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Abstract. The notion of central series for groups with action on itself is
introduced. An analogue of Witt’s construction is given for such groups. A
certain condition is found for the action and the corresponding category is
defined. It is proved that the above construction defines a functor from this
category to the category of Lie–Leibniz algebras and in particular to Leibniz
algebras; also the restriction of this functor on the category of groups leads
us to Lie algebras and gives the result of Witt.
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Introduction


The well-known construction of Witt defines a functor from the category of
groups to the category of Lie algebras [6], [5]. The aim of this paper is to define
a category and to give an analogue of Witt’s construction for its objects, which
will lead us to the category of Leibniz algebras. This problem was stated by
J.-L. Loday; later an analogous question for the possibly defined partial Leibniz
algebras was proposed, which was inspired by the work of Baues and Conduché
[1]. Since the main interest lies in the absolute case, the author decided to begin
with this one.


In Section 1 we define the category of groups with action on itself Gr•, the
category of abelian groups with action on itself Ab• and the category of groups
with bracket operationGr[ ]. This kind of groups are Ω-groups in the sense of [2].


We construct adjoint pairs of functors relating categories Gr•, Ab•, Gr[ ], Gr.
In Section 2 we define ideals and commutators for the objects of Gr• (similarly


for Gr[ ]) and show that these notions are equivalent to the special case of the
known definitions for Ω-groups [2]. In Section 3 we define central series of groups
with action on itself and a category of Lie–Leibniz algebras LL. We consider the
category of groups with action on itself satisfying a certain condition Grc. We
give an analogue of Witt’s construction [6] and prove that it defines a functor
LL : Grc −→ LL, in particular this gives a functor Grc −→ Leibniz. In a
similar way one can construct a functor Abc −→ Leibniz, which is actually the
restriction of LL on Abc. The functorial relations with the classical situation
(Gr −→ Lie) is considered, namely by the restriction of LL on Gr we obtain
the result of Witt [6], [5].
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1. Groups with Action on Itself


Let G be a group which acts on itself from the right side; i.e. we have a map
ε : G×G −→ G with


ε(g, g′ + g′′) = ε(ε(g, g′), g′′),


ε(g, 0) = g,


ε(g′ + g′′, g) = ε(g′, g) + ε(g′′, g),


ε(0, g) = 0,


(1.1)


for g, g′, g′′ ∈ G. Denote ε(g, h) = gh, for g, h ∈ G. We denote the group
operation additively, nevertheless the group is not commutative in general. If
(G′, ε′) is another group with action, then a homomorphism (G, ε) −→ (G′, ε′)
is a group homomorphism ϕ : G −→ G′ for which the diagram


G×G
ε−−−→ G


(ϕ,ϕ)


y
yϕ


G′ ×G′ ε′−−−→ G′


commutes. In other words, we have


ϕ(gh) = ϕ(g)ϕ(h), g, h ∈ G.


If we consider an action as a group homomorphism G
ν−→ Aut G, then a ho-


momorphism between two groups with action means the commutativity of the
diagram


G
ν //


ϕ


²²


Aut G ⊂ Hom(G,G)


Hom(G,ϕ)
²²


Hom(G,G′)


G′ ν′ // Aut G′ ⊂ Hom(G′, G′)


Hom(ϕ,G′)


OO


so that ϕ · (ν(h)) = ν ′(ϕ(h)) · ϕ, h ∈ G.
Recall [2] that an Ω-group is a group with a system of n-ary algebraic oper-


ations Ω (n ≥ 1), which satisfies the condition


00 · · · 0ω = 0, (1.2)


where 0 is the identity element of G, and 0 on the left side occurs n times if ω is
an n-ary operation. In special cases Ω-groups give groups, rings and groups with
action on itself. In the latter case Ω consists of one binary operation, an action;
or Ω consists of only unary operations, elements of G, and this operation is an
action again. In both cases the condition (1.2) is satisfied. We shall denote the
category of groups with action on itself by Gr•. Let Ab• denote the category
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of abelian groups with action on itself. We have functors


