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1. Introduction

Leibniz algebras, introduced by Loday [12, 13], are a non skew-symmetric
generalization of Lie algebras. In brief, a (right) Leibniz algebra over a field K
is a K-vector space g equipped with a bilinear map called the Leibniz bracket,
[−,−] : g× g → g satisfying the (right) Leibniz identity [x, [y, z]] = [[x, y], z]−
[[x, z], y], for all x, y, z ∈ g. If we assume that [x, x] = 0 for all x ∈ g, then g is
a K-Lie algebra and the Leibniz identity is the Jacobi identity.

Let (g) : 0 → n
χ→ g

π→ q → 0 be an extension of Leibniz algebras. If (g) is a
central extension, that is, [n, g] = 0 = [g, n], n ∈ n, g ∈ g, then there exists the
following natural exact sequence in Leibniz homology [13, 14] associated to (g):

HL3(g) → HL3(q) → Coker(τ) → HL2(g) → HL2(q) → n

→ HL1(g) → HL1(q) → 0,
(1)

where the map τ : n ⊗ n → HL1(g) ⊗ n ⊕ n ⊗ HL1(g) is given by τ(a ⊗ b) =
(d(χ(a))⊗ b,−a⊗ d(χ(b))) and d : g → HL1(g) = g/[g,g] is the natural projec-

tion [4]. On the other hand, we have the natural isomorphism θ? : HL2(q, n)
∼→

Hom(HL2(q), n) obtained from Theorem 5.3 in [3] when n is a trivial q-module.
If the morphism θ?(g) : HL2(q) → n in the sequence (1) is an epimorphism or

an isomorphism, then (g) is called a stem extension (i.e., n ⊆ [g, g]) and a stem

cover (i.e., HL1(g)
∼→ HL1(q) and π? : HL2(g) → HL2(q) is the zero map),

respectively (see [2] for the characterization of these central extensions). These
extensions in the category of groups were studied in [6, 9] and in the category
of Lie algebras in [1, 8].

The goal of this paper is to use the sequence (1) and the isomorphism θ?

together with the sequence (2) (see below) in order to obtain some properties
of stem extensions and stem covers of Leibniz algebras. In the final section we
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consider the particular case of central extensions (g) in which q is a perfect
Leibniz algebra (i.e., HL1(q) = 0).

2. HL2 and Extensions

Let (g): 0 → n
χ→ g

π→ q → 0 be an abelian extension of Leibniz algebras [3],
then (g) induces a q-module (representation [13, 14]) structure on n [3, 13, 14].
When n is a (right) q-module, then it is said that (g) is a q-extension of n if
the q-module structure induced by (g) coincides with the previous one [3]. Two
extensions (g) and (g′) of q by n are congruent if there exists an isomorphism
of Leibniz algebras f : g → g′ which induces identities on n and q. We denote
by Ext(q, n) the set of congruence classes (g) of q-extensions of n.

We know that HL2(q, n) ∼= Ext(q, n) [14] and that associated to the q-
extension (g) there exists the following natural exact sequence [3]:

0 → Der(q, n)
Der(π)→ Der(g, n)

ρ→ Homq(n, n)
θ?(g)→ HL2(q, n)

π?→ HL2(g, n). (2)

We define an application ∆ : Ext(q, n) → HL2(q, n), ∆[g] = ξ = θ?(g)(1n),
which is well defined by naturality of the sequence (2). Moreover we can see
that ∆ is bijective (it suffices to use the proof of Theorem 3.3, p. 207 in [10]). If
Ext(q, n) is endowed with the structure of a K-vector space by means of the Baer
sum [3], then ∆ is a linear map; so ∆ is a linear isomorphism between Ext(q, n)
and HL2(q, n) and we can see that the natural structure of Ext(q, n) induced by
∆ from the vector space structure of HL2(q, n) is precisely the structure given
in [3]. It is also known that Ext(q,−) is a covariant functor from the category
of (right) q-modules to the category of K-vector spaces. Obviously, ∆ maps
the neutral element of Ext(q, n), which is the class of split extensions, to the
neutral element of HL2(q, n). If n is a trivial q-module, then Ext(q, n) is the
set of congruence classes of central extensions of q by n.

