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Abstract. The notion of Quillen factorization system is obtained by streng-
thening the left and right lifting properties in a Quillen model category to the
unique diagonalization property. An equivalent description of this notion is
given in terms of a double factorization system which decomposes each arrow
uniquely into three factors. The free category with Quillen factorization
system over a given category is described.
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Introduction

In a Quillen model category one has weak factorization systems (W ∩D,N ),
(D,W ∩ N ) such that the class W (of “weak equivalences”) is closed under
retracts and has the 2-out-of-3 property (see [1], [4], [5]). The two players in
each of the two systems are linked by the left and right lifting property. Contrary
to the situation with factorization systems as studied in Category Theory, the
“diagonals” provided by the lifting property generally fail (badly) to be unique.
Nevertheless, one may ask: are there examples of Quillen model categories with
unique “diagonals”, the structure of which we call Quillen factorization system?

In this paper we describe free such structures over a given category C: they
are carried by the category C3, with 3 = {· −→ · −→ ·}. The result is a natural
extension of the fact that C2 carries the free (unique-diagonalization) factoriza-
tion system over C (see [2], [3], [7]). It is proved best by first describing Quillen
factorization systems as double factorization systems, which decompose a given
arrow into three factors; in Quillen’s language: into a trivial cofibration followed
by a bifibration followed by a trivial fibration.

Although we reserve the (more tedious) functorial description of the results
presented in this paper for a later paper, from the presentation of factorization
systems as quotients of free systems (as given in [3], [7]) and of weak factor-
ization systems as lax quotients of the same free systems (as given in [6]) it is
clear that Quillen factorization systems emerge as quotients of the system in
C3 described here, and that the pairs of weak factorization systems in a Quillen
model category C are lax quotients of it. Hence, the model structure of C3

described here is by no means special but indeed universal.
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We review some facts and examples of ordinary factorization systems in Secti-
on 1, in so far as they are relevant for the double factorizations as introduced in
Section 2. Then, in Section 3, we show how they relate to Quillen factorization
systems, while in Section 4 we show the freeness over C of the natural system
of C3.

We thank Steven Lack for detecting an error in an earlier version of the proof
of Theorem 4.2. We are grateful also to the referee for various very helpful
suggestions.

1. Factorization Systems

1.1. An (orthogonal) factorization system (fs) in a category C is usually given
by a pair (E ,M) of classes of morphisms satisfying

(F1) Iso · E ⊆ E and M · Iso ⊆M,
(F2) Mor = M · E ,
(F3) E ⊥M.

Here Iso is the class of isomorphisms in C, Mor the class of all morphisms
in C, and M · E is the class of all composite arrows m · e of e ∈ E followed
by m ∈ M. Finally, E ⊥ M stands for e ⊥ m for all e ∈ E , m ∈ M, which
means that for all morphisms u, v with mu = ve there is a unique “diagonal”
morphism w with we = u and mw = v.

•
u

²²

e // •
w~~

~

ÄÄ~~
~ v

²²•
m

// •
(1)

1.2. Here is a list of well-known properties of the classes comprising a factor-
ization system:

(1) E ∩M = Iso.
(2) (E ,M)-decompositions of morphisms are unique (up to isomorphism).
(3) E = M⊥ := {e | ∀m ∈M : e ⊥ m}, M = E⊥ := {m | ∀e ∈ E : e ⊥ m}.
(4) E and M are closed under composition.
(5) M is weakly left-cancellable, that is: if nm ∈ M and n ∈ M, then

m ∈M, and E is weakly right-cancellable, that is: if ed ∈ E and d ∈ E ,
then e ∈ E .

(6) M is closed under limits, and E is closed under colimits.
(7) M is stable under pullback and intersection, and E is stable under

pushout and cointersection.

