Further, we consider equation (1) with functionals at the derivatives.


Theorem 1.2 ([4, Theorem 2.3]). Let ϕ ∈ CB(E0), ∂ϕ ∈ CB(E0)
n, λ ∈


L1[0, a]. Suppose that Assumption 1.2 and the inequality


|f(t, x, w)− f(t, x, w̄)| ≤ λ(t) ‖w − w̄‖0 + λ1(t) ‖∂(w − w̄)‖0


are satisfied. Assume that the condition


(t− s)1/2


t∫


s


c0


c1


λ1(ζ) (t− ζ)−1/2(ζ − s)−1/2dζ ≤ θ1 < 1 for t > s


is satisfied. Then problem (1), (2) has a unique C0,1 solution.


2. The Quasilinearization Method


The theorems of Section 1 are the reference point for the consideration con-
cerning non-monotone iterative techniques which provide fast convergent se-
quences of approximate functions. In fact, the Banach contraction principle
is based on the direct iteration method, where the convergence of function
sequences of successive approximations is measured by a geometric sequence.
Sequences in the quasilinearization method converge much faster.


We construct the sequence of successive approximations in the following way.
Suppose that u(0) ∈ C(Ẽ, R) is a given function. Having u(ν) ∈ C(Ẽ, R) already
defined, the next function u(ν+1) is a solution of the initial-value problem


Pu(t, x) = f
(
t, x, u


(ν)
(t,x)


)
+ ∂wf


(
t, x, u


(ν)
(t,x)


)
· (u− u(ν))(t,x), (5)


u(t, x) = ϕ(t, x) on E0. (6)


Note that equation (5) is still differential-functional, but its right-hand side is
linear with respect to u. The convergence of the sequence {u(ν)} depends on
the initial function u(0) and on the domain and regularity of the linear operator


∂wf(t, x, u
(ν)
(t,x)). Based on the integral formula (3) with the function f replaced


by the right-hand side of (5), we can represent the C0,1 solution u(ν+1) of problem
(5), (6) as follows:


u(ν+1)(t, x) = ϕ̃(t, x) +


t∫


0


∫


Rn


Γ(t, x, s, y)


×
{
f


(
s, y, u


(ν)
(s,y)


)
+ ∂wf


(
s, y, u


(ν)
(s,y)


)
· (u(ν+1) − u(ν))(s,y)


}
dy ds. (7)







436 A. BYCHOWSKA


Denote


‖u‖t = sup { |u(s, y)| : (s, y) ∈ Ẽ, s ≤ t}
for u ∈ CB(Ẽ) and t ∈ (0, a]. If F : C(B) −→ R (or Rk) is a bounded linear
operator, then its norm is defined by


‖F‖C(B) = sup{‖Fu‖0 : u ∈ C(B), ‖u‖0 ≤ 1}.


Now, we give sufficient conditions for the convergence of the sequence {u(ν)}.


Theorem 2.1. Let ϕ ∈ CB(E0), mf , f(·, x, 0) ∈ L1[0, a], f(t, ·, 0) ∈ C(Rn)
and |f(t, x, 0)| ≤ mf (t). Assume that:


1) there is a function λ ∈ L1[0, a] such that


‖∂wf(t, x, w)‖C(B) ≤ λ(t);


2) there is a function σ : [0, a]×[0, +∞) −→ [0, +∞), integrable with respect
to the first variable, continuous and nondecreasing with respect to the last
variable, such that σ(t, 0) = 0 and


‖∂wf(t, x, w)− ∂wf(t, x, w̄)‖C(B) ≤ σ(t, ‖w − w̄‖0) on E × C(B);


3) there exists a nondecreasing and continuous function ψ0 : [0, a] −→
[0, +∞) which satisfies the inequalities


ψ0(t) ≥ |u(1)(t, x)− u(0)(t, x)| (8)


and


ψ0(t) ≥ c̃0


t∫


0


ψ0(s) σ(s, ψ0(s)) exp


(
c̃0


t∫


s


λ(ζ)dζ


)
ds (9)


where c̃0 = c0


(
4π/k0


)n/2


.


