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CHAIN THEORIES AND SIMPLICIAL ABELIAN GROUP
SPECTRA

FRIEDRICH W. BAUER

Abstract. Two different definitions of a chain theory K∗ lead to the same
class of derived homology theories h∗( ). On the category of CW pairs, these
are those homology theories E∗ admitting a classifying simplicial abelian
group spectrum E. So one has a functor from the category of chain theories
into the category of simplicial abelian group spectra.
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0. Introduction

The subject of the present paper are chain theories (Definitions 1.1 and 1.2)
and their derived homology theories. Although these definitions are not equiv-
alent, it turns out that they are associated with the same class of homology
theories. If the underlying category K2 is the category of CW pairs, these ho-
mology theories are precisely direct sums of ordinary homology theories with
coefficients in an abelian group (cf. 6.3). This is the classical result of R. O.
Burdick, P. E. Conner and E. E. Floyd [4]. Here it appears as a corollary of the
existence of a simplicial abelian group spectrum E = EK∗ such that the derived
homology H∗(K∗( )) of K∗ is isomorphic (as a homology theory) to the homol-
ogy theory E∗( ) (Theorem 6.2). In Section 1 we display the two kinds of chain
theories together with a proof that they determine the same class of homology
theories (as their derived homology). Since a chain theory of the second kind is
a special case of a chain functor (cf. Proposition 2.1, Theorem 2.2 and [1], [2]
concerning further information about chain functors), we felt obliged to include
a definition of a chain functor in Section 2.

Sections 3–6 are devoted to a proof of the main Theorem 6.2 based on con-
siderations about special chain functors (namely chain theories of the second
kind). This proof is technically much simpler than the corresponding proof of
a classifying spectrum (which is not any more an abelian group spectrum!) for
an arbitrary chain functor (cf. [3]).

As we have already pointed out, we obtain the main result of [4] as a byprod-
uct.
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1. Chain Theories

Let K2 be any category of pairs of topological spaces like the category of
(based or unbased) CW pairs or any simplicial analogue. We agree to omit
almost everywhere basepoints (whenever they occur) from our notation.

1.1. Definition. A functor A∗ : K2 −→ ch (= category of chain complexes)
is a chain theory of the first kind, whenever to each (X, U) ∈ K2 there exists
canonically a short exact sequence

0 −→ A∗(U)
i#−→ A∗(X)

j#−→ A∗(X, U) −→ 0. (1)

A chain theory of the first kind determines a homology theory

h∗(·) = {hn, ∂, n ∈ Z} = H∗(A∗(·))
by setting

h∗(X, U) = H∗(A∗(X, U)) (2)

(the derived homology of A∗) and a boundary operator

∂ : hn(X, U) −→ hn−1(U) (3)

which is defined as follows: Suppose c ∈ Zn(A∗(X,U)), then there exists c̄ ∈
A∗(X) such that j#(c̄) = c. We define

∂[c] = [i−1
# dc̄]. (4)

As a first consequence of (1) we notice h∗(X, X) = 0.

1.2. Definition. A functor B∗ : K2 −→ ch is a chain theory of the second
kind, whenever

B1) to each (X, U) ∈ K2 there are inclusions

B∗(U)
i#−→
⊂

B∗(X)
j#−→
⊂

B∗(X, U) (5)

such that for any cycle z ∈ B∗(X, U) there exist z′ ∈ B∗(X) as well as ū ∈
B∗(U,U) such that

z ∼ j#z′ + q#ū, q : (U,U) ⊂ (X, U), dz′ ∈ im i#.

Observe that the homology class of j#z′+ q#ū does not depend on the choice
of ū.

B2) j#z′+ q#ū = dx in B∗(X, U) =⇒ ∃u ∈ B∗(U): du = i−1
# dz′ in B∗−1(U).

B3) z ∈ Zn(B∗(X)), j#(z) ∼ 0 in B∗(X, U) =⇒ ∃x ∈ B∗(X), u ∈ B∗(U),
such that dx = z + i#u.

B4) B∗(X,X) is acyclic; all inclusions k : (X, U) ⊂ (Y, V ) induce monomor-
phisms.

A morphism λ : K∗ −→ L∗ between chain theories of the first or the second
kind is simply a natural transformation of functors.

Again we obtain a homology theory h∗ = {hn, ∂̃, n ∈ Z} with homology
groups

hn(X, U) = Hn(B∗(X, U))
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and the boundary operator

∂̃ : hn(X, U) −→ hn−1(U)

which is defined as follows: Let z ∈ B∗(X, U) be a cycle, then z ∼ z′ + ū
(inclusions omitted from the notation). We deduce dz′ = −dū, hence dz′ ∈
im i# and we set

∂̃[z] = [i−1
# dz′]. (6)

1.3. Lemma. 1) ∂[z] resp. ∂̃[z] do not depend on the choices involved and are
natural homomorphisms.

2) The homology sequence of a pair (X,U) ∈ K2 is exact.