1.3. We also recall some well-known examples.
(1) (Iso, Mor) and (Mor, Iso) are factorization systems of every category C.
(2) Let P : D → C be a fibration, and denote by Ini the class of P -initial (= P -

cartesian) morphisms in D. Then, for every fs (E ,M) of C, (P−1E , Ini∩P−1M)
is an fs of D. Dually: if P is a cofibration and Fin the class of P -final (=P -
cocartesian) morphisms in D, then (Fin∩P−1E , P−1M) is an fs of D.
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(3) An application of (2) to the forgetful functor P : Top→ Set and the (Epi,
Mono) fs for sets yields the (Epi, RegMono) and (RegEpi, Mono)-factorization
systems for topological spaces, where of course RegMono is the class of regular
monomorphisms, etc.

(4) The objects of the functor category C2 with 2 = {· → ·} are the morphisms
of C, and a morphism [u, v] : f → g in C2 is given by the commutative square

•
f

²²

u // •
g

²²•
v

// •
(2)

in C; composition is horizontal. The codomain functor cod: C2 → C is a fibration
if and only if C has pullbacks, with the cod-cartesian morphisms given by the
pullback squares in C. An application of (2) and the (Iso, Mor) fs of C yields the
([Mor, Iso], Pull) fs of C2 (where, of course, [Mor, Iso] contains all morphisms
[u, v] of C2 with υ iso). Dually: the domain functor dom: C2 → C is a cofibration
if and only if C has pushouts, and with (2) the (Mor, Iso) fs of C gives the (Push,
[Iso, Mor]) fs of C2.

(5) While [Mor, Iso] is a first factor of a fs of C2 when C has pullbacks, it
is always a second factor: ([Iso, Mor], [Mor, Iso]) is a fs of C2, decomposing
diagram (2) as

•
f

²²

1 // •
vf=gu

²²

u // •
g

²²•
v

// •
1

// •
(3)

1.4. Example (5) of 1.3 gives in fact the free category with factorization system
over a given category C. Indeed, denoting by 4 : C → C2 the full embedding
(f : A → B) 7−→ ([f, f ] : 1A −→ 1B), for every category B with a given fs
(E ,M), composition with 4 is a category equivalence

(−)4 : (BC2

)E,M −→ BC.
Here the left-hand side denotes the full subcategory of BC2

of functors G : C2 →
B with G([Iso, Mor]) ⊆ E and G([Mor, Iso]) ⊆M.

In fact, any such functor G is, up to isomorphism, determined by F := G4 :
C → B: for every morphism f : A −→ B in C, G must map the decomposition

1A

[1A,f ]
// f

[f,1B ]
// 1B

of [f, f ] to the (E ,M)-decomposition of Ff in B, which fixes the object Gf
in B, up to isomorphism. To see that the value G[u, v] is determined by F ,
because of the decomposition (3) it suffices to see that this is true for G[1A, v]
and G[u, 1D]; but the decomposition

1A

[1A,f ]
// f

[1A,v]
// vf

[vf,1D]
// 1D
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(with υ : B → D) shows that G[1A, υ] is determined by the (E ,M)-diagonali-
zation property (F3) since G[1A, f ] ∈ E , G[υf, 1D] ∈M and the values of

G
(
[1A, υ][1A, f ]

)
= G[1A, υf ]

and

G
(
[υf, 1D][1A, υ]

)
= G[υ, υ] ·G[f, 1B]

have already been fixed. Likewise for G[u, 1D].
Hence, we have sketched the proof that (−)4 is surjective on objects. To see

that (−)4 is full and faithful, just observe that for any natural transformation
α : G → G′ (where G′ has the same properties as G), the value of αf is again
determined by the (E ,M)-diagonalization property and the values of α1A

, α1B
,

since the decomposition

[f, f ] = [f, 1B][1A, f ]

yields the commutative diagram

G1A

α1A

²²

G[1A,f ]
// Gf

αf

²²

G[f,1B ]
// G1B

α1B

²²
G1A

G′[1A,f ]
// G′f

G′[f,1B ]
// G′1B

(4)

2. Double Factorization Systems

2.1. Definition. A double factorization system (dfs) in C is given by a triple
(E ,J ,M) of classes of morphisms satisfying

(DF1) Iso · E ⊆ E , Iso · J · Iso ⊆ J and M · Iso ⊆M,
(DF2) Mor = M · J · E ,
(DF3) for any commutative diagram

•
u

²²

e // • j // •
v

²²•
j′

// •
m

// •
(5)

in C with e ∈ E , j, j′ ∈ J , m ∈ M there are uniquely determined
“diagonals” s and t with se = u, j′s = tj and ut = v.