Then the sequence {u(ν)} of solutions of (5), (6) is well defined and uniformly
fast convergent to u∗, where u∗ is the unique C0,1 solution of problem (1), (2).
The convergence rate is characterized by the condition


‖u(ν+1) − u∗‖t


‖u(ν) − u∗‖t


−→ 0 as ν −→∞ (10)


for t ∈ [0, a].


Proof. The existence and uniqueness of the C0,1 solution u(ν+1) of problem (5),
(6) follows from Theorem 1.1. We estimate the differences u(ν+1) − u(ν) for
ν = 0, 1, . . . . Put ω(ν) = u(ν+1) − u(ν). Since the function u(ν+1) satisfies the
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integral identity (7), which applies also to u(ν+2), we have the integral error
equation


ω(ν+1)(t, x) =


t∫


0


∫


Rn


Γ(t, x, s, y)
{
f


(
s, y, u


(ν+1)
(s,y)


)
− f


(
s, y, u


(ν)
(s,y)


)


+ ∂wf
(
s, y, u


(ν+1)
(s,y)


)
ω


(ν+1)
(s,y) − ∂wf


(
s, y, u


(ν)
(s,y)


)
ω


(ν)
(s,y)


}
dyds.


By the Hadamard mean-value theorem, we get


f
(
s, y, u


(ν+1)
(s,y)


)
− f


(
s, y, u


(ν)
(s,y)


)


=


1∫


0


∂wf
(
s, y, u


(ν)
(s,y) + ζ (u


(ν+1)
(s,y) − u


(ν)
(s,y))


)
dζ (u


(ν+1)
(s,y) − u


(ν)
(s,y)).


Hence we rewrite the error equation as follows:


ω(ν+1)(t, x) =


t∫


0


∫


Rn


Γ(t, x, s, y)
{


∂wf
(
s, y, u


(ν+1)
(s,y)


)
ω


(ν+1)
(s,y)


+


1∫


0


∂wf
(
s, y, u


(ν)
(s,y) + ζ ω


(ν)
(s,y)


)
ω


(ν)
(s,y)dζ − ∂wf


(
s, y, u


(ν)
(s,y)


)
ω


(ν)
(s,y)


}
dyds.


From the above error equation, based on the assumptions 1) and 2) of our
theorem, we derive the inequality


|ω(ν+1)(t, x)| ≤
t∫


0


∫


Rn


|Γ(t, x, s, y)|


 ‖∂wf


(
t, x, u


(ν+1)
(s,y)


)
‖C(B) ‖ω(ν+1)


(s,y) ‖0


+ ‖ω(ν)
(s,y)‖0


1∫


0


∥∥∥∥∂wf
(
s, y, u


(ν)
(s,y) + ζω


(ν)
(s,y)


)
− ∂wf


(
t, x, u


(ν)
(s,y)


) ∥∥∥∥
C(B)


dζ




 dy ds


≤
t∫


0


∫


Rn


|Γ(t, x, s, y)|
{
λ(s)‖ω(ν+1)


(s,y) ‖0 + ‖ω(ν)
(s,y)‖0


1∫


0


σ(s, ‖ζω
(ν)
(s,y)‖0)dζ


}
dy ds.


It follows from Lemma 1.1 that


c̃0 ≥
∫


Rn


|Γ(t, x, s, y)| dy for 0 ≤ s ≤ t ≤ a, x ∈ Rn.


By the monotonicity condition for the function σ, we have


|ω(ν+1)(t, x)| ≤ c̃0


t∫


0


{
λ(s) ‖ω(ν+1)‖s + ‖ω(ν)‖s σ(s, ‖ω(ν)‖s)


}
ds,
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which leads to the recurrent integral inequality


‖ω(ν+1)‖t ≤ c̃0


t∫


0


{
λ(s) ‖ω(ν+1)‖s + ‖ω(ν)‖s σ(s, ‖ω(ν)‖s)


}
ds.