Proof. Ad 1): We treat only ∂̃, the case of ∂ is standard. z′1 + ū1 ∼ z′2 + ū2 =⇒
z′1−z′2+(ū1−ū2) = dx

B2)
=⇒ dz′1−dz′2 = du, u ∈ B∗(U) =⇒ [i−1

# dz′1] = [i−1
# dz′2].

Ad 2): The exactness of the homology sequences is immediate. ¤

Every chain theory B∗ of the second kind determines a chain theory of the
first kind and vice-versa:

Let B∗ be a chain theory of the second kind, then we define B̂∗ by

B̂∗(X) = B∗(X), B̂∗(X, U) = B∗(X)/B∗(U)

noticing that

0 −→ B̂∗(U) −→ B̂∗(X) −→ B̂∗(X, U) −→ 0

is exact.
Suppose that A∗ is a chain theory of the first kind, then we define Ã∗ by

Ã∗(X) = A∗(X), Ã∗(X,U) = A∗(X)⊕i cone A∗(U).

We have inclusions

Ã∗(U) ⊂ Ã∗(X) ⊂ Ã∗(X, U).

Ad B1): A cycle z ∈ Ã∗(X,U) is of the form z = z′ + ũ, ũ ∈ cone A∗(U).
Since Ã∗(U,U) = cone A∗(U), B1) is satisfied.

Ad B2): Suppose z′ + ũ = d(x + ṽ), ũ, ṽ ∈ cone A∗(U), x ∈ A∗(X), then
z′ − dx = dṽ − ũ = u ∈ A∗(U), hence

i−1
# dz′ = du,

ensuring that B2) holds.
Ad B3): Let z ∈ Ã∗(X) be a cycle, j#z = d(x + ṽ), x ∈ A∗(X), ṽ ∈

cone A∗(U), then dṽ ∈ im i#, hence dṽ = i#u, u ∈ A∗(U), so that j#z =
dx + i#u, implying B3).

Ad B4): Ã∗(X, X) = cone A∗(U) is acyclic.

Suppose A∗ is a chain theory of the first kind, then we have

ˆ̃A∗(X, U) = Ã∗(X)/Ã∗(U) = A∗(X)/A∗(U) = A∗(X,U),
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hence
ˆ̃A∗ = A∗.

If B∗ is a chain theory of the second kind, then we have

˜̂
B∗(X) = B∗(X),

but
˜̂
B∗(X,U) = B∗(X)⊕i cone B∗(U),

which does not agree with B∗(X, U), however

1.4. Lemma. There exists a natural homomorphism

β : B∗(X)⊕i cone B∗(U) −→ B∗(X, U)

inducing a natural isomorphism of homology groups.

Proof. We set β | B∗(X) = j# and notice that

B∗(U)
q#−→ B∗(U,U) ⊂ B∗(X, U)

factors over B∗(U) ⊂ cone B∗(U), furnishing a β. Let z = z′ + ū be a cycle in
B∗(X,U), z′ ∈ B∗(X), ū ∈ B∗(U,U), then we find a ũ ∈ cone B∗(U) such that
−dz′ = dũ = dū ∈ B∗(U). It turns out that β(z′ + ũ) ∼ z. Hence β∗ is epic.

Let β(z′ + ũ) = z′ + ū, ū ∈ B∗(U,U), ũ ∈ cone B∗(U) be bounding in
B∗(X,U). According to B2) we detect v ∈ B∗(U) such that dz′ = dv, hence
z′ − i#v is a cycle. We deduce that (z′ − v) + (v + ū) = dx̄, x̄ ∈ B∗(X, U),
hence, because v+ū is a bounding cycle in B∗(U,U), j#(z′−v) ∼ 0 in B∗(X, U).
According to B3) we deduce z′ − v = dx + w, x ∈ B∗(X), w ∈ B∗(U), hence

z′ + ũ = dx + w + v + ũ = dx + dw̃, w̃ ∈ cone B∗(U),

(observing that w + v + ũ is a cycle in cone B∗(U), hence bounding) implying
that z′ + ũ ∼ 0 in B∗(X)⊕i cone B∗(U). Therefore β∗ is monic. ¤

Now we compare the homology of A∗ and Ã∗ resp. the homology of B∗ and
B̂∗:

1.5. Proposition. 1) Let A∗ be a chain theory of the first kind, then there
exists a natural transformation of functors α : Ã∗ −→ A∗ inducing an isomor-
phism α∗ of homology theories.

2) Let B∗ be a chain theory of the second kind, then there exist natural trans-
formations

B̂∗
α←− ˜̂

B∗,
β−→ B∗

inducing isomorphisms of homology theories.

Proof. Ad 1): We set α : Ã∗(X)
=−→ A∗(X) to be the identity and

α : Ã∗(X, U)=A∗(X)⊕i cone A∗(U) −→ (A∗(X)⊕i cone A∗(U))/cone A∗(U) ≈
≈ A∗(X)/A∗(U) = A∗(X, U)

the projection, which is easily seen to become an isomorphism on the homology
level.
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Let [z] = [z′ + ũ] ∈ Hn(Ã∗(X,U)) be given, then

α∗∂[z] = α∗[i−1
# dz′] = [i−1

# dz′] = ∂α∗[z],

hence α∗ commutes with boundaries.