Finally, by Lemma 5.2 in [3], the following identities hold:

θ?∆[g] = θ?θ
?(g)(1n) = θ?(g). (3)

3. Morphisms of Extensions with Abelian Kernel

In this section we develop some technical results on a morphism of extensions
with abelian kernel which are used in the next sections.

Let (g): 0 → n
χ→ g

π→ q → 0 be a q-extension of n and let α : n → n′ be a
homomorphism of q-modules, that is, α[q, n] = [q, α(n)], α[n, q] = [α(n), q], n ∈
n, q ∈ q, and let (g′): 0 → n′

χ′→ g′ π′→ q → 0 be a q-extension with ∆[g′] = ξ′ ∈
HL2(q, n′).

Proposition 1. There exists a homomorphism of Leibniz algebras f : g → g′

such that the diagram

0 n g q 0

0 n′ g′ q 0

- - - -

- - - -
? ?

(g) :

(g′) :

χ π

χ′ π′

α f
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is commutative if and only if α?(ξ) = ξ′ ∈ HL2(q, n′).

Proof. The naturality in (2) implies α?(ξ)=α?θ
?(g)(1n) = θ?(g)α?1n = θ?(g)α =

θ?(g)α?(1n′) = θ?(g′)(1n′) = ξ′.
Conversely, for the q-extension (g) we construct the forward induced extension

(αg) [3], obtaining the morphism of extensions (α, fα, 1) : (g) → (αg). Thus
α?(ξ) = α?θ

?(g)(1n) = α?∆[g] = ∆[αg]. Consequently ∆[αg] = α?(ξ) = ξ′ =
∆[g′] and then (αg) ≡ (g′); thus f ′fα : g → αg → g′ verifies the Proposition. ¤

We note that the composition f ′fα is not unique; in fact there are many maps
f ′fα with the required properties since the previous result is a particular case of
Theorem 3.1 in [3], where it is confirmed that there are as many homomorphisms
f ′fα as derivations from q to n′.

Let γ : q̄ → q be a homomorphism and let (g): 0 → n
χ→ g

π→ q → 0 be a
q̄-extension with ∆[ḡ] = ξ̄ ∈ HL2(q̄, n).

Proposition 2. There exists f̄ : ḡ → g such that the diagram

0 n ḡ q̄ 0

0 n g q 0

- - - -

- - - -
??

(ḡ) :

(g) :

γf̄

is commutative if and only if HL2(γ, n)(ξ) = γ?(ξ) = ξ̄.

Proof. If there exists f̄ , then naturality of (2) implies that ξ̄ = θ?(ḡ)(1n) =
HL2(γ, n)θ?(g)(1n) = γ?(ξ).

Conversely, from the q-extension (g) we construct the backward induced ex-
tension (gγ) [3] and so we have the morphism of extensions (1, γ̄, γ) : (gγ) → (g).
From here, ∆[gγ] = γ?∆[g] = γ?(ξ) = ξ̄ = ∆[ḡ]; consequently (gγ) ≡ (ḡ) and

then f̄ : ḡ
∼→ gγ → g satisfies the Proposition. ¤

Proposition 3. Given the following diagram

0 n ḡ q̄ 0

0 n′ g′ q 0

- - - -

- - - -
??

(ḡ) :

(g′) :

γα

there exists f : ḡ → g′ making the diagram commutative if and only if α?(∆[ḡ]) =
γ?(∆[g′]). Moreover, the solution set is in the one-to-one correspondence with
the derivation set of q̄ to n′.

Proof. If f exists, we consider the composition (1, γ̄, γ)(α, σ, 1) : (ḡ) → (g′γ) →
(g′), then Propositions 1 and 2 imply that α?(∆[ḡ]) = ∆[g′γ] = γ?(∆[g′]).