From (DF3) we obviously obtain that decompositions of morphisms

f = mje (e ∈ E , j ∈ J , m ∈M)

as given by (DF2) are unique up to isomorphisms.

2.2. Examples. (1) For every fs (E ,M) of C, (E , Iso, M) is a dfs of C.
(2) For a bifibration P : D → C and any fs (E ,M) of C,

(
Fin ∩ P−1E , P−1Iso, Ini ∩ P−1M)
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is a dfs of D. In the case of the forgetful functor P : Top → Set and (E ,M) =
(Epi,Mono), this yields the dfs

(RegEpi, Epi ∩Mono, RegMono)

of Top.
(3) In generalization of the previous example, in any category with (RegEpi,

Mono)-and (Epi, RegMono)-factorizations, (RegEpi, Epi ∩ Mono, RegMono) is
a dfs.

(4) The objects of the functor category C3 with 3 = {· → · → ·} are the com-
posable pairs (f1, f2) of morphisms of C, and a morphism [u, v, w] : (f1, f2) →
(g1, g2) in C3 is given by a commutative diagram

•
f1

²²

u // •
g1

²²•
f2

²²

v // •
g2

²²• w // •

(6)

in C; composition is horizontal. Diagram (6) may be decomposed as

•
f1

²²

1 // •
f1

²²

1 // •
vf1

²²

u // •
g1

²²•
f2

²²

1
// •

wf2

²²

v
// •

g2

²²

1
// •

g2

²²•
w

// •
1

// •
1

// •

(7)

leading us to the dfs ([Iso, Iso, Mor], [Iso, Mor, Iso], [Mor, Iso, Iso]) of C3.

2.3. Proposition. For a dfs (E ,J ,M), Iso ⊆ E ∩J ∩M, and both (E ,M·J )
and (J · E ,M) are factorization systems.

Proof. For the first assertion, by (DF1) it suffices to show that each identity
morphism is in E ∩ J ∩ M. But with the decomposition 1 = mje we can
consider the commutative diagram

•
e

²²

e // •
emj

~~~

ÄÄ~~~

j // •
jem

~~~

ÄÄ~~~
m

²²•
j

// •
m

// •
(8)

which, with the uniqueness property of (DF3), shows emj = 1 and jem = 1.
Hence, mj, je, m and e are isomorphisms, and by (DF1) 1 = (mj)e ∈ E ,
1 = m(je) ∈M and 1 = mje ∈ J .
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(J · E ,M) obviously satisfies (F1),(F2). For (F3), consider the commutative
diagram

•
u

²²

je // •
v

²²•
m

// •
(9)

and, using Iso ⊆ J , redraw it as

•
u

²²

e // • j // •
v

²²• 1 // • m // •
(10)

in order to apply (DF3). ¤

2.4. Corollary. For a dfs (E ,J ,M), E ∩M · J = Iso = J · E ∩M, and E
and M satisfy properties (4)-(7) of Prop. 1.2.

We also see that any two of the three classes comprising a dfs determine the
third:

2.5. Corollary. For a dfs (E ,J ,M),

E = (M · J )⊥, J = E⊥ ∩M⊥, M = (J · E)⊥.

Proof. Only the second equality needs explanation: it follows from

J = M· J ∩ J · E ,

for which “⊆” is trivial (after Prop. 2.3). For “⊇”, consider f = je = mj′

with e ∈ E , j, j′ ∈ J , m ∈ M; then the uniqueness of the double factorization
f = 1je = mj′1 shows that e,m must be isomphisms and f ∈ J . ¤

The two fs induced by a dfs as in 2.3 are comparable, in the following sense.

