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A PROPERTY OF THE DEGREE FILTRATION OF
POLYNOMIAL FUNCTORS


LAURENT PIRIOU AND LIONEL SCHWARTZ


Abstract. This paper is a detailed version of the note with the same title
([10]). It treats a result related to what is commonly referred to as the ar-
tinian conjecture (or finiteness conjecture). This conjecture can be stated in
the following way. Consider the category F of functors from the category
of finite dimensional vector spaces over the two element field to that of all
vector spaces. Consider its full subcategory of functors whose injective en-
velopes are finite direct sums of indecomposable injectives. The conjecture
is that this subcategory is abelian. In our circumstances the only point to
prove is that it is stable under quotients (that this formulation is equivalent
to the usual one is easy but not formal).


The result proved in this paper shows that the subobject lattices of stan-
dard injectives of the category are “as simple as possible” in what concerns
the weight filtrations of unstable modules. It is shown that the filtrations
by weights and socles are compatible in an appropriate sense. In addition to
the recalled notions and facts, the appendix contains a result showing that
certain unstable modules are cyclic.
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1. Introduction


Let F be the category of functors from the category of finite dimensional
vector spaces over the two element field to that of all vector spaces, and let Fω


be the full subcategory of analytic functors.
In this paper, two natural filtrations on standard injectives of the category


Fω are compared. The first filtration is given by the Eilenberg-MacLane degree
which is specific of the situation we deal with in [2, 12, 4].


Let us recall that the notion of a functor of a degree not exceeding n is defined
in the following manner. We denote by ∆ the endofunctor of the category F
determined by


∆(F )(V ) = ker(F (V ⊕ F2) → F (V )) .


Then a functor F is said to have a degree not exceeding n if ∆n+1(F ) = 0. We
also define the notion of the largest subfunctor of a degree not exceeding n of
an arbitrary functor F denoted by tn(F ). A functor F is said to be analytic if
it is the direct limit of functors tn(F ).
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The second filtration is that of Loewy or the socle filtration. It is defined in
any abelian category. Let us recall its definition. The socle of an object F is
the largest subobject Soc(F ) = Soc0(F ) ⊂ F which is a direct sum of simple
objects. Socn(F ) is defined iteratively by Socn(F ) = π−1Soc(F/Socn−1(F )),
where π : F → F/Socn−1(F ) is the canonical projection. If F is analytic, this
filtration is convergent.


If we consider the functor V 7→ FV ∗
2 , then it is easy to show that both


filtrations coincide. The functor V 7→ FV ∗
2 , which represents F 7→ F (F2)


∗, is
a standard injective object of F . This result shows that both filtrations are
compatible in an appropriate sense.


Let IE be a functor representing the functor F 7→ F (E)∗ from the category
F to the category E , i.e., such that there is a natural equivalence of functors


HomF (F, IE) ∼= F (E)∗ .


The functor IE is given by the formula


V 7→ F
Hom(V,E)
2 ,


where the term on the right is the set of functions (set maps) from Hom(V,E)
to F2. These objects are the standard injective cogenerators of the category.


Theorem 1.1. Let E be an elementary abelian 2-group of dimension d. If
n > d2d, then all simple subfunctors of the quotient IE/tn−1(IE) are of degree n.
In other words, the socle of IE/tn−1(IE) is a finite direct sum of simple functors
of degree n.


This problem has been studied by both authors for a few past years, but it
is only recently that its proof has been completed.


An independent proof was given by G. Powell for dim(E) = 2 [11]. Since
functors IE are cogenerators for the category F , the result extends to any
analytic functor F whose socle is finite, i.e., to a direct sum of a finite number
of simple functors. In fact, such a functor F embeds into a finite direct sum of
functors IE [12]. Thus the degree and Loewy filtrations on F are the filtrations
induced by those of IE.


Theorem 1.2. Let F be a functor whose injective envelope is a direct sum-
mand in a finite direct sum of indecomposable injectives. Let n be a sufficiently
large integer. The socle of F/tn−1(F ) is a finite direct sum of simple functors
of degree n.


This result suggests the following question.


Question 1.1. Let F be a functor whose injective envelope is a direct
summand in a finite direct sum of indecomposable injectives. Does then the
quotient tn(F )/tn−1(F ) admit a filtration whose quotients are Weyl functors
when n is sufficiently large?


The above problems can be posed analogously in the category of unstable
modules over the Steenrod algebra. It is in fact this category in which we are
going to work. Recall that the quotient of the category of unstable modules by
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the subcategory of nilpotent modules is equivalent to the category of analytic
functors, i.e., of direct limits of polynomial functors [2] (Part 1). As the functor
IE is the image, under the equivalence of categories U/Nil ∼= Fω, [2], of the
mod 2 cohomology H∗E of the elementary abelian 2-group E, the problem posed
is analogous to one concerning the mod 2 cohomology H∗E of an elementary
abelian 2-group E which has been being studied in detail in the last eight years
as regards its properties as an unstable module and unstable algebra over the
Steenrod algebra. The properties of the latter algebras, as unstable algebras,
are the source of fundamental results in homotopy theory [8, 6].


An analog (see Appendix A) of the degree filtration on IE is obtained as
follows. The cohomology H∗E is a Hopf algebra (and likewise IE is a functor to
Hopf F2-algebras) and the corresponding filtration is none other than the prim-
itive filtration. In that case the primitive filtration is described in the following
way. The algebra H∗E is isomorphic to S∗(E∗) which is primitively generated as
a Hopf algebra. In particular, Pn(H∗E) ∼= (P1(H


∗E))n, the primitive elements
lie in H1E ∼= E∗ and its images under the iterates of the squaring morphism. To
the notion of degree of a polynomial functor there corresponds that of weights
for an unstable module. One can thus formulate the corresponding statements.
They are the ones through which we are going to show the results.