Conversely, we consider the composition (1, γ̄, γ)(1,−, 1)(α, σ, 1) : (ḡ) →
(αḡ) → (g′γ) → (g′) and, applying Propositions 1 and 2, we have that ∆[αḡ] =
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α?(∆[ḡ]) = γ?(∆[g′]) = ∆[g′γ]; consequently, (αḡ) and (g′γ) are congruent and
(1,−, 1) = (1, φ, 1) is the wanted morphism.

A proof of the second statement in this Proposition can be seen in Theorem
3.1 in [3]. ¤

4. Stem Extensions and Stem Covers

Definition 1 ([2]). A central extension of Leibniz algebras (g) : 0 → n →
g → q → 0 is called a stem extension if n ⊆ [g, g]. It is said that (g) is a stem
cover if gab

∼= qab and HL2(g) → HL2(q) is the zero map.

Proposition 4. Every central extension class of a K-vector space (trivial
q-module) n by a Leibniz algebra q is forward induced from a stem extension.

Proof. Choose any central extension class (g) : 0 → n → g → q → 0, then
θ?(g) : HL2(q) → n factors as iτ : HL2(q) → n ∩ [g, g] = n1 → n. As n1 is a
trivial q-module, then, given τ , there exists a central extension (g1) ∈ HL2(q, n1)
such that θ?(g1) = τ . Moreover, (g1) is a stem extension. By naturality of
the sequence (1) on the forward construction (g1) → i?(g1) [3], we have that
θ?i?(g1) = iτ = θ?(g), i.e., i?(g1) = (g), and so (g) is forward induced by (g1),
which is a stem extension. ¤

Proposition 5. Let q be a Leibniz algebra and let u be a subspace of HL2(q),
then there exists a stem extension (g) with u = Ker θ?∆[g].

Proof. We consider the quotient vector space n = HL2(q)/u as a trivial q-
module. We consider the central extension (g) : 0 → n → g → q → 0 ∈
HL2(q, n). Thus θ?∆[g] = θ?(g) ∈ Hom(HL2(q), n). If θ?(g) : HL2(q) →
n = HL2(q)/u is the canonical projection; then there exists a central exten-
sion (g) : 0 → n → g → q → 0 such that θ?∆[g] = θ?(g) is the canonical
projection. Associated to (g), we have the exact sequence (1), in which u =
Ker θ?(g) = Ker θ?∆[g]. Moreover, (g) is a stem extension since θ?∆[g] = θ?(g)
is an epimorphism. ¤

Remark 1. A stem extension is a stem cover if and only if u = 0.

Remark 2. Any stem cover (g) : 0 → n → g → q → 0 is isomorphic to a
stem cover (g′) : 0 → HL2(q) → g′ → q → 0 with θ?∆[g′] = 1HL2(q). Indeed,
there always exists g′ and thus it suffices to take u = 0 in Proposition 5; if ϕ :
n → HL2(q) is the inverse of θ?∆[g], then the naturality of the isomorphism θ? :

HL2(q, n)
∼→ Hom(HL2(q), n) implies θ?ϕ?(∆[g]) = ϕ?θ?(∆[g]) = ϕθ?(∆[g]) =

1HL2(q) so that we can choose (g′) such that ∆[g′] = ϕ?∆[g]. By Proposition 1
there exists f : g → g′ making the following diagram commutative:

0 n g q 0

0 HL2(q) g′ q 0

- - - -

- - - -
??

(g) :

(g′) :

fϕ

The name of stem cover is motivated by the following result.
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Proposition 6. Every stem extension of q is an epimorphic image of some
stem cover.

Proof. Let (g) : 0 → n → g → q → 0 be a stem extension characterized
by ∆[g] = ξ ∈ HL2(q, n); then ϕ = θ?(ξ) = θ?(∆[g]) = θ?(g) : HL2(q) →
n is an epimorphism. In order to prove the Proposition, we must find η ∈
HL2(q, HL2(q)) with ϕ?(η) = ξ and θ?(η) = 1HL2(q) (i.e., η is an element in the
second cohomology K-vector space which characterizes a stem cover), where ϕ?

is the induced morphism by naturality of the isomorphism θ? on ϕ.
Let η ∈ HL2(q, HL2(q)) be such that θ?(η) = 1HL2(q); then θ?(ξ − ϕ?(η)) =

ϕ − ϕ?θ?(η) = 0; consequently ϕ?(η) = ξ. Obviously, η verifies the required
conditions. Now, let (g′) : 0 → HL2(q) → g′ → q → 0 ∈ HL2(q, HL2(q))
be such that ∆[g′] = η; by Proposition 1 there exists f : g′ → g such that
(ϕ, f, 1) : (g′) → (g) is an epimorphism. ¤

Proposition 7. There exists a unique isomorphism class of stem covers of
q.