Ad 2): There exists a transformation of functors β :
˜̂
B∗(X) → B̂∗(X) and

β as in Lemma 1.4, for pairs (X, U), assuring us that β∗ is an isomorphism of
homology groups.

Let [z] = [z′ + ũ] ∈ Hn(
˜̂
B∗(X, U)) be given, then we calculate

β∗∂[z′ + ũ] = [i−1
# dz′] = ∂[j#z′] = ∂β∗[z′ + ũ],

ensuring that β∗ is an isomorphism of homology theories. ¤
Remarks. 1) Proposition 1.5 asserts that chain theories of the first and of the

second kind reach precisely the same kind of homology theories.
2) Definition 1.1 describes the classical chain theory, while Definition 1.2

describes a special case of a chain functor, a concept we will briefly record in
the next section.

2. Chain Functors and Associated Homology Theories

In contrast to the preceding section we start with a homology theory h∗( ) =
{hn, ∂n, n ∈ Z} and ask if there exists a chain theory of the first kind K∗ and
an isomorphism of homology theories

h∗( ) ≈ H∗(K∗( ))

We assume that all homology and all chain theories have compact carriers.
Alternatively we can of course work with the category of finite CW pairs.

Due to a result of R. O. Burdick, P. E. Conner and E. E. Floyd ([4] or [2] for
a further reference) this implies, for K2 = category of CW pairs, that h∗( ) is a
sum of ordinary homology theories i.e., of those satisfying a dimension axiom
although not necessarily in dimension 0.

The non-existence of such a chain theory of the first kind (implying the non-
existence of a chain theory of the second kind with the correct homology and
boundary operator) gives rise to the theory of chain functors, cf. [2] for further
references.

A chain functor C∗ = {C∗, C ′
∗, l, i′, κ, ϕ} is

CH1) a pair of functors C∗, C ′
∗ : K −→ ch, natural inclusions i′ : C∗(A) ⊂

C ′
∗(X, A), l : C ′

∗(X,A) ⊂ C∗(X,A) non-natural chain mappings

ϕ : C ′
∗(X, A) −→ C∗(X),

κ : C∗(X) −→ C ′
∗(X,A),

chain homotopies ϕκ ' 1, j# ϕ ' l (j : X ⊂ (X,A)), as well as an identity

κ i# = i′, i : A ⊂ X.

CH2) All inclusions k : (X, A) ⊂ (Y, B) are supposed to induce monomor-
phisms. All C∗(X, X) are acyclic.
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We denote by C∗(X) the chain group C∗(X, X) which according to CH2) can
be assumed to contain all C∗(X, U) for all pairs (X, U).

Needless to say, that C ′
∗, as well as φ, κ are not determined by the functor

C∗(· · · , · · · ) but are additional ingredients of the structure of a chain functor.
Instead of the exact sequence (1) in §1, for chain theories (of the first kind)

we are now, in the case of a chain functor, dealing with the sequence

0 −→ C∗(A)
i′−→ C ′

∗(X,A)
p−→ C ′

∗(X, A)/im i′ −→ 0 (1)

and there exists a homomorphism

ψ : H∗(C ′
∗(X, A)/im i′) −→ H∗(C∗(X,A)) (2)

[z′] 7−→ [l(z′) + q#(ā)]

where z′ ∈ C ′
∗(X, A), dz′ ∈ im i′, q : (A,A) ⊂ (X, A), ā ∈ C∗(A,A), dā =

−dz′.
CH3) It is assumed that ψ is epic.
Since C∗(A,A) is acyclic, dz′ ∈ im i′, such that ā exists and [l(z′) + q#(ā)] is

independent of the choice of ā.
This assumption implies that each cycle z ∈ C∗(X,A) is homologous to a

cycle of the form l(z′) + q#(ā), with z′ being a relative cycle, the analogue of
a classical relative cycle z ∈ C∗(X) with dz ∈ im i#, whenever (1) holds, i.e.,
whenever we are dealing with a chain theory of the first kind.

CH4) We assume

ker ψ ⊂ ker ∂̄, (3)

∂̄ : Hn(C ′
∗(X, A)/im i′) −→ Hn−1(C∗(A)) being the boundary induced by the

exact sequence (2). Moreover

ker j∗ ⊂ ker p∗ κ∗, (4)

with, e.g., κ∗ denoting the mapping induced by κ for the homology groups.
CH5) Homotopies H : (X,A) × I −→ (Y,B) induce chain homotopies

D(H) : C∗(X, A) −→ C∗+1(Y, B), natural and compatible with i′ and l.
These are almost all ingredients of a chain functor we need. The derived (or

associated) homology of a chain functor

h∗(X,A) = H∗(C∗(X, A))

resp. for the induced mappings, is endowed with a boundary operator
∂ : Hn(C∗(X, A)) −→ Hn−1(C∗(A)) determined by ∂̄:

We seek for ζ ∈ Hn(C∗(X, A)) a representative l(z′) + q#(ā) and set

∂ ζ = ∂̄[z′] = [i′−1 d z′].