2.6. Proposition. The following conditions on two fs (E ,N ) and (D,M) of
C are equivalent; if they hold we call the two fs comparable:

(i) E ⊆ D,
(ii) M⊆ N ,
(iii) E ⊥M,
(iv) D = (D ∩N ) · E ,
(v) N = M · (D ∩N ).

Proof. (i) ⇔ (ii) ⇔ (iii) is a consequence of the Galois correspondence given
by the orthogonality relation and the fact that the classes comprising an fs are
closed under this correspondence. Trivially (iv) ⇒ (i) since Iso ⊆ D ∩ N For
(i) ⇒ (iv), decompose d ∈ D as d = ne with n ∈ N , e ∈ E . Since E ⊆ D,
with 1.2(5) one concludes n ∈ D ∩ N . This shows the inclusion “⊆”, with the
converse being obvious. (v) ⇔ (ii) follows dually. ¤
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We can now prove a converse proposition to 2.3.

2.7. Theorem.
(1) For every dfs (E ,J ,M) of C, the pairs (E ,M · J ), (J · E ,M) are com-

parable fs of C.
(2) For every comparable pair (E ,N ), (D,M) of fs of C, (E ,D ∩N ,M) is a

dfs of C.
(3) The assignments of (1), (2) constitute a bijective correspondence between

all dfs of C and all comparable pairs of fs of C.

Proof. (1) follows from 2.3.
(2) (DF1) is trivial, and from 2.6 (iv) one has Mor =M·D = M· (D∩N ) · E .

For (DF3) consider the commutative diagram (5) with e ∈ E , j, j′ ∈ D ∩ N ,
m ∈M ⊆ N , and from E ⊥ N obtain a morphism r providing the commutative
diagram

•
u

²²

e // •
r

²²

j // •
v

²²• j′ // • m // •
(11)

Since j′ ∈ N and j ∈ D, both squares have unique “diagonals”, as needed.
(3) Since J = J · E ∩M·J , applying (1) and then (2) to a dfs gives us back

the same dfs. Starting with a comparable pair of fs, applying (2) and then (1)
leads us to the fs (E ,M · (D ∩ N )), ((D ∩ N ) · E ,M), which are the original
systems by 2.6 (iv),(v). ¤

3. The “Weak Equivalences” of a Double Factorization System

3.1. Definition. For a dfs (E ,J ,M), we also call the morphisms in

- D = J · E the cofibrations of the dfs,
- W = M · E the weak equivalences of the dfs,
- N = M · J the fibrations of the dfs.

Equivalently, in terms of its (essentially unique) (E ,J ,M)-decomposition f =
mje, a morphism f is

- a cofibration iff m is iso,
- a weak equivalence iff j is iso,
- a fibration iff e is iso.

In this terminology, it makes sense to refer to morphisms in E as to trivial
cofibrations, and to those in M as to trivial fibrations, as the following lemma
shows.

3.2. Lemma. For a dfs as in 3.1, E = W ∩D and M = W ∩N .

Proof. Trivially E ⊆ W ∩D. Conversely, for d = me ∈ D with e ∈ E , m ∈ M,
since E ⊆ D, m must be iso, hence d ∈ E . ¤
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In order for (D,W ,N ) to constitute a Quillen model structure, W needs to
satisfy two key properties: closure under retracts, and the 2-out-of-3 property.
The first of these comes for free:

3.3. Proposition. The class of weak equivalences of a dfs is closed under
retracts, that is: in any commutative diagram

•
f

²²

p // •
g

²²

r // •
f

²²• q // • s // •
(12)

with rp = 1 and sq = 1, g ∈ W implies f ∈ W .