Ab•
E−−−→←−−−
A


Gr•
Q1−−−→T←−−−Q2−−−→
C←−−−


Gr,


where Q1(G), for G ∈ Gr•, is the greatest quotient group of G which makes the
action trivial; Q2(G) is a quotient of G by the equivalence relation generated
by the relation gh ∼ −h + g + h, g, h ∈ G; A is the abelianization functor, thus
A(G) = G/(G,G), where (G, G) is the ideal of G generated by the commutator
normal subgroup of G (for the definition of an ideal see Section 2). A(G) has the
induced operation of action on itself. Each group can be considered as a group
with the trivial action or with the action by conjugation, these give functors
T and C, respectively. Every object of Ab• can be considered as an object of
Gr•; this functor is denoted by E. It is easy to see that the functors Q1, Q2


and A are left adjoints to the functors T, C and E respectively. Let G ∈ Gr•.
Define the operation of square brackets [ , ] : G×G −→ G on G by


[g, h] = −g + gh, g, h ∈ G.


Proposition 1.1. For the operation [ , ] we have the following identities:
(i) [g, h1 + h2] = [g, h1] + [g + [g, h1], h2];
(ii) [g + g′, h] = −g′ + [g, h] + g′ + [g′, h];
(iii) [g, 0] = [0, g] = 0.


Proof. These identities follow directly from (1.1). ¤
Corollary 1.2. For g, h ∈ G


[gh,−h] = −[g, h];


[−g, h] = g − [g, h]− g.


Denote by Gr[ ] the category of groups with an additional bracket operation
[ , ] satisfying the conditions (i)–(iii) of Proposition 1.1; morphisms of Gr[ ] are
group homomorphisms preserving the bracket operation. We shall denote the
objects of Gr[ ] by G[ ].


Conversely, if G[ ] ∈ Gr[ ], we can define an action of G[ ] on itself due to the
bracket operation by


gh = g + [g, h], g, h ∈ G[ ].


It is easy to prove that these two procedures are converse to each other and
actually we have an isomorphism of categories


Gr• ≈ Gr[ ] .


2. Ideals and Commutators in Gr•


Let G ∈ Gr•.
Definition 2.1. A nonempty subset A of G is called an ideal of G if it


satisfies the following conditions:
1. A is a normal subgroup of G as a group;
2. ag ∈ A, for a ∈ A, g ∈ G;
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3. −g + ga ∈ A, for a ∈ A and g ∈ G.


Definition 2.2 (Kurosh [2]). A nonempty subset A of an Ω-group G is called
an ideal if


(a) A is an additive normal subgroup of G;
(b) For any n-any operation ω from Ω, any element a ∈ A and elements


x1, x2, . . . , xn ∈ G


−(x1 · · · xnω) + x1 · · ·xi−1(a + xi)xi+1 · · · xnω ∈ A,


for i = 1, 2, . . . , n.
This definition in the case of groups is the definition of a normal subgroup of


a group, and in the case of rings is the definition of a two-sided ideal of a ring.


Proposition 2.3. For a group G ∈ Gr• considered as an Ω-group, where Ω
consists of one binary operation of action, Definitions 2.1 and 2.2 are equivalent.


Proof. The condition (b) of Definition 2.2 has the forms:


− xx2
1 + (a + x1)


x2 ∈ A, for i = 1; (2.1)


− xx2
1 + xa+x2


1 ∈ A, for i = 2. (2.2)


Taking x1 = 0 in (2.1), we obtain ax2 ∈ A, which is condition 2 of Definition
2.1. Taking x2 = 0 in (2.2), we have −x1 + xa


1 ∈ A, which is condition 3 of
Definition 2.1.