An advantage is that in this context we are able to use Steenrod operations.
There exists a notion of a maximal weight vector for an element in a reduced un-
stable module defined by the equivalence of categories with polynomial functors.
The main results of this paper are mostly about the behavior of such maximal
weight vectors under certain Steenrod operations and about their interpretation
for an element in a polynomial algebra. The proof rests on the properties of the
standard base of Weyl modules, and on the fact that the action of the Steenrod
algebra is especially easy to calculate on the elements of a particular base called
semi-standard.


2. A particular Case


In this section, a particular case is studied. The reduction of Theorem 1.1 to
this case is done in the next sections. We begin by recalling the statement. Let
V be an F2-vector space of dimension d. We thus have H∗V ∼= F2[x1, . . . , xd],
where {x1, . . . , xd} is a base of V ∗. This notation will be used in all that follows.


The reader not familiar with the terminology and results on unstable modules,
weights and H∗V could start by reading Appendix A which contains reminders
necessary for our further discussion and he could consult Appendix B for the
operations P s


t .
In what follows, by simple subobjects of H∗V/Pn−1(H


∗V ) we understand sim-
pleNil -closed reduced unstable modules as objects in U/Nil . The simplicity
is equivalent to the statement that the quotient by any nontrivial submodule is
a nilpotent unstable module.


First we reformulate Theorem 1.1 as follows.
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Theorem 2.1. The socle of Pn(H∗V )/Pn−1(H
∗V ) is a subobject of the socle


of H∗V/Pn−1(H
∗V ). It coincides with it if n > d2d. Therefore all simple


subobjects of H∗V/Pn−1(H
∗V ) are of weight exactly n when n > d2d.


This implies Theorem 1.1 since the objects contained in the socle of
Pn(H∗V )/Pn−1(H


∗V ) considered as an object of U/Nil are of weight n as
unstable modules (A.5).


To prove Theorem 2.1 it suffices to show that the following proposition is
true.


Proposition 2.2. Let d = dim(V ). Suppose that n > d2d. Then for
each element x ∈ Pn(H∗V ) such that x /∈ Pn−1(H


∗V ) one can find a Steenrod
operation β such that β(x) ∈ Pn−1(H


∗V ) and β(x) /∈ Pn−2(H
∗V ).


The following lemma describes the action of Steenrod operations on certain
classes


p ∈ Pn(H∗V ) ⊂ H∗V ∼= F2[x1, . . . , xd]


such that p /∈ Pn−1(H
∗V ). It shows that Proposition 2.2 holds true for these


classes. It is shown further that one can be reduced to working with this type
of classes.


Let µ = (µ1, . . . , µt) be a 2-regular partition with respect to columns. We thus
have µi − µi+1 6 1 for all i. By A.4 we also have µ1 6 d. Let λ = (λ1, . . . , λh)
be its conjugate (or associated) partition, which means that


λj = Card{i | µi > j} ,


and therefore t = λ1 and h = µ1. The partition λ is 2-regular, i.e., λi > λi+1


for all i. This notation is used in what follows.
Let S be a set of integers {h1, . . . , ht} with hi < hj for i < j. Also, suppose


that the sequence hi increases and for each i we have the inequality


2hi >


i−1∑
1


µj2
hj .


This condition ensures that the operation % to be introduced below acts on the
considered elements as a derivation (cf. Appendix B).


Lemma 2.3. Suppose that the polynomial p ∈ F2[x1, . . . , xd] is of weight
exactly n and is a sum of monomials of the form


xk1
1 . . . xkd


d ,


where:


• each exponent ki can be written as


ki =
∑


j


2bi,j ,


where the integers bi,j, which are not necessarily pairwise distinct (we
thus do not insist on this being the 2-adic decomposition of ki), belong
to the set {h1, . . . , ht};


• the number of integers bi,j equal to h` is µ`,
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Suppose finally that:


• n > d2d and
• if i < j and µi = µj, then the class P hi


hj−hi
(p) is of weight n− 1 at most.


Then there exists an operation P s
t = % such that %(p) ∈ Pn−1(H


∗V ), but
%(p) /∈ Pn−2(H


∗V ).


Thus the hypothesis is that the monomials occurring in p have exponents that
can be expressed as a sum of 2h` . The power 2h` could appear several times
in the exponent of a given xi and altogether appears exactly µ` times. Such a
monomial is of weight strictly less than n if the same power 2h` appears several
times in the exponent of the same xi. In other words, if the decomposition of
the exponents into sum of powers of 2 given above is the 2-adic decomposition,
then the monomial is of weight n, and it is not otherwise.


Proof. Let us choose a monomial


m = xk1
1 . . . xkd


d


of weight n, whose coefficient in the polynomial p is nonzero, such a monomial
existing since p is of weight n (Appendix A). ¤


Lemma 2.4. There exists a pair (a, b) of elements of S such that for any
integer i, 1 6 i 6 d, either


• both 2a and 2b both appear in the given decomposition of ki into a sum
of powers of 2 or


• none of them do.


This is an elementary enumeration argument. To an integer hj ∈ S we
assign the subset of {1, . . . , d} of those indices i for which 2hj appears in the
decomposition of ki into a sum of powers of 2 – by hypothesis, it appears at
most once since the monomial is of weight n. There are 2d subsets. Therefore
when λ1 = t > 2d, the same subset must appear twice.


However n > d2d. Under this hypothesis it can be easily proved that for an
integer partition µ, 2-regular with respect to columns, we have λ1 = t > 2d.


Lemma 2.4 is thus proved.