Proof. In (12) assume g = me with e ∈ E , m ∈ M and factor f as f = m′je′

with e′ ∈ E , j ∈ J , m′ ∈ M. Now je′ ⊥ m gives a morphism b with bje′ = ep,
mb = qm′, and e ⊥ m′j gives a morphism c with ce = e′r, m′jc = sm. Then
we have

(jcb)(je′) = jcep = je′rp = je′, m′(jcb) = smb = sqm′ = m′,

(cbj)e′ = cep = e′rp = e′, (m′j)(cbj) = smbj = sqm′j = m′j,

so that jcb and cbj serve as “diagonals” in the commutative diagrams

•
je′

²²

je′ // •
m′

²²• m′
// •

•
e′

²²

e′ // •
m′j

²²• m′j // •
(13)

respectively. Consequently, jcb = 1 and cbj = 1, so that j must be an isomor-
phism and f ∈ W . ¤

3.4. Remarks. (1) Any class B of morphisms closed under retracts satisfies
the following two cancellation properties:

(a) if fr ∈ B with r split epi, then f ∈ B;
(b) if qf ∈ B with q split mono, then f ∈ B.

(2) For any class B, the classes B⊥ and B⊥ are closed under retracts. Indeed,
showing this property for B⊥, we consider the commutative diagram

•
f

²²

p // •
g

²²

r // •
f

²²

u // •
b

²²• q // • s // • v // •
(14)

with b ∈ B and apply g ⊥ b to obtain t with tg = ur, bt = vs. The morphism
tq shows f ⊥ b.

3.5. Corollary. For a dfs, each of the classes E, J , M, D, W, N is closed
under retracts and satisfies the concellation properties 3.4(1).

Proof. Apply 2.5, 3.4 and 3.3. ¤
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Recall that a class B has the 2-out-of-3 property if with any two of the three
morphisms f , g, h with h = gf also the third lives in B; that is: if B is weakly
left and right cancellable and closed under composition. For the latter property,
one easily sees:

3.6. Proposition. The class W of weak equivalences of a dfs (E ,J ,M) is
closed under composition if and only if E ·M ⊆M · E .

Proof. Since E , M ⊆ W = M · E , “only if” holds trivially. Conversely, for
composable morphisms w = me, w′ = m′e′, rewrite e′m as m′′e′′ to obtain
w′w = m′m′′e′′e ∈M · E where e, e′, e′′ ∈ E , and m,m′,m′′ ∈M. ¤
3.7. Proposition. For a dfs as in 3.1, consider the statements

(i) W is weakly left-cancellable;
(ii) if en ∈ E with e ∈ E , n ∈ N , then n ∈M;
(iii) if ej ∈ E with e ∈ E , j ∈ J , then j is an isomorphism.

Then (i) ⇒ (ii) ⇒ (iii), while all are equivalent when W is closed under com-
position.

Proof. (i) ⇒ (ii) If en ∈ E with e ∈ E , n ∈ N , since E ⊆ W one obtains n ∈ W
with (i), hence n = me′ with e′ ∈ E , m ∈ M ⊆ N . But then e′ must be iso,
and n ∈M follows.

(ii) ⇒ (iii) If ej ∈ E with e ∈ E , j ∈ J ⊆ N , then j ∈ M by (ii). Since
J ⊆ D, j ∈ D ∩M = Iso.

(iii) ⇒ (i) Assume wv = moeo ∈ W with w = me ∈ W and decompose v
as v = m′je′, with eo, e, e

′ ∈ E , j ∈ J , mo,m, m′ ∈ M. When W is closed
under composition, rewrite em′ as em′ = m′′e′′ with e′′ ∈ E , m′′ ∈M. We then
have moeo = mv = (mm′′)(e′′je′) with eo, e

′′je′ ∈ D and mo,mm′′ ∈ M. Since
the two (D,M)-decompositions are isomorphic, e′′je′ ∈ E follows. Weak right
cancellation of E then gives e′′j ∈ E which, by (iii), implies j iso. This shows
v ∈ W . ¤

Dualization of 3.7 gives:

3.8. Corollary. For a dfs as in 3.1 consider the statements:

(i) W is weakly right-cancellable;
(ii) if dm ∈M with d ∈ D, m ∈M, then d ∈ E ;
(iii) if jm ∈M with j ∈ J , m ∈M, then j is an isomorphism.