Applying the Gronwall lemma to the above inequality, we get its explicit form


‖ω(ν+1)‖t ≤ c̃0


t∫


0


‖ω(ν)‖s σ(s, ‖ω(ν)‖s) exp


(
c̃0


t∫


s


λ(ζ)dζ


)
ds. (11)


We show that the sequence {ω(ν)} is uniformly convergent to 0. With the given
function ψ0, satisfying conditions (8) and (9), the functions ψν+1 : [0, a] −→
[0, +∞) for ν = 0, 1, . . . are defined by the recurrent formula


ψν+1(t) = c̃0


t∫


0


ψν(s) σ(s, ψν(s)) exp


(
c̃0


t∫


s


λ(ζ)dζ


)
ds. (12)


It is easy to verify that the sequence {ψν} of continuous nondecreasing functions
is nonincreasing as ν −→∞. This can be can verified by induction on ν, applying
(9) and (12). Furthermore, we have


ψν(t) ≥ |ω(ν)(t, x)| on E (13)


for all ν = 0, 1, . . . . The proof of (13) can be done also by induction on ν. For
ν = 0 condition (13) coincides with (8). If inequality (13) holds for any fixed ν,
then it carries over to ν +1 by virtue of (11) and (12). In addition, the sequence
{ψν}, being a nonincreasing and bounded from below, is convergent to a limit
function ψ̄, where 0 ≤ ψ̄(t) ≤ ψ0(t). Passing to the limit in equality (12) as
ν −→∞, we get


ψ̄(t) = c̃0


t∫


0


ψ̄(s)σ(s, ψ(s)) exp


(
c̃0


t∫


s


λ(ζ)dζ


)
ds.


By Gronwall’s lemma, we have ψ̄ ≡ 0. Since ψν are nonidecreasing functions
and equality (12) is fulfilled, we have


ψν+1(t)


ψν(t)
≤ c̃0


t∫


0


σ(s, ψν(s)) exp


(
c̃o


t∫


s


λ(ζ)dζ


)
ds. (14)


Recalling that the function σ(s, ·) is continuous and monotone, we observe that


σ(s, ψν(s)) ↘ 0 = σ(s, 0) as ν −→∞.


Since ψν ↘ 0 as ν −→∞, passing to the limit in (14) we get


ψν+1(t)


ψν(t)
−→ 0 as ν −→∞.


Hence by d’Alembert’s criterion, the series
∑∞


ν=0 ψν(t) is uniformly convergent.
Since ‖ω(ν)‖t ≤ ψν(t), the sequence u(ν) is fundamental. Indeed, the norms
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of the differences u(ν) − u(ν+k) can be estimated by a partial sum of the series∑∞
ν=0 ψν(t) as follows:


‖u(ν) − u(ν+k)‖t ≤ ‖u(ν) − u(ν+1)‖t + · · ·+ ‖u(ν+k−1) − u(ν+k)‖t


≤ ψν(t) + · · ·+ ψν+k(t).


Consequently, the sequence {u(ν)} is uniformly convergent to a continuous func-
tion u∗. We prove that the function u∗ satisfies equation (1). The initial condi-
tion (2), i.e., u∗ Â ϕ is fulfilled, because u(ν) Â ϕ and u(ν) −→ u∗ as ν −→ ∞.
It suffices to make the following observation. The integral equation (7) for
the functions u(ν) and u(ν+1) is equivalent of problem (5), (6). Then, passing
to the limit as ν →∞ in equation (7) we obtain the integral equality (3) with
u = u∗. By Theorem 1.1, the function u∗ is a unique solution of problem (1), (2).
The convergence rate is determined by estimate (13) and condition (14). This
convergence is faster than a geometric convergence.


Now, we show that condition (10) is satisfied. Subtracting (3) with u = u∗


from the integral equation (7) and performing similar estimations as in the case
of ω(ν+1), we get the inequality


‖u(ν+1) − u∗‖t


≤ c̃0


t∫


0


{
λ(s) ‖u(ν+1) − u∗‖s + ‖u(ν) − u∗‖s σ(s, ‖u(ν) − u∗‖s)


}
ds.


By Gronwall’s lemma we have


‖u(ν+1) − u∗‖t ≤ c̃0


t∫


0


‖u(ν) − u∗‖s σ(s, ‖u(ν) − u∗‖s) exp


(
c̃0


t∫


s


λ(ζ)dζ


)
ds.


Since the semi-norm scale ‖ · ‖t is nondecreasing in t, we get the estimate


‖u(ν+1) − u∗‖t ≤ c̃0 ‖u(ν) − u∗‖t


t∫


0


σ(s, ‖u(ν) − u∗‖s) exp


(
c̃0


t∫


s


λ(ζ)dζ


)
ds.