Proof. By Remark 2, stem covers are of the form (g) : 0 → HL2(q) → g → q →
0 such that θ?∆[g] = 1HL2(q). Fix a stem cover (g); for another stem cover (g′)
we have that θ?∆[g] = θ?∆[g′] = 1HL2(q); then [g] = [g′]. ¤

In this case we shall speak of the stem cover of q.

Proposition 8. Let (ḡ) : 0 → HL2(q̄) → ḡ → q̄ → 0 be a stem cover and let
(g) : 0 → n → g → q → 0 be a central extension. Then every homomorphism
f : q̄ → q can be lifted to a map f ′ : ḡ → g.

Proof. Let ∆[g] = ξ ∈ HL2(q, n). We define ϕ = f ?θ?(ξ) : HL2(q̄) → n.
Since η = ∆[ḡ] ∈ HL2(q̄, HL2(q̄)) is a stem cover with θ?(η) = θ?∆[ḡ] =
θ?(ḡ) = 1HL2(q̄), we have θ?ϕ?(η) = ϕ?θ?(η) = ϕ = f ?θ?(ξ) = θ?f

?(ξ) (by
the naturality in the isomorphism θ?), and so ϕ?(η) = f ?(ξ), i.e., ϕ?(∆[g]) =
f ?(∆[g]); Proposition 3 ends the proof. ¤

Proposition 9. If (g) : 0 → n → g → q → 0 is a stem extension, then the
following sequence is exact:

HL3(g) → HL3(q) → HL1(g)⊗n⊕n⊗HL1(g) → HL2(g) → HL2(q) → n → 0

Proof. HL2(q) → n is an epimorphism and see Remark 1 in [4]. ¤
Corollary 1. Let (g) : 0 → HL2(q) → g → q → 0 be a stem cover associated

to q. Then the following sequence is exact:

HL3(g) → HL3(q) → HL1(g)⊗HL2(q)⊕HL2(q)⊗HL1(g) → HL2(g) → 0.

5. Central Extensions of Perfect Leibniz Algebras

Proposition 10. Let (g) : 0 → n
χ→ g

π→ q → 0 and (g′) : 0 → n′
χ′→ g′

π′→
q′ → 0 be central extensions. Let ρ : n → n′ and σ : q → q′ be homomorphisms
of Leibniz algebras. Then:
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i) There exists τ : g → g′ inducing ρ and σ if and only if the following
diagram is commutative:

HL2(q) n

HL2(q
′) n′

-

-
??

ρσ?

θ?(g)

θ?(g
′)

ii) If τ exists, it is unique if and only if Hom(HL1(q), n
′) = 0.

Proof. i) If τ exists, the commutativity of the square follows from naturality of
the sequence (1).

Conversely, we consider the following diagram produced by the naturality of
the isomorphism θ?:

HL2(q, n) Hom(HL2(q), n)

HL2(q, n′) Hom(HL2(q), n
′)

HL2(q′, n′) Hom(HL2(q
′), n′)

-

-

-

??

66

∼

∼

∼

ρ?ρ?

σ? σ?