Now suppose a < b, and put % = P s
t with s = a and a + t = b. The following


proposition completes this part of the proof.


Proposition 2.5. The element P b−a
a (p) is nonzero and of weight exactly


n− 1.


Proof. Lemma 2.3 implies that the class P a
b−a(p) is of weight n− 1 at most.


It is of weight exactly n− 1 because of the following observations:


• By the inequality


2hi >


i−1∑
1


µj2
hj
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the operation % acts on the considered elements as a derivation (cf.
Appendix B). More precisely, on a monomial satisfying the two first
conditions of Lemma 2.3 we have


%(xk1
1 . . . xkd


d ) =
∑


b`,k=a


xk1
1 . . . xk`−2a+2b


` . . . xkd
d .


• Let m be the monomial considered above and let T ⊂ {1, . . . , d} be the
set of indices i such that the decomposition of the exponent ki of xi


comprises 2a and 2b exactly once, with k̃i = ki − 2a − 2b. Calculations
show that


%(m) =
∑
i∈T


xk̃i+2b+1


i


∏


j 6=i


x
kj


j .


• This term is nonzero and of weight exactly n − 1. To show that %(p)
is also such, it suffices to show that applying % to another monomial
appearing in p, say, to


m′ = x
k′1
1 . . . x


k′d
d ,


we cannot obtain the monomials on the right-hand side of the above
equation.


• However applying the operation % to m′ means replacing the power 2b


by the power 2a in the exponent of a variable xi, and summing up over
all occurrences of this situation. Thus we obtain


%(Πi x
k′i
i ) =


∑
i∈Z


x
k′i−2a+2b


i Πj 6=ix
k′j
j ,


where Z is the set of those indices i for which 2a appears in the 2-adic
decomposition of the exponent k′i.


• If m′ is of weight n, then the terms from the right-hand side of the above
equation are of weight n if 2b does not appear in the 2-adic decomposition
of k′i, but, by hypothesis, the terms of weight n are annihilated. Suppose
now that 2b does appear in the decomposition for all i ∈ Z. We then
have


%(m′) =
∑
i∈Z


x
k̃′i+2b+1


i


∏


j 6=i


x
kj


j .


If a term on the right-hand side of this equation is equal to a term
on the right-hand side of an analogous equation for %(m), then, clearly,
m = m′.


Therefore the monomials m′ of weight n cannot produce the terms
annihilating a monomial of %(m).


• It remains to consider the monomials m′ of weight n − 1. When the
operation % is applied to m′, it acts as a derivation, in particular, %(m′) =∑


i %(x
k′i
i


∏
j 6=i x


k′j
j ). Moreover, %(x


k′i
i ) is nonzero if and only if 2a appears


in the 2-adic decomposition of the exponent k′i.
• If 2b also appears in the decomposition, then the obtained factor is of


weight not exceeding n− 2.
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• If it is not so, then the obtained terms are monomials of weight n − 1.
The exponent of a variable xi contains 2b in its 2-adic decomposition;
however the terms of %(m) do not have this property.


This completes the argument. ¤
Now we have to explain how to reduce an arbitrary class to classes of this


type. The first part of the reduction is given below, while the rest is completed
in the next section. But, preliminarily, let us recall some facts.


Simple objects of the category U/Nil are described in [1, 12] in the following
manner. One gives a list of representatives ofNil -closed reduced unstable
modules which are simple as objects of U/Nil . The simplicity in U/Nil is
equivalent to the condition that the quotient by each nontrivial submodule is
a nilpotent unstable module. In what follows, by abuse of the language, we
will often talk about simple reduced modules. We keep the notations µ
and λ introduced previously for a pair of conjugate partitions, if µ is 2-regular
with respect to columns, then λ is 2-regular. Partitions that are 2-regular with
respect to columns classify irreducible representations of the symmetric group
Sn over F2. To a 2-regular partition µ with respect to columns we assign
the Young symmetrizer sµ ∈ F2[Sn]. The associated simple representation is
isomorphic to sµ ∈ F2[Sn]. The element sµ is not determined uniquely. For


example, to the partition


n times︷ ︸︸ ︷
(1, . . . , 1) there corresponds the trivial representation


of dimension 1, and the associated element sµ (unique in this case) is the sum of
all the elements of the group Sn. For more details the reader is again referred
to [12, 9] and [4].


Simple reduced modules are indexed by 2-regular partitions with respect to
columns, with n being any nonnegative integer.


Let F (1) be the free unstable module on a generator of degree 1. It can be
identified with the submodule of the polynomial algebra F2[u] generated by the
class u. As a graded F2-vector space it has a base consisting of elements u2n


.
The simple reduced unstable module associated to a partition µ is isomorphic


to
sµF (1)⊗n


and is denoted by Sµ(F (1)).


For example, to the partition


n times︷ ︸︸ ︷
(1, . . . , 1), the module Λn(F (1)) is assigned.


Another description of simple reduced modules is given in [9] in the context
of functors. Let λ be the partition conjugate to µ. Then the functor is a
subquotient of the functor


V 7→
⊗


i=1,...,d


Λλi(V ).


This is a unique largest composition factor of a subobject of the tensor product
determined as the kernel of a certain map. This kernel, denoted by Wµ(V ), is
called the Weyl module. In Section 3 we will easily convert this construction
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within the framework of unstable modules and describe generators of these
modules as modules over the Steenrod algebra.


To prove Proposition 2.2, the class x must be replaced by a class p which
satisfies the hypotheses of Lemma 2.3. The first stage of this process rests on
the general facts from the theory of modules.