Conversely, we shall show that conditions 2 and 3 of Definition 2.1 imply
conditions (2.1) and (2.2). From condition 2 we have ax2 ∈ A; also


−xx2
1 + (a + x1)


x2 = −xx2
1 + ax2 + ax2


1 ,


and it is an element of A since A is a normal subgroup of G. By condition 3 of
Definition 2.1, −x1 + xa


1 ∈ A. We have −xx2
1 + xa+x2


1 = (−x1 + xa
1)


x2 and this
is an element of A due to condition 2, which ends the proof. ¤


Thus an ideal of G is a subobject of G in Gr•. It is clear that G itself and the
trivial subobject of G are ideals of G. An intersection of any system of ideals
of G is an ideal, and therefore we conclude that there exists the ideal generated
by a system of elements of G.


Proposition 2.4. Let A be an ideal of G. For a1, a2 ∈ A, g1, g2 ∈ G we have


(a1 + g1)
a2+g2 ∈ gg2


1 + A.


Proof. Since A is an ideal of G there exist a′1, a
′
2 ∈ A, such that a1+g1 = g1+a′1,


a2 + g2 = g2 + a′2. Therefore


(a1 + g1)
a2+g2 = (g1 + a′1)


g2+a′2 = (gg2


1 )a′2 + a′1
g2+a′2


= gg2


1 − gg2


1 + (gg2


1 )a′2 + a′1
g2+a′2 ∈ gg2


1 + A;


here we apply −gg2


1 + (gg2


1 )a′2 ∈ A. ¤
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Let A and B be subobjects of G. Denote by {A,B} the subobject of G
generated by A and B, and let A + B denote the subset of G


A + B = {a + b | a ∈ A, b ∈ B}.
Proposition 2.5. If A is an ideal of G and B is a subobject of G, then


{A,B} = A + B.


Proof. It is obvious that A + B ⊂ {A,B}. Since A is an ideal, it follows that
A + B is a subgroup of G. By Proposition 2.4, (a1 + b1)


a2+b2 ∈ bb2
1 + A. Since


B is a subobject, bb2
1 ∈ B, and since A is an ideal, bb2


1 + A = A + bb2
1 ∈ A + B


which ends the proof. ¤
For Ω-groups see Propositions 2.4 and 2.5 in [2].


Proposition 2.6. If A and B are ideals of G, then A + B is also an ideal.


Proof. For g ∈ G, a ∈ A and b ∈ B we have


g + (a + b) = (a′ + g) + b = a′ + b′ + g ∈ A + B + g,


for certain a′ ∈ A and b′ ∈ B. Thus g+(A+B) ⊂ (A+B)+g. In the same way
we show that (A+B)+g ⊂ g +(A+B) and thus g +(A+B) = (A+B)+g. It
is obvious that (a+ b)g ∈ A+B. Now we have to show that −g +ga+b ∈ A+B.
We have


−g + ga+b = −g + ga − ga + (ga)b ∈ A + B


since −g + ga ∈ A, −ga + (ga)b ∈ B. ¤
It is easy to verify that the ideal generated by a system of ideals of G coincides


with the additive subgroup of G generated by these ideals. For Ω-groups see
[2].


Definition 2.1′. Let G[ ] ∈ Gr[ ] and A be a nonempty subset of G[ ]. A is
called an ideal of G[ ] if


1′. A is a normal subgroup of G[ ] as of an additive group;
2′. [a, g] ∈ A, for a ∈ A, g ∈ G[ ];
3′. [g, a] ∈ A, for a ∈ A, g ∈ G[ ].


It is easy to see that the isomorphism of categories Gr• ≈ Gr[ ] carries ideals
to ideals.


Proposition 2.7. If A is an ideal of G, then the quotient group G/A with
the induced action on itself is an object of Gr•.


Proof. Straightforward verification. ¤
In what follows, for G ∈ Gr• and g, g′ ∈ G, [g, g′] will indicate the element


−g + gg′ of G and (g, g′) the commutator −g − g′ + g + g′. Let A and B be
subobjects of G.