This turns out to be independent of the choices involved.
This h∗( ) satisfies all properties of a homology theory eventually with excep-

tion for an excision axiom. Therefore it is convenient to add:
CH6) Let p : (X, A) −→ (X ′, A′) be an excision map (of some kind, e.g.

p : (X,A) −→ (X/A, ?)), then p∗ = H∗(C∗(p)) is required to be an isomorphism.
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This H∗(C∗( )) = h∗( ) turns out to be a homology theory. Moreover, under
very general conditions on K2, every homology theory h∗( ) is isomorphic to the
derived homology of some chain functor (cf. [2]).

Let λ : C∗ −→ L∗, λ′ : C ′
∗ −→ L′∗ be natural transformations, where

C∗, L∗ are chain functors, compatible with i′, l and the natural homotopies of
CH5), then we call λ : C� −→ L� a transformation of chain functors. Such a
transformation induces obviously a transformation λ∗ : H∗(C�) −→ H∗(L�) of
the derived homology. This furnishes a category Ch of chain functors. A weak
equivalence in Ch is λ : C� −→ L� which has the homotopy inverse.

For our present purposes we do not have to require that
CH7) all chain complexes C∗(X,A) be free.
However this is not a very severe restriction as it can be accomplished if it is

not automatically fulfilled. This condition is usually part of the definition of a
chain functor.

Our main example of a chain functor C∗ in this article is a chain theory of
the second kind which has a compact carrier and satisfy CH5–CH7.

We define C ′
∗(X, U) = C∗(X) and take for ϕ : C ′

∗(X,U) −→ C∗(X), κ :
C∗(X) −→ C ′

∗(X, U) the identity. The inclusion l : C ′
∗(X,U) ⊂ C∗(X, U) is

simply j#, j : X ⊂ (X, U) and i′ : C∗(U) ⊂ C ′
∗(X, U) equals i#, i : U ⊂ X.

We have trivially

j#ϕ = l, ϕκ = 1.

We have the following correspondences between the definition of a chain the-
ory of the second kind and that of a chain functor:

B2), B3) ←→ CH4
B1) ←→ CH3
B4) ←→ CH2
Summarizing we obtain

2.1. Proposition. A chain theory C∗ of the second kind, satisfying CH5–
CH7 with compact carriers, determines a chain functor C∗ = {C∗, C ′

∗, ϕ, κ, i′, l}
with C ′

∗(X,U) = C∗(X), κ = ϕ = identity, l = j#, i′ = i#.
This correspondence is functorial, embedding the category of chain functors

of the second kind as a full subcategory into the category Ch of chain functors.

Combining this with [2] Theorem 3.3, we obtain the following assertion:

2.2. Theorem. Let h∗( ) = {hn( ), ∂n, n ∈ Z} be a homology theory defined
on a category of pairs of topological spaces K2; then the following properties of
h∗ are equivalent:

1) h∗ is the derived homology theory of a chain theory of the first kind.
2) h∗ is the derived homology theory of a chain theory of the second kind.
3) h∗ is the derived homology theory of a chain functor C∗, with natural ϕ, κ

and chain homotopies ϕκ ' 1, j#ϕ ' l.

Proof. The equivalence of 1) and 2) is the subject of Proposition 1.5, while the
equivalence of 1) and 3) follows from [2] Theorem 3.3. ¤



614 FRIEDRICH W. BAUER

3. Simplicial Chains

In what follows we take for K2 the category of based CW pairs. The objective
of the present and the following sections is to associate with any chain theory
of the second kind C∗ canonically an abelian group spectrum E = EC∗ such
that the derived homology of C∗ is isomorphic to E∗( ). For this purpose we
assume that C∗ satisfies CH5, CH6 and that C∗ has a compact carrier.

We start with some elementary properties of C∗:

3.1. Lemma. 1) Let h∗( ) = H∗(C∗)( ) be the derived homology of C∗, then
there exists a natural isomorphism

Σ∗ : h∗( ) ≈ h∗+1(Σ ). (1)

2) Let CX = X×I/{x0}×I∪X×{1} be the (reduced) cone over a space X with
top vertex ? = {{x0}× I ∪X×{1}}, then there exists a natural homomorphism

τ = τ? : C∗(X) −→ C∗+1(CX).

Proof. Follows from the excision resp. the homotopy axiom. ¤

Take two different cones C+X, C−X with top vertices ?+, ?−, and identifying
C−X ∩ C+X = X, then

ΣX = C+X ∪ C−X

is the reduced suspension with common basepoint of C+Xand C−X and

Σ# = τ?+ − τ?− : C∗(X) −→ C∗+1(ΣX)

the suspension inducing (1).

For each c ∈ Cn(X) we find a finite subcomplex X ′ =
N⋃
1

4qj , and a c′ ∈
Cn(X ′), i : X ′ ⊂ X, such that i#c′ = c. We assume that 4qj are cells in
some cell structure of X, of maximal dimension, i.e., that X ′ does not contain
4p ⊃ 4qj p > qj.

This is an immediate consequence of the requirement of compact carriers.
Let c ∈ Cn(4q), now 4q denoting a standard q-simplex, be a chain satis-

fying dc ∈ Cn−1(bd 4q) (inclusions omitted from the notation). We have the
subsimplexes ∂i4q ⊂ bd4q ⊂ 4q. Suppose

dc ∼
q∑

i=0

(−1)i∂ic in Cn−1(bd 4q)

with ∂ic ∈ Cn−1(∂i4q) and observe that in this case ∂ic are prescribed and not
determined by c.