Suppose we are given x ∈ Pn(H∗V ) with x /∈ Pn−1(H
∗V ) and let x̄ ∈


Pn(H∗V )/Pn−1(H
∗V ) be its reduction. The socle of this module – considered in


an evident way as an object from U/Nil [12, Chapter 5] – is a direct sum of the
form


⊕
µ Sµ(F (1))aµ , the sum being taken over the partitions of n, 2-regular


with respect to columns. The summand Sµ(F (1))aµ is called the isotypic com-
ponent associated to µ. Each nontrivial submodule of Pn(H∗V )/Pn−1(H


∗V )
intersects the socle nontrivially. Therefore we can find a Steenrod operation ω
such that ω(x̄) is nonzero and lies in the socle of Pn(H∗V )/Pn−1(H


∗V ).
Let ω(x̄) =


∑
µ zµ, where zµ is from the isotypic component associated to µ.


Let Iµ be the left ideal of A which is the annihilator of zµ. If zµ is nonzero, then
the unstable module A zµ is isomorphic to Sµ(F (1)) in U/Nil (by the simplicity
of Sµ(F (1))). Let α be a partition (2-regular with respect to columns) of n.
Then by the simplicity of Sµ(F (1)) the classical arguments of the theory of
modules show that the ideal Iα is not contained in the intersection of the ideals
Iµ, µ 6= α. Hence, once more using the classical arguments, we obtain


Proposition 2.6. There exists a Steenrod operation θ such that:


• the reduction of y = θ(x) in Pn(H∗V )/Pn−1(H
∗V ) is nonzero and lies


in the socle of the module;
• moreover, it is in the isotypic component of its socle.


Now it is necessary to modify the class y so that it have the properties required
by Lemma 2.3. This essentially depends on the structure of simple objects of
U/Nil .


3. Generators of Weyl Modules and Simple Modules


This section begins with a more explicit description of Weyl modules, simple
reduced modules and their generators. A part of what follows can be found in
[3, 1, 12] and [9].


The difference from [9], where simple reduced modules are described in the
context of functors, is that we will need information on the generators of the
modules in question. Finally, in [1] not Weyl modules but their duals are used.
This being so, to a large extent the results below could be deduced from these
two references and from [3].


The following theorem describes the main properties of Weyl modules.


Theorem 3.1. Let µ be a partition of the integer n, 2-regular with respect to
columns, and let λ = (λ1, . . . , λh) be the conjugate partition. The Weyl module
Wµ(F (1)) is a submodule of the tensor product


Λλ1(F (1))⊗ . . .⊗ Λλh(F (1)) .
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It is defined as the kernel of a map into a direct sum of tensor products of
exterior powers. The element


wµ =
i=d⊗
i=1


u ∧ u2 ∧ u4 ∧ . . . ∧ u2λi−1


is a generator as a module over the Steenrod algebra of the Weyl module
Wµ(F (1)). As an object of the category U/Nil the Weyl module has a unique
largest composition factor, i.e., its maximal semisimple quotient is simple. More-
over, this quotient is of degree exactly n.


The map defining Wµ(F (1)) as a kernel is described in detail in [9] in the
context of functors. Here it is briefly described in the context of modules. This
construction coincides with that of James’ theorem on kernels.


Consider the module Λa(F (1))⊗ Λb(F (1)), a > b, and for 1 6 t 6 b consider
the map


ψa,b,t : Λa(F (1))⊗ Λb(F (1)) → Λa+t(F (1))⊗ Λb−t(F (1))


which is the composite of the maps


Λa(F (1))⊗ Λb(F (1))
1⊗∆t−−−→ Λa(F (1))⊗ Λt(F (1))⊗ Λb−t(F (1))


Λa(F (1))⊗ Λt(F (1))⊗ Λb−t(F (1))
mult⊗Id−−−−→ Λa+t(F (1))⊗ Λb−t(F (1)).


The map ∆t is induced by the diagonal F (1) → F (1)⊕ F (1) from Λb(F (1)) to
Λb(F (1)⊕F (1)) ∼= ⊕


k+`=b Λk(F (1))⊗Λ`(F (1)), composed with the projection
to the corresponding summand, and mult denotes multiplication.


We then denote by ψa,b the map with domain Λa(F (1)) ⊗ Λb(F (1)), which
is the product of the maps ψa,b,t, a > t > 1. The map ψλi,λi+1


extends to a
map with domain Λλ by tensoring on the left and on the right with the identity.
Then by summing over the index i from 1 to d− 1 we obtain a map of⊗


i


Λλi(F (1))


to a direct sum of tensor products of exterior powers. Let ψλ be this map.
James’ theorem on kernels essentially states the following.


Theorem 3.2. The module Wµ(F (1)) is contained in and equal to the kernel
Ker ψλ.


This statement evidently supposes that there is another description of Weyl
modules, for example, with the aid of Young symmetrizers (for 2-regular par-
titions) like that given above. This result makes transparent the fact that the
element wµ and, more generally, the elements wµ(x) to be defined below, belong
to the Weyl module.


Now it is necessary to refine the assertion about Young symmetrizers.
The following discussion is valid only under the assumption that µ is 2-regular.


There exists an element εµ ∈ Sn such that the module Wµ(F (1)) is isomorphic
to the module εµF (1)⊗n. There is an explicit formula for εµ in [3]. It can
be chosen as a product CµRµ, where Cµ ∈ F2[Sn] is the sum of elements of
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the group Sn, which fix the columns of the Young diagram associated to µ,
Rµ ∈ F2[Sn] is the sum of elements which fix the rows.


For each partition µ the element wµ is written as


wµ := Cµ


i=h⊗
i=1


u⊗ u2 ⊗ u4 ⊗ . . .⊗ u2λi−1


,


where the columns of the Young diagram correspond to the partition of the set
{1, . . . , n} given by {1, . . . , λ1}, {λ1 + 1, . . . , λ1 + 1, . . . , λ1 + λ2}, . . ..