Definition 2.8. A commutator [A,B] of G generated by A and B is the
ideal of {A,B} generated by the elements


{[a, b], [b, a], (a, b) | a ∈ A, b ∈ B}.
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Definition 2.9 ([2]). Let G be an Ω-group, A,B be Ω-subgroups of G and
{A,B}Ω be the Ω-subgroup of G generated by A and B. The commutator
[A,B]Ω is the ideal of {A, B}Ω generated by elements of the form


(a, b) = −a− b + a + b, a ∈ A, b ∈ B,


and


[a1, . . . , an; b1, . . . , bn; ω] = −a1a2 · · · anω − b1b2 · · · bnω


+ (a1 + b1)(a2 + b2) · · · (an + bn)ω, (2.3)


where ω is an n-any operation from Ω, a1, . . . , an ∈ A and b1, . . . , bn ∈ B.


If G is a group with the trivial action on itself or with the action by conju-
gation, then [A,B] in Definition 2.8 is the normal subgroup of G generated in
{A,B} by commutators (a, b), a ∈ A, b ∈ B, i. e. the usual commutator for
the case of groups. The same is true for Definition 2.9; if an Ω-group is a group
without multioperations, then the commutator [A,B]Ω is the usual commutator
(A,B) of a group [2].


Proposition 2.10. In the case of groups with action on itself Definitions 2.8
and 2.9 are equivalent.


Proof. For groups with action (2.3) has the form


−aa2 − bb2
1 + (a1 + b1)


a2+b2 . (2.4)


Take a1 = a, a2 = b1 = 0, b2 = b, then −a + ab ∈ [A,B]Ω. Take in (2.4)
a1 = b2 = 0, a2 = a, b1 = b, then we obtain


−b + ba ∈ [A,B]Ω.


Thus we have shown that [A,B] ⊂ [A,B]Ω. Conversely, for x = −aa2
1 − bb2


1 +
(a1 + b1)


a2+b2 ∈ [A,B]Ω we have x = −aa2
1 − bb2


1 + (aa2
1 )b2 + (ba2


1 )b2 ∈ {A,B}.
Let {A,B} = {A,B}/[A,B] and let g be the class of the element g ∈ {A,B} in


{A,B}. We have ab = a, ba = b in {A,B}. Thus


x = −aa2
1 − bb2


1 + (aa2
1 )b2 + (ba2


1 )b2 = aa2
1 − bb2


1 + aa2
1 + ba2


1


b2


= −aa2
1 − bb2


1 + aa2
1 + bb2


1 = −aa2
1 − bb2


1 + aa2
1 + bb2


1 = 0,


which means that x ∈ [A,B]. ¤
Below we formulate without proofs two statements for Ω-groups from [2],


which in the case of groups with action give the corresponding results.


Proposition 2.11. For any Ω-subgroups A and B in G we have


[A,B]Ω = [B,A]Ω.


Proposition 2.12. An Ω-subgroup A is an ideal of G if and only if


[A,G]Ω ⊆ A.


Corollary 2.13. Any Ω-subgroup A of an Ω-group G which contains the
commutator [G,G]Ω is an ideal of G.
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Proof. It follows from the inclusions


[A,G]Ω ⊂ [G,G]Ω ⊂ A. ¤


3. Central Series in Gr• and the Main Result


Let G ∈ Gr•.
Definition 3.1. The (lower) central series


G = G1 ⊃ G2 ⊃ · · · ⊃ Gn ⊃ Gn+1 ⊃ · · ·
of the object G is defined inductively by


Gn = [G1, Gn−1] + [G2, Gn−2] + · · ·+ [Gn−1, G1].


By definition, we have [Gn, Gm] ⊂ Gn+m.


Proposition 3.2. For each n ≥ 1, Gn+1 is an ideal of Gn.