3.2. Definition. 1) A chain c ∈ Cn(4q),4q a standard q-simplex, is a s1-chain
whenever all ∂ik · · · ∂i1c, 1 ≤ k ≤ q are given.
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2) A chain c ∈ Cn(X) is an s-chain (=simplicial chain) whenever
m∑
1

σq
i#ci,

ci ∈ Cn(4qi) an s1-chain σqi

i : 4qi −→ X a singular simplex.

We need

3.3. Proposition. Let z ∈ Cn(X) be a cycle, then there exists a simplicial
cycle z ∼ z.

This assertion follows from

3.4. Proposition. Let c ∈ Cn(X) be any chain such that dc is simplicial,

having a carrier X̂ ⊂ X ′ not containing maximal dimensional simplexes of X ′.
Then there exists a simplicial c ∈ Cn(X), dc = dc, c− c ∼ 0 in Cn(X).

Proof. The proof is divided into a ”horizontal” and a ”vertical” part. In the
first (horizontal) part, we replace c up to homology by a chain

∑
σ

qj

# cj, where
each cj ∈ Cn(4qj) is concentrated in a single simplex. In the second (vertical)
part, each c = σ

qj

# cj is adapted so that the resulting chain becomes a s1-chain
(i.e., all ∂ik · · · ∂i1c are specified).

1) Let c ∈ Cn(X ′) be a chain with dc ∈ Cn−1(X̂). Suppose that 4q is

any cell of maximal dimension of X ′ =
N⋃
1

4qj , assuming that all 4qi are of

maximal dimension (i.e., there does not exist a cell of higher dimensions in X ′,
containing a given summand). We consider the subcomplex Y consisting of

the closure of Y ′ = bd 4q \(bd 4q ∩X̂) and X ′′ =
⋃

bd 4qi , 4qi being a
maximal dimensional cell of X ′. We observe that (X ′ ⊂ X ′/Y )#c ∼ b1 + b̄1

with b1 ∈ Cn(4q/Y ), b̄1 a chain with carrier (X ′ \ 4q)/Y . We obtain by

excision b ∈ Cn(4q, bd 4q), b̄ ∈ Cn(X ′ \ 4q) and can assume without loss
of generality that db − c = −db̄ and (according to B1) in Definition 1.2) that

b ∈ Cn(4q), implying that b + b̄ − c ∈ Cn(X ′, X̂ ∩ Y ), hence ((X ′, X̂ ∩ Y ) ⊂
(X ′, X̂ ∪ Y ))#(b + b̄ − c) ∼ 0. We deduce from the exactness of the homology

sequence of the triple (X ′, X̂ ∪ Y, X̂ ∩ Y ) the existence of z̄′ ∈ Cn(X̂ ∪ Y )

with dz̄′ ∈ Cn−1(Y ∩ X̂) such that b + b̄ ∼ c − z̄′ in Cn(X ′, Y ∩ X̂). This
gives rise to an inductive process on the number N of maximal dimensional
cells in X ′. At the end of this process we reach z′ ∈ Cn(X ′′, Ȳ ∩ X̂), Ȳ =⋃

bd 4qi \(bd 4qi ∩X̂), ci ∈ Cn(4qi), dci ∈ Cn−1(bd 4qi), dz′ ∈ Cn−1(Ȳ ∩X̂),
such that

N∑
1

ci − c− z′ ∼ 0 in Cn(X ′, Ȳ ∩ X̂).

Now we treat z′ as before c, obtaining z′′, . . . and finally ĉ =
N∑
1

σ
qj

j#cj such that

ĉ− c ∼ 0, cj ∈ Cn(4qj), (2)
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ĉ ∈ Cn(X ′) and dc = dĉ, with cells 4qj which are not necessarily any more of
maximal dimension.

2) Let c̄ = cj be any of those summands, 4qj = 4q. Because of our assump-
tion on the carrier of the boundary of the original chain c in our Assertion 3.4,
we conclude that dc̄ ∈ Cn−1(bd 4q). Applying the preceding process 1) to dc̄
yields elements ci ∈ Cn−1(∂i4q) as well as a homology

dc̄ ∼
q∑
0

(−1)ici, (3)

i.e., a chain w ∈ Cn(bd 4q) satisfying

dw = dc̄−
q∑
0

(−1)ici.

Now we proceed further with each ci in (3) separately, to the effect that we
get a s1-chain cj with

∑
σ

qj

j#cj − c ∼ 0.

As a result,
∑

σ
qj

j#cj is simplicial and displays the required properties.
This completes the proof of 3.4. ¤

4. The Simplicial Abelian Group Spectrum E

We consider the infinite dimensional simplex 4∞ = (a0, a1, . . . , ?) with fi-
nal vertex ?. A q-simplex in 4∞ is either of the form 4q = (ai0 , . . . , aiq)
or (ai0 , . . . aiq−1 , ?) = τ?(ai0 , . . . aiq−1), i0 ≤ · · · ≤ iq. We define ∂j4q =
(ai0 , . . . , âij , . . . , aiq) resp. for ∂jτ?4q and correspondingly sj4q =
(ai0 , . . . , aij , aij , . . . , aiq).