Then (i) ⇒ (ii) ⇒ (iii), while all are equivalent when W is closed under com-
position.

3.9. Definition. An (orthogonal) Quillen factorization system of a category C
is given by morphism classes D,W ,N such that

(QF1) (W ∩D,N ), (D,W ∩N ) are factorization systems,
(QF2) W has the 2-out-of-3 property.

3.10. Theorem. (1)For every dfs (E ,J ,M) satisfying the conditions

(a) E ·M ⊆M · E ,
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(b) j ∈ J is an isomorphism whenever there is e ∈ E with ej ∈ E or m ∈M
with jm ∈M,

the triple (J · E ,M· E ,M · J ) is a Quillen factorization system.
(2) For every Quillen factorization system (D,W ,N ), the triple (W∩D,N ∩

D, N ∩W) forms a dfs (E ,J ,M) satisfying properties (a), (b).
(3)The assignments of (1), (2) constitute a bijective correspondence between

all Quillen factorization systems of C and the dfs of C satisfying (a), (b).

Proof. (1) By 2.3 the dfs (E ,J ,M) gives the fs (E ,N ), (D,M) which by 3.2,
satisfy E = W∩D, M = W∩N , with D, W , N as in 3.1. Hence, (QF1) holds,
and (QF2) follows from 3.6, 3.7, 3.8.

(2) With the given Quillen factorization system, one has the comparable fs as
in (QF1) and therefore the dfs (E ,J ,M) = (W ∩D,D∩N ,W ∩N ) by 2.7(2).
To be able to derive properties (a), (b) from 3.6, 3.7, 3.8 we should know that,
when forming E·M we get back the original classW , i.e.,W = (W∩N )·(W∩D).
Indeed, “⊇” is trivial, and for w ∈ W decomposed as w = nd with n ∈M and
d ∈ D one has in fact n ∈ W iff d ∈ W .

(3) This is just a restriction of the bijective correspondence described in
2.7. ¤

3.11. Remarks.
(1) Just like for a dfs (see 2.5), also for a Quillen factorization system (D,W ,N ),
any two of the three morphism classes determine the third:

D = (W ∩N )⊥, W = D⊥ · N⊥, N = (W ∩D)⊥.

(2) As one easily sees with the proof of Thm. 3.10, there is a bijective corre-
spondence between all dfs on a category C and those triples (D,W ,N ) with
(QF1) for which

W = (W ∩N ) · (W ∩D).

3.12. Examples.
(1) For any fs (E ,M) of C, 2.2(1) and 3.10(1) give the trivial Quillen factoriza-
tion system (E , Mor, M) of C.
(2) The dfs (RegEpi, Epi ∩ Mono, RegMono) of 3.10(3) has as its weak equiv-
alences the class W = RegMono · RegEpi, which rarely has the 2-out-of-3
property, unless Epi ∩ Mono = Iso. More precisely:

1. If C has finite coproducts with the coproduct injections being regular
monomorphisms, then W is closed under composition if and only if Epi
∩ Mono = Iso; equivalently, if W = Mor;

2. If C has a terminal object 1, with all morphisms with codomain 1 being
regular epimorphisms, then W is weakly left-cancellable if and only if
Epi ∩ Mono =Iso, equivalently, if W = Mor;

3. If C has an initial object 0, with all morphisms with domain 0 being
regular monomorphisms, then W is weakly right-cancellable if and only
if Epi ∩ Mono = Iso; equivalently, if W = Mor.
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Statements 2 and 3 follow immediately from 3.7 and 3.8. For statement 1, one
considers the “cograph factorization” of a morphism j : A → B through A + B
to see that, under closure ofW under composition, by 3.6 there is a factorization
j = m · e with e regularly epic and m regularly monic, which renders all three
morphisms being isomorphisms.

Of course, the last argument in fact proves a general fact, as follows: for a dfs
(E ,J ,M) in a category C in which every arrow admits a decomposition into an
M-morphism followed by an E-morphism, the class W = M·E is closed under
composition if and only if J = Iso if and only if W = Mor.