Proof. We have G2 = [G1, G1], which is an ideal of G1, by definition. G3 =
[G1, G2] + [G2, G1]. By Proposition 2.11, [G1, G2] = [G2, G1]. We have


[G1, G2] ⊂ [G1, G1] = G2 ⊂ {G1, G2}
and [G1, G2] is an ideal of {G1, G2}; from this it follows that [G1, G2] is an ideal
of G2 and therefore, by Proposition 2.6, G3 is an ideal of G2. We have


Gn+1 = [G1, Gn] + [G2, Gn−1] + . . . [Gn−1, G2] + [Gn, G1].


For 1 ≤ k ≤ n, [Gk, Gn−k+1] is an ideal of {Gk, Gn−k+1}; Gn ⊆ Gk from which
it follows that Gn ⊆ {Gk, Gn−k+1}. At the same time


[Gk, Gn−k+1] ⊂ [Gk, Gn−k] ⊂ Gn.


Therefore [Gk, Gn−k+1] is an ideal of Gn for each 1 ≤ k ≤ n. Thus each
summand of Gn+1 is an ideal of Gn. By Propositions 2.6 and 2.11 we conclude
that Gn+1 is an ideal of Gn. ¤


Since (Gi, Gi) ⊂ G2i ⊂ Gi+1, each Gi/Gi+1 has an abelian group structure.
Let


LLG = G1/G2 ⊕G2/G3 ⊕ · · · ⊕Gn/Gn+1 ⊕ · · · , (3.1)


where ⊕ denotes the direct sum of abelian groups.
Let k be a commutative ring with the unit, and A a k-module. We recall the


definitions of Lie and Leibniz algebras.


Definition 3.3. A Lie algebra (A, ( , )) over k is given by a k-module A and
a k-module homomorphism ( , ) : A ⊗k A −→ A called a round bracket such
that the equation


(x, x) = 0


and the Jacobi identity


(x, (y, z)) + (y, (z, x)) + (z, (x, y)) = 0 (3.2)


hold for x, y, z ∈ A.
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Let Lie be the category of Lie algebras. Morphisms in Lie are k-module
homomorphisms ϕ with


ϕ(x, y) = (ϕ(x), ϕ(y)).


Definition 3.4 ([3]). A Leibniz algebra A over k is a k-module A equipped
with a k-module homomorphism called a square bracket


[ , ] : A⊗k A −→ A,


satisfying the Leibniz identity


[x, [y, z]] = [[x, y], z]− [[x, z], y] (3.3)


for x, y, z ∈ A.


This is in fact a right Leibniz algebra. The dual notion of a left Leibniz
algebra is made out of the dual relation


[x, [y, z]] = [[x, y], z] + [y, [x, z]],


for x, y, z ∈ A.
A morphism of Leibniz algebras is a k-module homomorphism f : A −→ A′


with ϕ[x, y] = [ϕ(x), ϕ(y)].
In this paper we deal with right Leibniz algebras. Denote this category by


Leibniz.
Definition 3.5. A Lie–Leibniz algebra is a k-module A together with two


k-module homomorphisms


( , ), [ , ] : A⊗k A −→ A


called round and square brackets, respectively, such that (x, x) = 0 for x ∈ A
and both Jacobi and Leibniz identities ((3.2) and (3.3)) hold.


A morphism of Lie–Leibniz algebras is a k-module homomorphism ϕ : A −→
A′ with


ϕ(x, y) = (ϕ(x), ϕ(y)),


ϕ[x, y] = [ϕ(x), ϕ(y)].


We denote the corresponding category by LL.


Condition 1. For each x, y, z ∈ G, G ∈ Gr•
x− x(zx) + xy+zx − x + xz − xz+yz


= 0.


It is straightforward to verify that if G satisfies Condition 1, then the group
G[ ], which corresponds to G (i.e. [ , ] is defined by [g, h] = −g + gh, g, h ∈ G)
satisfies the following condition.