Since the partition is 2-regular with respect to columns one has


wµ = CµRµω̃µ


with


ω̃µ :=
i=h⊗
i=1


u2λi−1 ⊗ . . .⊗ u4 ⊗ u2 ⊗ u .


This statement is given as an exercise in [3, Subsections 8 8.2, 8.3].
Thus we have


Wµ(F (1)) ∼= CµRµF (1)⊗n .


Theorem 3.3.
Wµ(F (1)) ∼= A wµ.


This result has been proved by the second author. The proof is described in
detail by P. Krason in his thesis. We do not need such a precise result here. A
weaker result follows, valid for any partition µ and easier to prove. The proof
of Theorem 3.3 is given in Appendix A.


The third part of Theorem 3.1 is thoroughly investigated in [1, 9, 12] and can
be deduced from [4]. In fact, the simple module Sµ(F (1)) is also given by the
formula


Sµ(F (1)) ∼= RµCµRµF (1)⊗n .


Definition 3.4. An element x of an unstable module M is said to be an
F -generator if the quotient M/A x is nilpotent.


By the definition of simple objects in U/Nil we have


Lemma 3.5. Any nonzero element of Sµ(F (1)) is an F -generator.


The result stated above can be expressed as follows. Let x = {x(i)}, 1 6 i 6
λ1, be a strictly increasing sequence of positive integers or zeros. We have


Proposition 3.6. The element


wµ(x) :=
i=d⊗
i=1


∧


16j6λi


u2x(j)


is an F -generator of the Weyl module. These F -generators are called semi-
standard.


As above, the element wµ(x) is of the form CµRµw̃µ(x) for a certain tensor
w̃µ(x) from F (1)⊗n.


Let a1, . . . , an be pairwise distinct integers and let a = (a1, . . . , an).
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Proposition 3.7. The element


uµ(a) = CµRµ


i=n⊗
i=1


u2ai ,


is an F -generator of Wµ(F (1)). These generators are called standard.


The degree ` of a standard F -generator is such that α(`) = n, where α is
the number of powers of 2 in the 2-adic decomposition of `. Recall that µ is a
partition of the integer n. This is not the case for the degree of a semi-standard
F -generator.


Proposition 3.7 is a direct corollary of the observation that the element⊗i=n
i=1 u2ai is an F -generator for F (1)⊗n. For this assertion shown with the


aid of the operations P s
t described in Appendix B see [12, Subsection 5.5].


The proof of Proposition 3.6 is given below.
Let µ be a 2-regular partition with respect to columns. The projections


of elements considered in Lemma 3.5 and Proposition 3.6 to the simple mod-
ule Sµ(F (1)) are F -generators of Sµ(F (1)). We call them semi-standard and
standard F -generators. By abuse, the same notation will be kept. The follow-
ing trivial observation will be used later: if a Steenrod operation annihilates
the generator of Wµ(F (1)), it also annihilates the projection of this class to
Sµ(F (1)).


Proposition 3.8. Classes of the socle of H∗V/Pn−1(H
∗V ) which are asso-


ciated to semi-standard generators of Sµ(F (1)) have the properties required by
Lemma 2.3.


While verifying this, it will be shown how to reduce an arbitrary class to a
class associated to a semi-standard F -generator.


Take an element x ∈ Pn(H∗V ) projecting onto a class y in the isotypic com-
ponent associated to µ of the socle of Pn(H∗V )/Pn−1(H


∗V ). Then the unstable
module A y can be identified with a submodule of Sµ(F (1)). The property of
simplicity in U/Nil of Sµ(F (1)) is equivalent to the property that for each pair
of nonzero classes t and s in Sµ(F (1)) there exist an operation θ and an integer
k such that θ(s) = (Sq0)


k(t). Hence it can be supposed (possibly having to
apply an appropriate Steenrod operation to y) that the class z identifies with a
standard F -generator uµ(a) of Sµ(F (1)).


The operations P s
t do not annihilate standard F -generators; by contrast,


when chosen appropriately, they annihilate semi-standard F -generators. One
will reduce to such a generator, but to ensure the other hypotheses of Lemma
2.3 we must proceed starting from a standard F -generator.


Therefore we have to construct a Steenrod operation φ such that


φ(x) ∈ H∗V/Pn−1(H
∗V )


identifies with a semi-standard F -generator of Sµ(F (1)), and satisfies the hy-
potheses of 2.3.
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Proof of Propositions 3.6 and 3.8.
In considering Proposition 3.6, to simplify the notations let us work with the


case where x(i) = i−1, the proof extending without trouble to the general case.
Consider the operation


η =


i=λ1∏
i=1


j=µi∏
j=1


P i−1
c(i,j)


,


where one supposes that the integers a(i,j) := i− 1 + c(i,j) are pairwise distinct
and all greater than λ1.


An application of the calculation rules given in Appendix B leads to


Lemma 3.9. The class η(wµ) is a standard F -generator uµ(a), with a =
(a(1,1), a(1,2), . . . , a(2,1), . . .).


Hence it follows that there exists an operation sending wµ to a standard F -
generator, and thus therefore wµ is an F -generator. The proof easily extends
to wµ(x).


Let uµ(a) be a standard F -generator such as described in Proposition 3.7. To
prove Proposition 3.8, we have to revisit the proof and describe an operation φ
and an integer h such that φ(uµ(a)) = Sqh


0wµ(x) = wµ(x)2h
.


The operation is given by the formula


φ =
∏


16i6λ1


∏
16j6µi


P
a`j−i+1


hi−a`j−i+1
,


where `j = λ1 + . . . + λj and hi = x(i) + h, the integer h being sufficiently
large for all the quantities hi − aj which are positive and strictly greater than
aj. These conditions ensure that each operation P s


t on the product acts only
on one term of the tensor.