4.1. Definition. A p-simplex ep ∈ Ep, p ∈ Z, is an assignment, associating to
each such 4q in 4∞ a chain ep(4q) ∈ Cp+q(4q) such that:

E1) Cp+q−1(bd 4q) 3 dep(4q) ∼ ∑
(−1)iep(∂i4q), if ep(4q) 6= 0.

E2) ep(τ?4q) = τ?e
p(4q) ∈ Cp+q+1(τ?4q).

E3) There exists q such that ep(4m) = 0 for all 4m ⊃ 4q̄ = (a0, . . . , aq̄).

We define ∂je
p (sje

p) in the following way: by assumption we have for
ep(4q) 6= 0

dep(4q) ∼
∑

(−1)iep(∂i4q) ∈ Cp+q−1(bd 4q), ep(∂i4q) ∈ Cp+q−1(∂i4q),

∂i : ∂i4q ⊂ 4q and set

(∂i ep)(4q) =

{
∂i#ep(∂i4q) ∈ Cp+q−1(4q) i ≤ q, ep(4q) 6= 0

0 in all other cases
, (1)

(sj ep)(4q) = sj#(4q)(ep(sj4q)) ∈ Cp+q+1(4q), sj : sj4q −→ 4q.

This furnishes a simplicial spectrum in the sense of [7] Definition 2.1. In par-
ticular ∂ie

p 6= 0 only for finitely many i ≥ 0.
In order to specify E for different chain theories C∗ we write sometimes

EC∗ . This construction is functorial: If λ : K∗ −→ L∗ is a transformation of
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chain theories (cf. §1), then there exists canonically an induced transformation
Eλ : EK∗ −→ EL∗ in the category of simplicial spectra.

Moreover, E carries the structure of an abelian group spectrum ([7], Definition
4.1):

(ep
1 + ep

2)(4q) = ep
1(4p) + ep

2(4q) ∈ Cp+q(4q)

so that for λ : K∗ −→ L∗ the induced Eλ is a morphism of simplicial abelian
group spectra.

We summarize the above as:

4.2. Proposition. There exists a functor E from the category of chain theories
of the second kind into the category of simplicial abelian group spectra.

4.3. Lemma. Let c ∈ C∗(4q) be any s1-chain (Definition 3.1), with prescribed
∂ik · · · ∂i1c, 1 ≤ k ≤ q, then there exists ep ∈ Ep such that ep(4q) = c, p+q = n.

Proof. We define ep(4q) = c. By assumption, we have ep(4l) for any 4l ⊂ 4q.
We set ep(4s) = 0, 4q ⊂

6=
4s. This furnishes immediately a procedure to

establish ep for any 4t and therefore a ep with the required property. ¤

4.4. Lemma. Let c ∈ Cn(X) be a chain, σqi

i : 4qi −→ X the simplicial
singular simplexes, representing the cells of a carrier for c (cf. §3). Then c is
simplicial whenever there exist epi ∈ Epi

such that

c =
∑

σqi

i# epi

i (4qi). (2)

Proof. Follows immediately from 4.3 and 2) of Definition 3.1 of a simplicial
chain. ¤

5. The Simplicial Spectrum X ∧ E

Let X be a based CW space (basepoint, as always, omitted from the nota-
tion), then an n-simplex, n ∈ Z of X ∧E, is a pair σq ∧ ep, p+ q = n, consisting
of a singular simplex σq : 4q −→ X, q ≥ 0 and a p-simplex ep ∈ Ep, p ∈ Z. We
define

∂i(σ
q ∧ ep) = σq ∧ ∂i ep

resp. for sj, the degeneracies. This endows X ∧ E with the structure of a
simplicial spectrum. Since X is supposed to be a CW space, we can take for
singular simplexes the characteristic mappings of the cells.

We define

α(σq ∧ ep) = σq
# ep(4q) ∈ Cp+q(X) (1)

and deduce

α(∂i σq ∧ ep) = σq
# ∂i# ep(∂i 4q) = α(σq ∧ ∂i ep). (2)
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We define the suspension (ΣE)p+1 by assignments 4q 7−→ Σ# ep(4q) ∈
Cp+q+1(Σ 4q). Hence we have a bijection (ΣE)p+1 ←→ Ep. Setting (Σ ep)( ) =
Σ#(ep( )) and (Definition 4.1 E2) writing τ± for τ?± )

α(σq ∧ Σep) = (Σσq)#ep(4q)

α(Σσq ∧ ep) = α(τ+ σq ∧ ep)− α(τ−σq ∧ ep) = Σ#α(σq ∧ ep).