Thus we obtain the desired assertion


‖u(ν+1) − u∗‖t


‖u(ν) − u∗‖t


≤ c̃0


t∫


0


σ(s, ‖u(ν) − u∗‖s) exp


(
c̃0


t∫


s


λ(ζ)dζ


)
ds −→ 0


as ν −→∞. This completes the proof of assertion (10) and Theorem 2.1.


In condition (8) we apply the unknown function u(1), which ought to have
been obtained in Theorem 2.1. This assumption is made only for the sake of
simplicity. A priori estimates of |u(1)(t, x) − u(0)(t, x)| can be derived in the
following way.
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Remark 2.1. As a particular case of (7), we have the integral equation


u(1)(t, x) = ϕ̃(t, x) +


t∫


0


∫


Rn


Γ(t, x, s, y)


×


 f


(
s, y, u


(0)
(s,y)


)
+ ∂wf


(
s, y, u


(0)
(s,y)


) (
u(1) − u(0)


)


(s,y)




 dy ds. (15)


Thus under the assumption 1) of Theorem 2.1 we obtain the integral inequality


‖u(1) − u(0)‖t ≤ ‖ϕ̃− u(0)‖t


+ c̃0


t∫


0


{
mf (s) + λ(s)


[
‖u(0)‖s + ‖u(1) − u(0)‖s


]}
ds. (16)


Using the Gronwall lemma, we get the estimate


‖u(1) − u(0)‖t ≤ ‖ϕ̃− u(0)‖t


+ c̃0


t∫


0


{
mf (s) + λ(s)


[
‖u(0)‖s + ‖ϕ̃− u(0)‖s


]}
exp


(
c̃0


t∫


s


λ(ζ)dζ


)
ds.


In particular, if we put u(0) = ϕ̃ (the most natural initial conjecture), then


‖u(1) − u(0)‖t ≤ c̃0


t∫


0


{
mf (s) + λ(s)‖ϕ̃‖s


}
exp


(
c̃0


t∫


s


λ(ζ)dζ


)
ds.


However, one can get more precise estimates by making use of the modulus of
continuity of the initial function ϕ. Since


|ϕ̃(t, x)− u(0)(t, x)|= |ϕ̃(t, x)− ϕ(0, x)|=
∣∣∣∣∣
∫


Rn


Γ(t, x, 0, y)
{
ϕ(0, y)−ϕ(0, x)


}
dy


∣∣∣∣∣


≤ c̃0


∫


Rn


e−‖η‖
2


min
{
2‖ϕ‖0, max


|ξ|≤2‖η‖√t/
√


k0


|ϕ(0, x + ξ)− ϕ(0, x)|
}


dη := Φ(t, x),


we get


‖u(1) − u(0)‖t ≤ ‖Φ(t, ·)‖0


+ c̃0


t∫


0


{
mf (s) + λ(s)


[
‖ϕ‖0 + ‖Φ(s, ·)‖0


] }
exp


(
c̃0


t∫


s


λ(ζ)dζ


)
ds.


Now, we discuss two main cases (Lipschitz and Hölder), generated by partic-
ular functions σ satisfying the condition 2) of Theorem 2.1.
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Example 2.1 (the Lipschitz case). Assume a generalized Lipschitz con-
dition for ∂ωf(t, x, ·), i.e., define σ(t, r) = λ1(t) r, where λ1 ∈ L1[0, a]. If the
function ψ0 is satisfies the integral equation


ψ0(t) = c̃0


t∫


0


ψ2
0(s)λ1(s) exp


(
c̃0


t∫


s


λ(ζ)dζ


)
ds+‖u(1)−u(0)‖a exp


(
c̃0


t∫


0


λ(s)ds


)
,


then both inequalities (8) and (9) are fulfilled. This integral equation easily
reduces to the equation


ψ̃0(t) =


t∫


0


ψ̃2
0(s)λ̃1(s) ds + ‖u(1) − u(0)‖a,


where


ψ̃0(t) = ψ0(t) exp


(
− c̃0


t∫


0


λ(s)ds


)
, λ̃1(t) = c̃oλ1(t) exp


(
c̃0


t∫


0


λ(s)ds


)
.