(3) An application of 3.10 (2) to the dfs 2.2(4) gives that ([Iso,Mor,Mor],
[Mor,Iso,Mor], [Mor,Mor,Iso]) is a Quillen factorization system of C3. Its uni-
versal role is described in the next section.

4. Free Systems

4.1. For a category B with dfs (E ,J ,M) and any category C, we denote by

(BC3
)E,J ,M the full subcategory of BC3

of functors G : C3 → B with (*)

G
(
[Iso,Iso,Mor]

) ⊆ E , G
(
[Iso,Mor,Iso]

) ⊆ J , G
(
[Mor,Iso,Iso]

) ⊆M.

If (D,W ,M) is the Quillen factorization system associated with (E ,J ,M) via
3.10, then these conditions translate equivalently into (**)

G
(
[Iso,Mor,Mor]

) ⊆ D, G
(
[Mor,Iso,Mor]

) ⊆ W , G
(
[Mor,Mor,Iso]

) ⊆ W .

4.2. Theorem. For a category B with dfs (E ,J ,M) satisfying E ·M ⊆M· E
and any category C, precomposition with the diagonal embedding ∆ : C → C3

yields an equivalence of categories

(−)∆ : (BC3

)E,J ,M −→ BC.

Proof. Let us first show that (−)∆ is surjective on objects, by constructing
from F : C → B a functor G : C3 → B with G∆ = F and (*). For a morphism
f : A → B in C, such a functor G must map the decomposition

(1A, 1A)
[1A,1A,f ]

// (1A, f)
[1A,f,1B ]

// (f, 1B)
[f,1B ,1B ]

// (1B, 1B)

of ∆f to the (E ,J ,M)-decomposition of Ff in B, which (up to isomorphism)
fixes the objects G(1A, f), G(f, 1B) and the morphisms G[1A, 1A, f ], G[1A, f, 1B],
G[f, 1B, 1B]. In order to define G on arbitrary objects (f1, f2) in C3, consider
the decomposition

[f1, 1, f2] = [f1, 1, 1][1, 1, f2] = [1, 1, f2][f1, 1, 1],
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depicted by

•
f1

²²

1 // •
f1

²²

f1 // •
1

²²

•
f1

²²

f1 // •
1

²²

1 // •
1

²²•
1

²²

1 // •
f2

²²

1 // •
f2

²²

= •
1

²²

1 // •
1

²²

1 // •
f2

²²•
f2

// •
1

// • •
1

// •
f2

// •

(15)

Since the values of the RHS under G have already been fixed, and since the
LHS represents the double factorization of the morphism [f1, 1, f2] (with trivial
middle factor), in view of our hypothesis E · M ⊆ M · E , the object G(f1, f2)
must be the middle object occurring in the (E ,M)-factorization of the morphism
G[1, 1, f2]G[f1, 1, 1] in B. Next we must define G on morphisms, and it suffices
to do so for each of the three players in the decomposition (7) of [u, v, w] :
(f1, f2) → (g1, g2). We outline the procedure only for the first of the three, i.e.
for the morphism

[1, 1, w] : (f1, f2) −→ (f1, wf2).

This morphism is the unique diagonal in the square

(f1, 1)

[1,1,wf2]

²²

[1,1,f2]
// (f1, f2)

[wf2f1,wf2,w]

²²
(f1, wf2)

[wf2f1,wf2,1]
// (1, 1)

(16)

whose top arrow must be mapped by G into E and whose bottom arrow must
be mapped into N = M · J . Hence, the (E ,N )-diagonalization propery fixes
the value of G[1, 1, w], provided that we make sure that the G-images of the
four sides of the square (16) are already fixed. This is certainly true for the top
and the left arrow, via (15). The bottom arrow is decomposed as

(f1, wf2)
[f1,1,1]

// (1, wf2)
[1,wf2,1]

// (wf2, 1)
[wf2,1,1]

// (1, 1) ,

and the right arrow as

(f1, f2)
[f1,1,1]

// (1, f2)
[1,f2,1]

// (f2, 1)
[f2,1,1]

// (1, 1)
[w,w,w]

// (1, 1)

where the G-values of each of the occuring factors are indeed already deter-
mined.