We calculate

Σ# α(σq ∧ ep) = α(Σσq ∧ ep) = α(σq ∧ Σep). (3)

In order to perform a stable homotopy theory, we have to convert X ∧E into a
Kan spectrum F (X ∧ E) by taking the free group spectrum generated by the
simplexes of X ∧ E (cf. [7]). A stable mapping f : 4n −→ F (X ∧ E), n ∈ Z,
is a class {fk} of “geometric” mappings fk : 4n+k −→ F (Σk X ∧ E). To each

such fk there corresponds ω =
k∏
1

σqi+k
i ∧ epi , qi + pi = n in F (Σk X ∧E). This

product is abelian up to stable homotopy, i.e. if ω̃ has the same factors as ω
but eventually in a different order, then the stable f̃ is stably homotopic to f .

We define
α(fk) =

∑
i

σqi+k
i# epi(4qi+k) ∈ Cn+k(Σ

k X),

observing that this is a stable invariant

Σ# α(fk) = α(fk+1).

This allows us to speak about α(f), f = {fk}, as a class of chains ck ∈
Cn+k(Σ

k X), which are connected by suspension. In particular α(f) ∼ 0 means
that α(fk) ∼ 0 for sufficiently high k. In the same manner f ∼ 0 means that
fk ' 0 for sufficiently high k. If z ∈ Zn(C∗(X)) is a cycle, then α(f) ∼ z, f :
Sn −→ F (X ∧E) means that there exists fk : Sn+k −→ F (Σk X ∧E) such that
α(fk) ∼ Σk

# z.
This allows us to formulate

5.1. Lemma. 1) d α(fk) = α(fk | bd 4n+k), fk : 4n+k −→ F (Σk X ∧ E).
2) f : Sn −→ F (X ∧ E), α(f) ∼ 0 ⇐⇒ f ∼ 0 (stably).
3) z ∈ Zn(C∗(X)) =⇒ ∃ f : Sn −→ F (X ∧ E), α(f) ∼ z.

Proof. Ad 1) We observe

α(fk | bd 4n+k) =
n+k∑

0

(−1)j α(
∏

i

σqi+k
i ∧ ∂j epi) = dα(fk)

because of (2).
Ad 2)⇒: Let fk : Sn+k −→ F (Σk X∧E), f = {fk} be a representative of the

stable homotopy class f . To fk there corresponds
s∏
1

σqi+k ∧ epi ∈ F (Σk X ∧E),

hence

α(fk) =
s∑
1

σqi+k
# (epi(4qi+k)) ∈ Cn+k(Σ

k X),
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which is simplicial due to 4.4. Since α(fk) ∼ 0, there exists c ∈ Cn+k+1(Σ
k X)

such that dc = α(fk). Proposition 3.4 together with Lemma 4.4 yields a simpli-

cial ĉ =
m∑
1

η
sj+k
j# e

tj
j (4sj+k), satisfying dc = α(fk). So ω =

∏
η

sj+k
j ∧ e

tj
j is as-

sociated with a Gk : 4n+k+1 −→ F (Σk X ∧E), satisfying Gk | bd 4n+k+1 = fk.
Hence fk ' 0 and f ∼ 0.

⇐: Suppose f ∼ 0, then there exists a Gk : 4n+k+1 −→ F (Σk X ∧ E), such
that fk = Gk | bd 4n+k+1 = fk ∈ f . Hence (1) implies

d α(Gk) = α(fk).

Since suspension induces an isomorphism on the homology level, α(f) ∼ 0.
Ad 3) Proposition 3.3 and Lemma 4.4 furnish a simplicial z ∼ z =

s∑
1

σqi

#(epi(4qi)), pi + qi = n. Hence there exists a ω =
m∏
1

σqi+k ∧ epi ∈
F (Σk X ∧ E), which is associated with a fk : Sn+k −→ F (Σk X ∧ E), such
that

α(fk) = α(ω) = Σk z ∼ Σk z.

This implies that α(f) ∼ z stably, f = {fk}. ¤
We define

En(X) = πn(F (X ∧ E)), n ∈ Z (4)

in the usual way, resp.

En(X, U) = En(X ∪ CU), (X,U) ∈ K2. (5)

More precisely: (X ∪ CU) = (X ∪ CU, ?) and the basepoint ? is the common
basepoint of CU, U and X, since CU denotes the reduced cone over a based
space U . The group operation in (4) is well known and corresponds to the
product in F (X ∧ E) stably.

We have a natural homomorphism

α∗ : En(X, U) −→ Hn(C∗(X,U)) (6)

{f} 7−→ [α(f)].

More precisely: Let f : Sn −→ F ((X ∪ CU) ∧ E) be a stable mapping of a
(stable) n-sphere Sn, n ∈ Z, represented by a fk : Sn+k −→ F (Σk(X ∪ CU)∧
E), then αk = [α(fk)] ∈ H∗(C∗(Σk(X,U))) and

Σ∗ αk = αk+1.

By desuspending we obtain a α∗({f}) ∈ H∗(C∗(X, U)). Lemma 5.1. ensures
that this is a natural and well-defined homomorphism.

5.2. Lemma. α∗ is an isomorphism.

Proof. Suppose z ∈ ζ ∈ Hn((C∗(X, U))), then lemma 5.1.3) yields a

f : Sn −→ F ((X ∪ CU) ∧ E)

such that α(f) ∼ z. Hence
α{f} = z
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ensuring that α∗ is epic. ¤
Suppose α({f}) = 0, then α(f) ∼ 0 and lemma 5.1. 2) implies that f ∼ 0

(stably). Hence α∗ is monic.