Lemma 3.10. We have


φ(uµ(a)) = Sqh
0(wµ(x)) = wµ(x)2h


.


Indeed,


φ(
i=n⊗
i=1


u2ai ) =


i=µ1⊗
i=1


⊗


16j6λi


u2h+x(`i−j))


,


where `i−1 = λ1 + . . . λi−1, if i > 1, and `0 = 0. Let


ω̃µ(x) =


i=µ1⊗
i=1


⊗


16j6λi


u2x(`i−j)


.


As above, the columns of the Young diagram correspond to the partition of the
set {1, . . . , n} given by {1, . . . , λ1}, {λ1 + 1, . . . , λ1 + 1, . . . , λ1 + λ2}, . . ..


Thus we obtain
φ(uµ(a) = CµRµω̃µ(x)2h


.


Finally, since the partition is 2-regular with respect to columns, we have, as
above,


wµ(x) = CµRµω̃µ(x) .
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The result follows.
These calculations which have been done in Wµ(F (1)) are valid for the pro-


jection to the simple quotient Sµ(F (1)).


Let us now combine the proof of Proposition 3.8 and the end of the proof
of Theorem 1.1. We thus repeat the argument as in the end of Section 2 and
keep the assumptions on the class y which are made there. It is also supposed
that the class y projects to a standard F -generator of a module isomorphic
to Sµ(F (1)). This can be ensured by replacing y by β(y) for an appropriate
operation β. Thus its degree ` is such that α(`) = n. According to A.2, it can


be written as a sum of monomials xk1
1 . . . xkd


d with


α(k1) + . . . + α(kd) = n


and
k1 + . . . + kd = ` .


Therefore for each i we can find a subset Si ⊂ {1, . . . , n} with


ki =
∑
j∈Si


2aj


such that the sets Si form a partition of {1, . . . , n}; they evidently depend on
the chosen monomial.


Let us apply a Steenrod operation φ such as that described earlier in this
section. The following lemma shows that p = φ(y) ∈ F2[x1, . . . , xd] satisfies the
hypotheses of Lemma 2.3.


Lemma 3.11. The class of p in the quotient by Pn−1(H
∗V ) identifies with a


semi-standard F -generator of Sµ(F (1)). The polynomial p is a sum of mono-
mials of the form


xk1
1 . . . xkd


d ,


where each exponent ki can be written as


ki =
∑


j


2bi,j


with bi,j not necessarily pairwise distinct and belonging to the set {h1, . . . , ht},
t = λ1, and the number of occurrences of the indices bi,j equal to h` is µ`.


The calculation rules concerning the operations P s
t give this lemma.


In what follows one says that the partition µ is a maximal weight vector
of s ∈ M , M being a reduced unstable module, if the isotypic component
associated to Sµ of the maximal semisimple quotient of A s in U/Nil is nonzero.
An element can have several maximal weight vectors.


Lemmas 3.10 and 3.11 imply


Corollary 3.12. If for a unique vector of maximal weight an element x ∈
F2[x1, . . . , xd] admits the partition µ and has, for its image Sµ, an element which
identifies with a semi-standard F -generator, then it is a polynomial of the form
described in Lemma 3.11.
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Conversely, consider x ∈ Pn(H∗V ), and let µ be a 2-regular partition of
the integer n; suppose that x as a polynomial in the variables xi is a sum of
monomials of the form


xk1
1 . . . xkd


d ,


where each exponent ki can be written as


ki =
∑


j


2bi,j ,


where bi,j belong to a set of pairwise distinct integers {h1, . . . , ht}, t = λ1, and
finally the number of the indices bi,j equal to h` is µ`. Then the maximal weight
vectors of x, which are partitions of the integer n, are the partitions µ′ (being
2-regular with respect to columns) with µ less than µ′ with respect to the natural
order on the partitions [3].


The first part of the corollary follows from the fact that because of Lemma
3.9 each semi-standard F -generator can be obtained, up to raising to a power
of 2, as an image under the action of an operation of a standard F -generator in
the way described above. After that we apply Lemma 3.10.


The second part is proved as follows. Consider the image of x in the quotient
Pn(H∗V )/Pn−1(H


∗V ). The latter is isomorphic to the direct sum⊕
ν


Λν1(F (1))⊗ . . .⊗ Λνd(F (1)),


where ν = (ν1, . . . , νd) varies over the set of d-tuples of positive integers or
zeros with sum n. Every tensor product of exterior powers embeds into F (1)⊗n


[1]. By hypothesis, through this embedding, x has as its image in each of the
summands a sum of tensors of the form u2a1 ⊗ . . . ⊗ u2an


, where ai belong to
the set {h1, . . . , ht}, the number of aj equal to hi being µi.


Consider the map which sends the unstable module generated by x to its
maximal semisimple quotient of weight n (in the sense of the category U/Nil ).
Each simple reduced unstable module of weight n embeds into F (1)⊗n [1]. Thus
we obtain, by composition, a map φ with the domain Ax⊂Pn(H∗V )/Pn−1(H


∗V )
and with image a finite direct sum of F (1)⊗n such that φ(x) is in the socle of
the image and has the same maximal weight vectors as x (in the weight n).


The module F (1)⊗n is injective among the reduced unstable modules of weight
n [1]. The map φ thus extends to a map with a domain which is a finite direct
sum of the F (1)⊗n and an image of the same type. The endomorphism ring of
F (1)⊗n is the algebra F2[Sn] [12], each element of the symmetric group acting
by permuting the coordinates. It follows that φ(x) is also a sum of tensors of
the form u2a1 ⊗ . . .⊗ u2an


, where ai belong to the set {h1, . . . , ht}, the number
of occurrences of hi among aj being µi.