The solution ψ̃0 of this equation is given by


ψ̃0(t) =


[
1


c
−


t∫


0


λ̃1(s)ds


]−1


,


where c = ‖u(1) − u(0)‖a. Therefore the function ψ0 defined by


ψ0(t) =


[
1


c
− c̃0


t∫


0


λ1(s) exp


(
c̃0


s∫


0


λ(ζ)dζ


)
ds


]−1


exp


(
c̃0


t∫


0


λ(s)ds


)


satisfies conditions (8) and (9).


In this case we obtain the so-called Newton rate of convergence, which we
formulate as follows.


Corollary 2.1 (the Lipschitz case). If all assumptions of Theorem 2.1
are satisfied with σ(t, r) = λ1(t) r, then


‖u(ν) − u∗‖t −→ 0 and
‖u(ν+1) − u∗‖t


‖u(ν) − u∗‖2
t


≤ C0 < +∞


as ν −→ +∞ (with some constant C0 ≥ 0).


Proof. Arguing as in the proof of Theorem 2.1, we obtain the recurrence in-
equality


‖u(ν+1) − u∗‖t ≤ C0‖u(ν) − u∗‖2
t


t∫


0


λ1(s) exp


(
c̃0


t∫


0


λ(s)ds


)
ds,


which completes the proof.
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Example 2.2 (the Hölder case). This is a generalization of Example 2.1.
Let σ(t, r) = λ2(t) rδ for δ ∈ (0, 1]. Then the inequality from the assumption
2) of Theorem 2.1 is the Hölder condition of derivative. If we formulate the
integral equation


ψ0(t) = c̃0


t∫


0


ψδ+1
0 (s)λ2(s) exp


(
c̃0


t∫


s


λ(ζ)dζ


)
ds


+ ‖u(1) − u(0)‖a exp


(
c̃0


t∫


0


λ(s)ds


)
,


then the solution is given by


ψ0(t)=exp


(
− c̃0


t∫


0


λ(ζ)dζ


)[
1


cδ
− δc̃0


t∫


0


λ2(s) exp


(
δc̃0


s∫


0


λ(ζ)dζ


)
ds


]−1/δ


,


where c = ‖u(1) − u(0)‖a. In this case the convergence is of order 1 + δ, i.e.,


‖u(ν) − u∗‖t −→ 0 as ν −→ +∞
and


‖u(ν+1) − u∗‖t


‖u(ν) − u∗‖1+δ
t


≤ C0 < +∞, where C0 ≥ 0.


3. The Quasilinearization Method – A Nonlinear Term
Dependent on Derivatives


Consider a more complicated functional dependence: a Hale-type functional
u(t,x) acting on partial derivatives of the unknown function. This situation, in
general, imposes additional assumptions on the initial function ϕ, namely: ∂ϕ
has to be continuous on B. However, the convergence of the sequence {uν} is
much stronger because we get the convergence with respect to a stronger norm
‖ · ‖′0, where


‖w‖′0 = ‖w‖0 + ‖∂w‖0


for w ∈ C0,1(B), the class of all w ∈ C(B) such that ∂w ∈ C(B)n. Similarly,


we define the seminorm ‖ · ‖′t on C0,1(Ẽ):


‖u‖′t = ‖u‖t + ‖∂u‖t for u ∈ C0,1(Ẽ).


The operator norm ‖ · ‖C0,1(B) is defined in the space of all linear and bounded
operators acting on C0,1(B) by the formula


‖F‖C0,1(B) = sup
{
‖Fw‖′0 : ‖w‖′0 ≤ 1


}
.


Theorem 3.1. Let ϕ ∈ CB(E0), ∂ϕ ∈ CB(E0)
n and f(t, ·, ϕ̃(t,x)) ∈ C(Rn).