θ′′? :

θ? :

θ′? :

Let ξ = ∆[g] and ξ′ = ∆[g′], then ρ?θ?(ξ) = ρ?θ?(∆[g]) = ρ?θ?(g) = ρθ?(g) =
θ?(g

′)σ? = σ?θ?(g
′) = σ?θ′?(∆[g′]) = σ?θ?(ξ

′). So θ′′?ρ?(ξ) = ρ?θ?(ξ) = σ?θ′?(ξ
′) =

θ′′?σ
?(ξ′), and consequently ρ?(ξ) = σ?(ξ′). Now Proposition 3 provides τ : g →

g′ inducing ρ and σ.
ii) Suppose that there exists τ : g → g′ inducing ρ and σ and let τ ′ : g → g′

be another homomorphism inducing ρ and σ, then there are unique homomor-
phisms f : g → n′ such that τ ′ − τ = χ′f and ϕ : q → n′ such that ϕπ = f ;
consequently, τ ′ = τ + χ′ϕπ; that is, for another homomorphism τ ′ : g → g′

there exists a unique homomorphism ϕ : q → n′ such that τ ′ = τ + χ′ϕπ. Con-
versely, if ϕ : q → n′ is a homomorphism, then τ ′ = τ + χ′ϕπ induces ρ and σ.
τ is unique if and only if τ − τ ′ = 0, that is, χ′ϕπ = 0, which is equivalent to
ϕ ∈ HomLeib(q, n

′) = 0 and then Hom(HL1(q), n
′) = 0. ¤

Corollary 2. Under the hypothesis of Proposition 10, if the map τ : g → g′

exists, then it is unique when q is a perfect Leibniz algebra (qab = 0).

Proof. If q is a perfect Leibniz algebra, then Hom(HL1(q), n
′) = 0. ¤

Proposition 11. The isomorphism classes of stem extensions of q are in
the one-to-one correspondence with the subspaces of HL2(q). Moreover, if u
and v are two subspaces of HL2(q), then u ⊆ v if and only if there is a map
(necessarily surjective) from the stem extension corresponding to u to the stem
extension corresponding to v.
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Proof. Let (g) : 0 → n → g → q → 0 be a stem extension. Associate to (g)
the subspace u = Ker θ?(g) = Ker(θ?(∆[g]) : HL2(q) → n). It is clear that the
isomorphic stem extension yields the same subspace of HL2(q).

Conversely, let u ⊆ HL2(q) be given, n = HL2(q)/u and consider the canon-
ical projection τ : HL2(q) → n, then there exists an element ∆[g] ∈ HL2(q, n)
such that θ?∆[g] = τ . Obviously, (g) is unique, θ?∆[g] is an epimorphism and
then (g) is a stem extension.

Finally, if (g′) : 0 → n′ → g′ → q → 0 is another stem extension associated to
u, then there exists an isomorphism r : n → n′ such that the following diagram
is commutative:

0 u HL2(q) n 0

0 u HL2(q) n′ 0

- - - -

- - - -
?

θ?(g)

θ?(g
′)

r

By Proposition 10 i) there exists σ : g → g′ inducing r : n → n′ and 1q : q → q
such that (r, σ, 1q) : (g) → (g′) is a morphism of extensions; moreover, σ is an
isomorphism and then (g) and (g′) are in the same isomorphism class.

For the second statement, we consider a morphism of stem extensions (r, t, 1) :
(g) → (g′). Naturality of the sequence (1) implies u = Ker θ?(g) ⊆ Ker θ?(g

′) =
v.

Conversely, we first recall that every stem extension is isomorphic to an ex-
tension (g) with the canonical projection θ?∆[g]. It is thus enough to consider
those. Let u ⊆ v ⊆ HL2(q), n = HL2(q)/u and n′ = HL2(q)/v. There exists an
epimorphism r : n → n′ such that

0 u HL2(q) n 0

0 v HL2(q) n′ 0

- - - -

- - - -
? ?

τ

σ

r

commutes. Now, if (g) : 0 → n → g → q → 0 is an extension with θ?∆[g] =
θ?(g) = τ and (g′) : 0 → n′ → g′ → q → 0 is another extension with θ?∆[g′] =
θ?(g

′) = σ, then by Proposition 10 i) there exists t : g → g′ inducing r and 1;
moreover, t is surjective. ¤

We recall that if q is perfect, then Proposition 10 implies that t is uniquely
determined by r.