The result is then a consequence of the description of the base of the modules
Wµ given in [3]; see also Appendix C. This base gives, by projection, a generating
system of Sµ. Then we apply the result obtained in Chapter 8 of [3] with the
replacement of the vector space V by the unstable module F (1) and its canonical
base (see also [9]). But a simple exercise in combinatorics shows that an element
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which is a sum of tensors of the type described above can only come from the
µ′-tableau, with µ′ less than µ ([3, Chapter 8]). This extends to any embedding
of Sµ into F (1)⊗n because of the above remarks: one passes from one embedding
to another by the map induced by the sum of elements of the symmetric group.


The result follows. ¤


Appendix A. Weights for Unstable Modules


An unstable module M is reduced if the mapping


x 7→ Sq0(x) = Sq|x|x


is injective or, equivalently, if it does not contain any nontrivial suspensions.
If M is an unstable algebra, then the term on the right is equal to x2, which
explains the terminology. The unstable modules H∗E are cogenerators for re-
duced unstable modules [2], i.e., each reduced module embeds into a product
of H∗E’s.


An unstable module M is nilpotent if for each x ∈ M there exists k such
that Sqk


0x = 0.
Recall that in an unstable algebra Sq0x = x2. Therefore, by abuse of the


language, we sometimes write x2s
for Sqs


0(x).
An unstable module M isNil -closed if it cannot be embedded into a larger


reduced module N such that for any x ∈ N there exists k with


Sqk
0(x) ∈ M .


The reduced unstable modules are filtered by weights [1]. This filtration
corresponds to that by the degree on functors. As said earlier, the filtration
of H∗E by weights identifies with the primitive filtration. Using the fact that
H∗E are cogenerators, we can induce the weight filtration on arbitrary reduced
modules from the primitive filtrations of H∗E. This filtration does not depend
on the embedding.


Here is an intrinsic characterization of the weight filtration for a reduced
module.


Proposition A.1. A reduced module M is of weight less than or equal to d if
and only if it is zero in every degree k such that α(k) > d, where α(k) denotes
the number of powers of 2 in the 2-adic decomposition (in base 2) of k. We
say that M is of weight d if it is of weight less than or equal to d, but is not of
weight less than or equal to d− 1.


We denote by w(M) the weight of a module. The weight w(x) of an element
x ∈ M is the weight of the submodule generated by it.


Here is a useful lemma.


Lemma A.2. Let M be a reduced unstable module of weight less than or
equal to n. An element x ∈ M is of weight n if and only if there exists an
operation θ such that α(|θ(x)|) = n.


The algebra H∗V is a Hopf algebra. Let Pn(H∗V ) be the n-th term of the
primitive filtration of H∗V .
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On H∗V the weight filtration is the same as the primitive filtration. We have
the following result which permits us to calculate the weight of a submodule
generated by an element x of H∗V .


Proposition A.3 ([1]). Let V be an F2-vector space of dimension d. Let
x1, . . . , xd be a base of V ∗. Then H∗V ∼= F2[x1, . . . , xd]. Consider


x =
∑


(a1,...,ad)


ua1,...,ad
xa1


1 . . . xad
d , x ∈ H∗V,


the sum being taken over a set of multiindices. The weight of the submodule
generated by x is equal to


sup(a1,...,ad) α(a1) + . . . + α(ad) ,


the supremum being taken over those multiindices (a1, . . . , ad) for which ua1,...,ad


is nonzero.


Consequently we have:


• In a degree ` such that α(`) = n, we have


(Pn(H∗V )/Pn−1(H
∗V ))` ∼= (Pn(H∗V ))` ;


• in degrees ` such that α(`) > n + 1 the two modules are trivial;
• the quotient map is not injective in degrees ` such that α(`) < n.


The following result is classical.


Lemma A.4. The quotient Pn(H∗V )/Pn−1(H
∗V ) is isomorphic to the direct


sum ⊕
ν


Λν1(F (1))⊗ . . .⊗ Λνd(F (1)),


where ν = (ν1, . . . , νd) varies over the set of d-tuples of positive integers or zeros
with sum n.


The case d = 1 is very classical, and the general case is deduced by means of
the tensor product. It is also a particular case of the description of the primitive
filtration on a “very nice” unstable algebra, i.e., one of the form U(M), where
U denotes the functor of Steenrod-Epstein [13], M ∼= F (1)⊕d.


Recall that in an abelian category the socle of an object is the largest semisim-
ple subobject (i.e., a direct sum of simple objects) contained in this object. In
what follows the simplicity is obviously understood in the sense of the category
U/Nil .


Lemma A.5. The unstable module


Λν1(F (1))⊗ . . .⊗ Λνd(F (1)) ,


with
∑


i νi = n, has a finite Jordan–Hölder series in U/Nil . Simple subobjects
of this module are


• of weight exactly n, i.e., not of weight less than or equal to n− 1,
• and their associated partitions λ are of length at most d.
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The first part is deduced from [12, 5.3.5, 5.3.6], or [4] using the equivalence of
categories U/Nil ∼= Fω. The second part results from the case µ1 = µ2 = . . . =
1; i.e., from the fact that in the category U/Nil the only simple subobjects of
F (1)⊗n are of weight exactly n ([1], [12, 5.6.3]). For the third part see [1, Section
6]. The reader will observe that in this reference simple objects are indexed by
dual partitions.