Suppose that:


1) Assumption 1.2 and the inequality ‖∂wf(t, x, w)‖C0,1(B) ≤ λ1(t) are sat-
isfied;
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2) there is a function σ : [0, a]× [0+∞) −→ [0, +∞), integrable with respect
to the first variable, continuous and nondecreasing with respect to the last
variable, and


‖∂wf(t, x, w)− ∂wf(t, x, w̄)‖C0,1(B) ≤ σ(t, ‖w − w̄‖′0);
3) the conditions


(t− s)1/2


t∫


s


c0


c1


λ1(ζ) (t− ζ)−1/2(ζ − s)−1/2dζ ≤ θ1 ,


(t− s)1/2


t∫


s


c0


c1


σ(ζ, ψ0(ζ)) (t− ζ)−1/2(ζ − s)−1/2dζ ≤ θ2


hold true for 0 ≤ s < t ≤ a, where θ1, θ2 ∈ (0, 1) and θ1 + θ2 < 1;
4) there exists a nondecreasing, continuous function ψ0 : [0, a] −→ [0, +∞)


which satisfies the inequalities


ψ0(t) ≥ ‖u(1) − u(0)‖t + ‖∂(u(1) − u(0))‖t ,


ψ0(t) ≥
t∫


0


{
c̃0 + c̃1(t− s)−1/2


}{
λ1(s) + σ(s, ψ0(s))


}
ψ0(s) ds ,


where c̃1 = c1



4π/k0






n/2


.


Then the sequence {u(ν)} of solutions of (5), (6) is well defined and uniformly
fast convergent to u∗ in ‖ · ‖′t, where u∗ is a unique C0,1 solution of problem
(1), (2). Moreover,


‖u(ν+1) − u∗‖′t
‖u(ν) − u∗‖′t


−→ 0 as ν −→∞


for t ∈ (0, a].


Proof. The method of proving is similar to that used in Theorem 2.1. Applying
the Hadamard mean-value theorem and the assumptions 1), 3), we get


|ω(ν+1)(t, x)| ≤
t∫


0


∫


Rn


|Γ(t, x, s, y)|
∣∣∣∣∣ f


(
s, y, u


(ν+1)
(s,y)


)
− f


(
s, y, u


(ν)
(s,y)


)


+ ∂wf
(
s, y, u


(ν+1)
(s,y)


)
ω


(ν+1)
(s,y) − ∂wf


(
s, y, u


(ν)
(s,y)


)
ω


(ν)
(s,y)


∣∣∣∣∣ dyds


≤ c̃0


t∫


0


{
λ1(s)||ω(ν+1)||′s + ||ω(ν)||′sσ(s, ||ω(ν)||′s)


}
ds.
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In an analogous way we obtain the estimates


|∂jω
(ν+1)(t, x)| ≤


t∫


0


∫


Rn


|∂jΓ(t, x, s, y)|
∣∣∣∣∣ f


(
s, y, u


(ν+1)
(s,y)


)
− f


(
s, y, u


(ν)
(s,y)


)


+ ∂wf
(
s, y, u


(ν+1)
(s,y)


)
ω


(ν+1)
(s,y) − ∂wf


(
s, y, u


(ν)
(s,y)


)
ω


(ν)
(s,y)


∣∣∣∣∣ dyds


≤
t∫


0


∫


Rn


|∂jΓ(t, x, s, y)|
{
‖∂wf


(
s, y, u


(ν+1)
(s,y)


)
‖C0,1(B)‖ω(ν+1)


(s,y) ‖
′
0


+


1∫


0


‖∂wf
(
s, y, u


(ν)
(s,y) + ζω


(ν)
(s,y)


)
−∂wf


(
t, x, u


(ν)
(s,y)


)
‖C0,1(B) dζ‖ω(ν)


(s,y)‖
′
0


}
dyds


≤
t∫


0


∫


Rn


|∂jΓ(t, x, s, y)|
{
λ1(s) ‖ω(ν+1)‖′s + ‖ω(ν)‖′s σ(s, ‖ω(ν)‖′s)


}
dy ds.


On account of the estimate of Lemma 1.1 we obtain


|∂jω
(ν+1)(t, x)| ≤ c̃1


t∫


0


(t− s)−1/2
{
λ1(s) ‖ω(ν+1)‖′s + ‖ω(ν)‖′s σ(s, ‖ω(ν)‖′s)


}
ds.


Summing the estimates for ‖ω(ν+1)‖t and ‖∂ω(ν+1)‖t, we arrive at the integral
error inequality


‖ω(ν+1)‖′t≤
t∫


0


{
c̃0 + c̃1 (t− s)−1/2


}{
λ1(s)‖ω(ν+1)‖′s + ‖ω(ν)‖′sσ(s, ‖ω(ν)‖′s)


}
ds.