Condition 1′.


[xy, [y, z]] = [[x, y], zx] + [−[x, z], yz], x, y, z ∈ G[ ].


Let G be a group. Consider G as a group with the (right) action by conju-
gation, i.e. gg′ = −g′ + g + g′. Then G satisfies Condition 1 and in this case
Condition 1′ is equivalent to the Witt–Hall identity for groups. Each group with
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the trivial action on itself (i.e. gg′ = g, g, g′ ∈ G) also satisfies Condition 1.
For an arbitrary set X let FX be the free group with action on itself generated
by X. The quotient FX/∼ of FX by the equivalence relation generated by
the relation corresponding to Condition 1 is obviously a group which satisfies
Condition 1. See also an example at the end of the proof of Theorem 3.6.


Denote by Grc a category of groups with action on itself satisfying Condition
1. In an analogous way we define the category Abc. It is easy to see that
the functors E, A, T, C, Q1, Q2, defined in Section 1, give the functors between
categories Abc, Grc and Gr. We shall denote below these functors by the same
letters. FX/∼ is a free object in Grc and consequently the action in it is neither
the trivial one nor the conjugation.


Let G ∈ Grc. Denote Gm = Gm/Gm+1, then LLG =
∑


m≥1


Gm.


Consider maps ( , )mn, [ , ]mn : Gm × Gn −→ Gm+n defined by round and
square brackets in G, respectively:


x, y 7−→ (x, y),


x, y 7−→ [x, y].


By the definition of Gi, it is clear that if x ∈ Gm, y ∈ Gn, then (x, y), [x, y] ∈
Gm+n. For x ∈ Gm, denote by x the corresponding class in Gm.


Theorem 3.6. Let G be a group with action on itself satisfying Condition 1.
Then we have:


(a) xy = x, −y + x + y = x, for each x ∈ Gm, y ∈ Gn;
(b) The maps ( , )mn and [ , ]mn : Gm × Gn −→ Gm+n induce bilinear maps


αmn, βmn : Gm ×Gn −→ Gm+n;
(c) The maps αmn, βmn, m,n ≥ 1 define bilinear maps ( , ), [ , ] : LLG ×


LLG −→ LLG, which give a Lie–Leibniz structure on LLG.


Proof. (a) Let x ∈ Gm, y ∈ Gn, m,n ≥ 1. Then [x, y] = −x+xy ∈ Gm+n ⊂ Gm


and since x ∈ Gm we obtain that xy ∈ Gm. In Gm we have [x, y] = −x + xy,


but since [x, y] ⊂ Gm+n ⊂ Gm+1 we have [x, y] = 0 in Gm and thus in Gm we
have x = xy. In the same way we show for the action with conjugation that
−y + x + y = x. (see also [5]).


(b) We shall check this condition for a square bracket; for a round bracket the
proof is similar [5]. First we shall show that the map βmn : Gm×Gn −→ Gm+n


is defined correctly. Let x ∈ Gm, y ∈ Gn, where x ∈ Gm, y ∈ Gn. By definition,
βmn(x, y) = [x, y] = [x, y], where [x, y] ∈ Gn+m. Let x = x′ for x′ ∈ Gm, thus
x − x′ ∈ Gm+1. For simplicity, suppose that x − x′ ∈ [Gi+1, Gm−i] ⊂ Gm+1 (a
more general case is treated similarly). Then x = [a, b] + x′, where a ∈ Gi+1,
b ∈ Gm−i. From this we have in Gm+n:


[x, y] = [[a, b] + x′, y] = −x′ + [[a, b], y] + x′ + [x′, y]


= −x′ + [[a, b], y] + x′ + [x′, y]. (3.4)







680 T. DATUASHVILI


[[a, b], y] ∈ Gm+n+1 ⊂ Gm+n. Applying the condition (a), we obtain


−x′ + [[a, b], y] + x′ = [[a, b], y] = 0 in Gm+n.