Proposition 12. Let q be a perfect Leibniz algebra and let (g) : 0 → n →
g

π→ q → 0 be a stem extension, then the sequence

0 → HL2(g) → HL2(q)
θ?(g)→ n → 0

is exact and π? : HL3(g) → HL3(q) is an epimorphism.
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Proof. Follows from Proposition 9 and keeping in mind that the hypothesis
involves HL1(g) = 0. ¤

Note that from Propositions 11 and 12 it follows that if q is a perfect Leibniz
algebra, then the second Leibniz homology K-spaces with trivial coefficients of
the stem extension of q are precisely the subspaces of HL2(q).

Corollary 3. Let q be a perfect Leibniz algebra and let (g) : 0 → n →
g → q → 0 be a central extension. Then (g) is a stem cover if and only if
HL1(g) = HL2(g) = 0.

Proof. From the exact sequence (1) associated to (g), with HL1(g) = HL2(g) =
0, we easily derive that θ?(g) is an isomorphism. ¤

Definition 2. Let h and n be two-sided ideals of the Leibniz algebra g. The
commutator subalgebra of h and n is defined as the Leibniz subalgebra of g
spanned by the brackets [h, n] and [n, h], for all h ∈ h, n ∈ n, that is,

[h, n] = 〈{[h, n], [n, h] | h ∈ h, n ∈ n}〉.
It is easy to verify that [h, n] is a two-sided ideal of g and that [h, n] ⊆ h ∩ n.

Remark 3. Let (g) : 0 → n → g → q → 0 be a stem extension with
HL2(g) = 0, then (g) is a stem cover. Corollary 3 shows that the converse is
true if, in addition, q is a perfect Leibniz algebra. In general, however, there are
stem covers with HL2(g) different from 0. For example, let f be a non-abelian
or non-nilpotent free Leibniz algebra and let us consider the lower central series

f0 = f, fn+1 = [f, fn].

Then the sequence 0 → fn/fn+1 → f/fn+1 → f/fn → 0 is central for n ≥ 2;
moreover, it is a stem cover since (f/fn+1)ab

∼= fab
∼= (f/fn)ab and, on the other

hand, the map HL2(f/fn+1) = fn+1/fn+2 → HL2(f/fn) = fn/fn+1 is trivial.
Moreover, HL2(f/fn+1) = fn+1/fn+2 is different from 0.

The following Proposition gives, for a perfect Leibniz algebra q, a description
of the stem covers of q in terms of free presentations of q.

Proposition 13. Let q be a perfect Leibniz algebra and let 0 → r → f
f→ q → 0

be a free presentation. Then

0 → HL2(q) → [f, f]

[f, r]

ϕ→ q → 0

is a stem cover of q, where ϕ is induced by f .

Proof.

0 → HL2(q) → [f, f]

[f, r]

ϕ→ q → 0

is the universal central extension of q. Moreover, it is a stem cover since
HL2([f, f]/[f, r]) = HL1([f, f]/[f, r]) = 0 (see Proposition 4.2 in [14]). ¤

From Proposition 7, when q is a perfect Leibniz algebra, we have that any
stem cover is isomorphic to 0 → HL2(q) → [f,f]/[f,r] → q → 0.
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Proposition 14. Let (g) : 0 → n
χ→ g

π→ q → 0 be a central extension
and let f : x → q be a homomorphism of Leibniz algebras, where x is a perfect
Leibniz algebra. Then there exists ϕ : x → g such that πϕ = f if and only if
f?(HL2(x)) ⊆ π?(HL2(g)). If ϕ exists, it is uniquely determined.

Proof. If ϕ exists, then the functor HL2(−) preserves the composition so that
f?(HL2(x)) = π?ϕ?(HL2(x)) ⊆ π?(HL2(g)).