It is clear that G thus defined preserves identity morphisms. Showing that it
preserves composition of arrows is a lot more tedious. The following diagram
shows how the decomposition (7) of a composite arrow

(f1, f2)
[u,v,w]

// (g1, g2)
[u′,v′,w′]

// (h1, h2)
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relates to the decompositions of its two factors:

(f1, f2)
[1,1,w]

//

[1,1,w′w] &&MMMMMMMMMM
(f1, wf2)

[1,1,w′]
²²

[1,v,1]
// (vf1, g2)

[1,1,w′]
²²

[u,1,1]
// (g1, g2)

[1,1,w′]
²²

(f1, w
′wf2)

[1,v,1]
//

[1,v′v,1] ''OOOOOOOOOOO
(vf1, w

′g2)

[1,v′,1]
²²

[u,1,1]
// (g1, w

′g2)

[1,v′,1]
²²

(v′vf1, h2)
[u,1,1]

//

[u′u,1,1] &&NNNNNNNNNNN
(v′g1, h2)

[u′,1,1]
²²

(h1, h2)

(17)

One must now show that the G-image of this diagram commutes in B. We
show this for the upper left-hand triangle of (17) and consider the commutative
diagram (18), the outer square of which determines the G-value of [1, 1, w′w]

(f1, 1)

[1,1,w′wf2]

²²

[1,1,wf2]

''NNNNNNNNNNN

[1,1,f2]
// (f1, f2)

[w′wf2f1,w′wf2,w′w]

²²

(f1, wf2)

[w′wf2f1,w′wf2,w′] %%LLLLLLLLLL

(f1, w
′wf2)

[w′wf2f1,w′wf2,1]
// (1, 1)

(18)

The upper triangle determines the value of G[1, 1, w] by the diagonalization
property, while the lower triangle determines the value of G[1, 1, w′], giving two
inscribed diagonal arrows whose composite must be the top-right-to-bottom-left
diagonal arrow of the G-image of the outer square, i.e., G[1, 1, w′w].

Let us now turn to the proof that (−)4 is full and faithful. For that it suffices
to show that a natural transformation α : G → G′ (with G′ satisfying the same
conditions (*) as G) is completely determined by α4, i.e. by its values α(1,1).
But the commutative diagram

G(1A, 1A)

α(1A,1A)

²²

G[1,1,f ]
// G(1A, f)

α(1A,f)

²²

G[1,f,1]
// G(f, 1B)

α(f,1B)

²²

G[f,1,1]
// G(1B, 1B)

α(1B,1B)

²²
G′(1A, 1A)

G′[1,1,f ]
// G′(1A, f)

G′[1,f,1]
// G′(f, 1B)

G′[f,1,1]
// G′(1B, 1B)

(19)

shows that the values of α(1A,f), α(f,1B) are determined by the double diagonal-
ization property, and the left part of (15) shows that these determine the value
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of α(f1,f2), via the (E ,M)-diagonalization property:

G(f, 1)

α(f1,1)

²²

G[1,1,f2]
// G(f1, f2)

α(f1,f2)

²²

G[f1,1,1]
// G(1, f2)

α(1,f2)

²²
G′(f1, 1)

G′[1,1,f2]
// G′(f1, f2)

G′[f1,1,1]
// G′(f1, f2)

(20)

We can leave off the routine check that α(f1,f2) thus defined is really a natural
transformation. ¤
4.3. Corollary. For a category C and a category B with Quillen factorization
system, any functor F : C → B admits an extension G : C3 → B along the
embedding 4 : C → C3 which maps fibrations to fibrations, cofibrations to cofi-
brations and weak equivalences to weak equivalences. The extension is uniquely
determined, up to isomorphism.
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