Thus from (3.4) we have [x, y] = [x′, y]. If x−x′ = (a, b) ∈ [Gi+1, Gm−i] ⊂ Gm+1,
then by the same argument we have


[x, y] = [x′ + (a, b), y] = −x′ + [(a, b), y] + x′ + [x′, y]


= [(a, b), y] + [x′, y] = [x′, y], since [(a, b), y] = 0 in Gm+n.


The correctness of βmn for the second argument is proved in an analogous way.
Now we shall show that the maps βmn are bilinear. Let x1, x2 ∈ Gm and


y ∈ Gn. We have in Gm+n


[x1 + x2, y] = [x1 + x2, y] = −x2 + [x1, y] + x2


+ [x2, y] = [x1, y] + [x2, y];


here we again apply the condition (a). Let x ∈ Gm and y1, y2 ∈ Gn. We have
in Gm+n


[x, y1 + y2] = [x, y1 + y2] = [x, y1] + [xy1 , y2]


= [x, y1] + [xy1 , y2] = [x, y1] + [xy1 , y2] = [x, y1] + [x, y2],


since, by the condition (a) xy1 = x. This proves that maps βmn are bilinear.
(c) The maps αmn, βmn can be continued linearly in a natural way up to the


bilinear maps ( , ), [ , ] : LLG × LLG −→ LLG. The proof of the fact that ( , )
satisfies the condition (3.2) and (l, l) = 0 for any l ∈ LLG is similar to the proof
of the corresponding statement in Witt’s theorem (see [5], Proposition 2.3; [6]).
It remains to show that the square bracket operation [ , ] satisfies the Leibniz
identity (3.3).


The object G satisfies Condition 1, therefore we have Condition 1′ for the
square bracket in G. Since the square bracket operation in LLG is linear for
both arguments, we can limit ourself to the case where x ∈ Gm, y ∈ Gn, z ∈ Gt.
Applying the conditions (a) and (b) of the theorem we have


[x, [y, z]] = [xy, [y, z]] = [xy, [y, z]];


[[x, y], z] = [[x, y], zx] = [[x, y], zx];


−[[x, z], y] = [−[x, z], yz] = [−[x, z], yz].


By Condition 1′ we obtain


[x, [y, z]] = [[x, y], z]− [[x, z], y] in Gm+n+t,


which completes the proof of the theorem. ¤
The following example is due to the referee.


Example. Let G be the abelian group of integers Z•, which acts on itself in
the following way: xy = (−1)yx. We have [x, y] = 0 for y even, [x, y] = −2x
for y odd and Gn = 2n−1Z•. It is easy to see that Z• ∈ Grc and LLZ• is a free
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Leibniz algebra generated by a single element over a two element field (see also
[4]).


It is easy to see that by Theorem 3.6 we have actually constructed the functor
LL : Grc −→ LL. In an analogous way one can construct the functor L :
Abc −→ Leibniz. For A ∈ LL let S1(A) denote the greatest quotient algebra
of A which makes square bracket in A trivial. Then S1(A) ∈ Lie and we have
a functor S1 : LL −→ Lie. Similarly, we construct the functor S2 : LL −→
Leibniz. S1 and S2 are left adjoints to the embedding functors E1 and E2


respectively. Denote by W : Gr −→ Lie the functor defined by Witt’s theorem
[6], [5]. Thus we have the following functors between the well defined categories:


Abc
E−−−→←−−−
A


Grc


Q1−−−→T←−−−Q2−−−→C←−−−
Gr


L


y
yLL


yW


Leibniz
E2−−−→←−−−
S2


LL
E1←−−−−−−→
S1


Lie,


where LL ◦ C = E1 ◦ W , E2 ◦ L = LL ◦ E. A more detailed account of this
diagram will be given in the forthcoming paper, where free objects in Gr• and
free Leibniz algebras are studied.
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