Appendix B. Operations P s
t


The operation P s
t ∈ A [7] is dual to the element ξ2s


t of the Milnor dual of A .
The following properties follow from the definition of P s


t :


• its action on F (1) is given by P s
t (u2s


) = u2s+t
;


• and by P s
t (u2v


) = 0 if v 6= s;
• on F (1)⊗k the action of P s


t is given by the observation that it acts as a
derivation on tensors which are products of classes of the form u2v


with
v > s;


• given a tensor of the form x ⊗ y, where x is a product of classes of the
form u2v


with v > s and y is a product of classes of the form u2v
with


v < s, we have P s
t (x⊗ y) = P s


t (x)⊗ y + x⊗ P s
t (y);


• from this it follows that on a tensor u2a1 ⊗ . . . u2ak , where the integers ai


belong to a set of integers {h1, . . . , hk}, where the differences |hi − hj|
are large compared to s, P s


t acts as a derivation if hi 6= hj.


Appendix C. Proof of Theorem 3.3


Here we give a proof of Theorem 3.3, which is different from that given in a
broad outline by the second author in a letter to N. Kuhn and which is detalized
by P. Krason in his thesis.


Let us recall some notations of Section 3.
Let λ = (λ1, . . . , λt) be a partition of the integer n, and let µ = (µ1, . . . , µh)


be the conjugate partition. Note that t = µ1 and h = λ1. Suppose that
µ is a 2-regular partition of the integer n. Recall two partitions of the set
[n] = {1, . . . , n}.
The first, Cλ, consists of µ1 subsets Ci, 1 6 i 6 µ1,


Ci =


{
j=i−1∑
j=1


λj + 1, . . . ,


j=i−1∑
j=1


λj + λi


}
, thus #Ci = λi.


The second, Rλ, consists of λ1 subsets Ri, 1 6 i 6 λ1, and


Ri =


{
i, i + λ1, . . . , i +


∑


1,...,λi−1


λj


}
, thus # Ri = µi.


Now we describe the first standard λ-tableau [3] as follows:
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1 λ1+1 · · · · · · n


2 λ1+2 · · · · · ·
...


...
λ2 λ1+λ2


...
λ1


The subset Ci (resp. Ri) is the set of integers occurring in the i-th column
(resp. row) which is composed of λi (resp. µi) boxes.


Let us consider the Young subgroups stabilizing Cλ and Rλ. They are also
denoted by Cλ and Rλ by abuse of the notation and are respectively isomorphic
to


Sλ1 × · · · ×Sλh
and Sµ1 × · · · ×Sµt


which are elements of the standard base of Wλ(F (1)), [3, 9]. We denote as usual
by u2n


the elements of the standard base of F (1). Let t be a function defined on
the set [n] = {1, . . . , n} with values in N. Suppose that t is strictly increasing
(resp. increasing) on each subset of the partition Cλ (resp. Rλ).


Denote (by abuse) Cλ =
∑


σ∈Cλ
σ, and define an element wt ∈ Wλ(F (1)) by


wt = Cλ


∑


t′
⊗n


1u
2t′(i)


,


where the sum runs over all the functions t′ : [n] → N, which take the same set
of values as t on each subset occurring in the partition Rλ.


Theorem C.1 ([3]). The set of elements wt, where t : [n] → N represents
the subset of functions which are strictly increasing (resp. increasing) on each
subset appearing in the partition Cλ (resp. Rλ), is a base of Wλ(F (1)).


On these elements a binary relation is introduced, which, by abuse, is called
a lexicographic order; this abuse takes place since the relation is not antisym-
metric, but is “strict”. We say that wk < w` if:


• ∑
16i6n 2k(i) =


∑
16i6n 2`(i) and, ordering k(i) and `(j) by decreasing


order, say, α1 > α2 > . . . > αn, and β1 > β2 > . . . > βn, we have
α1 = β1, α2 = β2, . . . , αu = βu, et αu+1 > βu+1.


We now show that there exists an operation η such that η(wµ) = wt modulo
smaller elements of the standard base under the lexicographic order. This gives
the result. The operation η is defined by


η =


i=λ1∏
i=1


j=µi∏
j=1


P i−1
t(i+`j−1)−i+1


with, as above, `i = λ1 + . . . + λi.
By the definition of P s


t , we have the following relation, where ∆ is the diagonal
of A :


∆k(P s
t ) =


∑


b1+...+bk=t


⊗u Qt(bu) ,
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where Qt(bu) is the Milnor dual operation of ξbu
t . Hence, by applying P s


t to the
tensor ⊗16u6k u2au


we obtain


P s
t (⊗16u6k u2au


) =
∑


b1+...+bk=t


⊗u Qt(bu)(u
2au


) .


Except for the identity, only the dual operation of ξbu
t with bu = 2au acts


nontrivially on the class u2au
.


Thus the effect of the operation P i−1
t(i+`j−1)−i+1 on a tensor product of classes


u2`
can be written as follows :


• either as replacements, in the tensor, of the power u2i−1
by the power


u2t(i+`j−1)


summed over all u2i−1
;


• or as replacements of the subtensor equal to ⊗16u6k u2au
, with 2a1 +. . .+


2ak = 2i−1 and k > 1, by the subtensor


⊗16u6ku
2t(i+`j−1)−i+1+au


summed over all possible occurrences.


The terms obtained in the second case are (strictly) less – in the sense given
above – than those obtained in the first. They correspond to smaller elements
in the standard base.


Thus if we apply all operations P s
t appearing in the definition of η, then


according to the first rule we obviously obtain wt. All the remaining terms
decompose into (strictly) smaller elements of the base.


We note that this type of operations has also been considered by G. Walker
and R. Wood [14].
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Département de Mathématiques de Nantes
Laboratoire Jean Leray UMR 6629 du CNRS
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Université PARIS 13
93430 VILLETANEUSE
France
E-mail: schwartz@math.univ-paris13.fr