Now, we derive explicit estimates of ‖ω(ν+1)‖′t and show that the sequence {ω(ν)}
tends to 0. Define the sequence {ψν} by


ψν+1(t) =


t∫


0


{
c̃0 + c̃1 (t− s)−1/2


}{
λ1(s) ψν+1(s) + ψν(s) σ(s, ψν(s))


}
ds.


Under the assumptions 3) and 4), the sequence {ψν} is nondecreasing and con-
vergent to ψ̄ ≡ 0 as ν −→ ∞, which is a unique solution of the limit integral
equation


ψ̄(t) =


t∫


0


{
c̃0 + c̃1 (t− s)−1/2


}{
λ1(s) + σ(s, ψ̄(s))


}
ψ̄(s) ds.


Since the series
∑∞


ν=0 ψν(t) is uniformly convergent, the sequence {u(ν)} is fun-
damental with respect to ‖ · ‖′t. This follows by arguments similar to those
applied in the proof of Theorem 2.1. Hence this sequence is fast convergent to
the C0,1 solution of problem (1), (2).
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Remark 3.1. In Remark 2.1, the estimate of the difference |u(1)(t, x) −
u(0)(t, x)| is based on the integral inequality (16). Observe that under the as-
sumptions of Theorem 3.1 the integral equation (15) implies the estimates for
u(1) − u(0) and ∂(u(1) − u(0)), the summing of which leads to


‖u(1) − u(0)‖′t ≤ ‖ϕ̃− u(0)‖′t


+


t∫


0


{
c̃0 + c̃1(t− s)−1/2


}{
mf,ϕ(s) + λ1(s)


[
‖u(0) − ϕ̃‖′s + ‖u(1) − u(0)‖′s


]}
ds.


Therefore we have the estimate


‖u(1) − u(0)‖′t ≤ ψ0(t),


where ψ0 is a solution of the integral equation


ψ0(t) = ‖ϕ̃− u(0)‖′t


+


t∫


0


{
c̃0 + c̃1(t− s)−1/2


} {
mf,ϕ(s) + λ1(s)


[
‖u(0) − ϕ̃‖′s + ψ0(s)


]}
ds. (17)


Taking u(0) = ϕ̃, we get an optimal error estimate. If, in addition, we assume
that mf,ϕ(t) = λ1(t) = K0t


κ and ‖ϕ̃ − u(0)‖′t ≤ K1t
κ, with given κ > −1/2


and K0, K1 ≥ 0, then instead of equation (17) it is convenient to write another
integral equation for ψ0 :


ψ0(t) = K1t
κ +


t∫


0


{
c̃0 + c̃1(t− s)−1/2


} (
1 + ψ0(s)


)
K0s


κ ds,


which has a unique solution on [0, a]. There is K̃ ≥ K1 ≥ 0 such that ψ0(t) ≤
K̃ tκ.


Example 3.1. We assume as in Remark 3.1 that mf,ϕ(t) = λ1(t) = K0t
κ,


where κ > −1/2. Let σ(t, r) = λ2(t)r
δ, where λ2(t) = K2t


κ. If κ > −1
2
· 1


1+δ
,


then the assumption 4) of Theorem 3.1 is fulfilled for sufficiently small t when


we put ψ0(t) = Ctκe
√


t with a sufficiently large positive constant C.


Now we study equation (1) without functional dependence on the derivatives,
including ∂u(t, x). In fact, we consider a differential-functional equation of the
form


Pu(t, x) = f̃(t, x, u(t,x), ∂u(t, x)).


This is possible in the functional model (1) by a suitable choice of the right-hand
side f. It can be defined as follows:


f(t, x, w) = f̃(t, x, w, ∂w(0, 0)).