6. The Classifying Spectrum of a Chain Theory

In order to realize that α∗ is an isomorphism of homology theories, we have
to deal with the boundary operators.

The boundary operator

∂ : En(X, U) −→ En−1(U)

is well-known to be defined by

En(X ∪ CU)
k∗−→ En(C−X ∪ CU)

%∗−→
≈

En(ΣU)
−Σ−1∗≈ En−1(U).

Here C− X denotes a second cone over X with top vertex ?−, as in §3, k :
(X ∪ CU) ⊂ (C− X ∪ CU) is an inclusion, while % : C− X ∪ CU −→ ΣU is
well-known and Σ−1

∗ denotes desuspension.
We need

6.1. Lemma. We have

∂α∗{f} = α∗∂{f}, {f} ∈ En(X,U). (1)

Proof. To fk : Sn+k −→ F (ΣkX∧E) determining the class f : Sn −→ F (X∧E)

there corresponds ω1 =
m∏
1

σqi+k ∧ epi , which we, in a first step, change in its

stable homotopy class: We assume at first that all σqi+k : 4qi+k −→ Σk(X∪CU)
are cellular (i.e., that they are characteristic mappings of cells). Moreover, we
assume that they are of the form either ηqi+k : 4qi+k −→ Σk X or εqj+k :
4qj+k −→ C Σk U . Without loss of generality we can assume that εqj+k =
τ?ε

qj+k, qj + 1 = qj. Changing the order in the product ω1, we assume that fk

is associated with ω of the form

ω =
s∏
1

ηqi+k ∧ epi ◦
t∏
1

τ?ε
qj+k ∧ epj = a1 ◦ a2. (2)

We obtain

α(ω) = v + τ+b, v ∈ Cn(X), dv ∈ Cn−1(U), b ∈ Cn−1(U), (3)

(X ⊂ X ∪ CU)#v = α(a1), (CU ⊂ X ∪ CU)#τ+b = α(a2), (4)

moreover, dv = −dτ+ b = −b + τ+ db. Hence τ+ db ∈ Cn−1(U), implying db = 0
and dv = −b.

We denote by τ+ (resp. τ− ) the cone CU = C+ U (resp. C− X) with top
vertex ?+ (resp. ?−).

Since v − τ− dv is a cycle in C− X and hence bounding, we have

v − τ− dv = dτ− v.
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We calculate

α(%# k#a1) + α(%# k#a2) = v + τ+b

= v − τ−dv + τ−dv − τ+dv = dτ−v − Σ#dv.

Therefore

α(%# k#a1) + α(%# k#a2) ∼ Σ#dv in Cn+1(ΣU).

Hence

α(∂f) = −Σ−1
# α(%# k#a1) +−Σ−1

# α(%# k#a2) ∼ (U ⊂ X)#
−1dv in Cn−1(U).

On the other hand, by the definition of the boundary operator in C∗ (cf. §1)

∂α∗([f ]) = [(U ⊂ X)#
−1dv].

This implies

∂α∗{f} = α∗∂{f}.
¤

Remark. The sign in the definition of the boundary operator for E∗ disappears
if one decides to define

En(X, U) = En(X ∪ C− U),

exchanging C+ and C− .
We summarize our results, recalling, that we assume that our basic category

K2 is the category of based CW pairs:

6.2. Theorem. There exists a functor from the category of chain theories
of the first kind (as well as of the second kind) assigning to each K∗ a simplicial
abelian group spectrum E = EK∗ and an isomorphism of homology theories

α∗ : E∗( )
≈−→ H∗(K∗( )). (5)

Proof. This is an immediate consequence of 1.5, 5.2 and 6.1. ¤

6.3. Corollary (O. Burdick, P. E. Conner E. E. Floyd). A homology theory
h∗( ) is associated with a chain theory (of the first or of the second kind) if and
only if

h∗( ) ≈
+∞⊕
−∞

H∗+k( ; Gk), (6)

where Gk are abelian groups.

Proof. If (6) holds, then the summands in (6) are (shifted) singular homology,
therefore the existence of a chain theory K∗ of the first (and therefore also of the
second kind) satisfying h∗( ) ≈ H∗(K∗( )) is well-known. The other direction
is a consequence of 6.2 and the following
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6.4. Lemma. Every simplicial abelian group spectrum E is homotopy equiv-
alent (in the category of abelian group spectra) to a direct sum of suspended
Eilenberg- MacLane spectra

E '
+∞⊕
−∞

Σk K(Gk). (7)

Proof. The proof follows the same pattern as that of [5] Proposition 2.18. for
simplicial sets. For the adaptation of this proof to the case of simplicial spectra
instead of simplicial sets, one has to employ the results about chain complexes
in [6] instead of those in [5]. ¤

Remark. Every chain functor K∗ (§2) admits a classifying spectrum E (sat-
isfying (5)), however this is not an abelian group spectrum (cf. [2] or [3]). The
present proof employs special properties of a chain theory of the second kind,
hence of a chain functor, with very special properties of κ and ϕ (cf. Proposition
2.1).
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