Conversely, let q′ = Im f ⊆ q and s = Ker f , then the exact sequence
0 → s → x → q′ → 0 induces the exact sequence 0 → s/[s,x] = s′ → x/[s,x] =
x′ → q′ → 0, where f ′ : x′ → q′ is induced by f . Now the sequence (1) implies
that f ′?(HL2(x

′)) = f?(HL2(x)) ⊆ π?(HL2(g)) ⊆ HL2(q).
To end the proof, we need to construct ϕ′ : x′ → g such that the following

diagram is commutative:

0 s′ x′ q′ 0

0 n g q 0

- - - -

- - - -
?? ?

f ′

π

ϕ′

By naturality of the sequence (1) and since f ′?(HL2(x
′)) ⊆ π?(HL2(g)), there

exists an injective map β : Im f ′? → Im π? which induces τ ′ : s′ → n. From
Proposition 10 it follows that there exists ϕ′ : x′ → g; moreover ϕ′ is unique if
and only if Hom(HL2(q

′), n) = 0, which is obvious. Now ϕ : x → g is obtained
by the composition ϕ′.nat : x → x′ → g. ¤

Examples. Let q be a perfect Leibniz algebra, then the universal central
extension of q is 0 → HL2(q) → q?q → q → 0, where ? denotes the non-abelian
tensor product of Leibniz algebras introduced in [11]. Since a universal central
extension is a stem cover (see Corollary 3 in [5]), we deduce from Corollary 1
that the map HL3(q ? q) → HL3(q) is an epimorphism and from Corollary 3
that HL2(q ? q) = HL1(q ? q) = 0.

We apply now this fact to three examples of universal central extensions:

1. Let A be an associative and unital algebra over a field K. Let stln(A) be
the non commutative Steinberg algebra, which is a Leibniz algebra for n ≥ 3
[14]. Let sln(A) be the Lie algebra of matrices with entries in A whose trace in
A/[A,A] is zero and let ϕ : stln(A) → sln(A) be the map defined by ϕ(vij(x)) =
Eij(x) where Eij(x) is the matrix with only the non-zero element x in place of
(i, j). For n ≥ 5 the sequence

0 → HH1(A) → stln(A)
ϕ→ sln(A) → 0 (4)

is the universal central extension of sln(A) in the category of Leibniz algebras
[14], where HH1(A) denotes the Hochschild homology group of A with coef-
ficients in A. Applying the previous remarks to the case of the stem cover
(4), we can derive the following consequences: stln(A) ∼= sln(A) ? sln(A);
the map HL3(stln(A)) → HL3(sln(A)) is an epimorphism; HL1(stln(A)) =
HL2(stln(A)) = 0; the sequence 0 → HL2(stln(A)) → HL2(sln(A)) →
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HH1(A) → 0 is exact and therefore HL2(sln(A)) ∼= HH1(A) (see Corollary
4.5 in [14]).

2. The universal central extension of the Lie algebra q = Der(C[z, z−1]) of
derivations of Laurent polynomials in the category of Leibniz algebras is the
Virasoro algebra denoted by V ir. Similarly to Example 1, we can derive now
that Virasoro algebra is isomorphic to Der(C[z, z−1])? Der(C[z, z−1]) and that
the map HL3(V ir) → HL3(Der(C[z, z−1])) is an epimorphism.

3. Let g(A) be a Kac–Moody Lie algebra. It is well-known that g(A) is
a perfect Lie algebra, so it has a universal central extension in the category
of Leibniz algebras. Since HL2(g(A)) = 0 for any non-affine Kac-Moody Lie
algebra g(A) (see [7]), it is its own universal central extension and thus 0 →
0 → g(A) → g(A) → 0 is a stem cover in the category of Leibniz algebras;
hence we conclude that g(A) ∼= g(A) ? g(A).

On the other hand, since HL2(g(A)) 6= 0 for any affine Kac–Moody Lie
algebra g(A), the universal central extension in the category of Leibniz algebras
(see [7]) is

0 →
∑

i∈Z−{0}
ktir−1 → g(A)⊕

∑

i∈Z−{0}
ktir−1 → g(A) → 0,

where A is of affine type X
(r)
n .

Similarly to Example 1, we can derive

g(A)⊕
∑

i∈Z−{0}
ktir−1 ∼= g(A) ? g(A).

Moreover, the map

HL3


g(A)⊕

∑

i∈Z−{0}
ktir−1


 → HL3 (g(A))

is an epimorphism.
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