Define the semi-norms


‖u‖′′t = ‖u‖t + sup
0<s≤t


√
s ‖∂u(s, ·)‖0 for t ∈ (0, a].
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Theorem 3.2. Let ϕ ∈ CB(E0), f(t, ·, ϕ̃(t,x)) ∈ C(Rn), f(·, x, ϕ̃(t,x)), λ ∈
L1[0, a] and λ1(t) = λ(t)


√
t. Assume that:


1) Assumption 1.2 and the inequality


|f(t, x, w)− f(t, x, w̄)| ≤ λ(t) ‖w − w̄‖0 + λ1(t) ‖∂(w − w̄)(0, 0)‖0


are satisfied;
2) there is a function σ : [0, a]× [0+∞) −→ [0, +∞), integrable with respect


to the first variable, continuous and nondecreasing with respect to the last
variable, and


| [∂wf(t, x, w)− ∂wf(t, x, w̄)] h|
≤


(
‖h‖0 +


√
t ‖∂h(0, 0)‖0


)
σ


(
t, ‖w − w̄‖0 +


√
t ‖∂(w − w̄)(0, 0)‖0


)


for h,w, w̄ ∈ C(B), ∂h(0, ·), ∂w(0, ·), ∂w̄(0, ·) ∈ C([−τ, τ ]);
3) the inequalities


(t− s)1/2


t∫


s


c0


c1


λ1(ζ) (t− ζ)−1/2(ζ − s)−1/2dζ ≤ θ1


(t− s)1/2


t∫


s


c0


c1


√
ζ σ(ζ, ψ0(ζ)) (t− ζ)−1/2(ζ − s)−1/2dζ ≤ θ2


are satisfied for 0 ≤ s < t ≤ a, where θ1, θ2 ∈ (0, 1) and θ1 + θ2 < 1;
4) there exists a nondecreasing, continuous function ψ0 : [0, a] −→ [0, +∞)


which satisfies the inequalities


ψ0(t) ≥ ‖u(1) − u(0)‖′′t ,


ψ0(t) ≥
t∫


0


{
c̃0 +


√
t c̃1(t− s)−1/2


}{
λ(s) + σ(s, ψ0(s))


}
ψ0(s) ds ,


where c̃1 = c1


(
4π/k0


)n/2


.


Then the sequence {u(ν)} of solutions of (5), (6) is well defined and uniformly
fast convergent to u∗ in ‖ · ‖′′t , where u∗ is a unique C0,1 solution of problem
(1), (2). Moreover,


‖u(ν+1) − u∗‖′′t
‖u(ν) − u∗‖′′t


−→ 0 as ν −→∞


for t ∈ (0, a].


Proof. The assertions are proved by arguments similar to those used for The-
orem 3.1. The most important are the following estimates of |ω(ν+1)(t, x)| and
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√


t |∂jω
(ν+1)(t, x)| :


|ω(ν+1)(t, x)| ≤ c̃0


t∫


0


{
λ(s) ‖ω(ν+1)‖′′s + ‖ω(ν)‖′′s σ(s, ‖ω(ν)‖′′s )


}
ds


and
√


t |∂jω
(ν+1)(t, x)|


≤ c̃1


√
t


t∫


0


(t− s)−1/2


{
λ(s) ‖ω(ν+1)‖′′s + ‖ω(ν)‖′′s σ(s, ‖ω(ν)‖′′s )


}
ds.


Taking supremum norms in the left-hand sides of the above inequalities, we get
the recurrence integral inequalities


‖ω(ν+1)‖′′t


≤
t∫


0


{
c̃0 +


√
t c̃1(t− s)−1/2


} {
λ(s) ‖ω(ν+1)‖′′s + ‖ω(ν)‖′′s σ(s, ‖ω(ν)‖′′s )


}
ds.


It is seen that


‖ω(ν+1)‖′′t ≤ ψν(t) −→ 0 as ν →∞,


where


ψν+1(t) =


t∫


0


{
c̃0 +


√
t c̃1(t− s)−1/2


} {
λ(s) ψν+1(s) + ψν(s) σ(s, ψν(s))


}
ds.


The remaining part of the proof runs in the same way as in Theorem 3.1.


Remark 3.2. Theorem 3.2 concerns the equation with various types of the
Volterra functional dependence on the unknown function. The derivatives have
the classical form (without functional dependence). Similarly, the sufficient
conditions of convergence for the quasilinearization sequence in Theorems 2.1
and 3.1 are based on the respective existence statements in Theorems 1.1 and
1.2; also, Theorem 3.2 is based on Theorem 2.2 from [4].
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