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Dedicated to Professor Hvedri Inassaridze


Abstract. This note gives a categorical development arising from a theo-
rem of A. A. Klyachko relating the Lie operad to roots of unity. We examine
the “substitude” structure on the groupoid C whose homsets are the cyclic
groups. The roots of unity representations of the cyclic groups form a Lie
algebra for a certain oplax monoidal structure on the category of linear rep-
resentations of C.
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1. Introduction


Given a functor J : C → A into a monoidal category A , there is a substitude
structure [5] obtained on C by restriction along J . If J is fully faithful, the
substitude C is a multicategory in the sense of [9]. While a substitude structure
is fairly weak, we can actually define Lie algebras in any additive symmetric
substitude. The particular functor J : C → P we wish to consider is the union
of the inclusions of the cyclic groups in the symmetric groups; this J is faithful
and bijective on objects, but not full.


Now P is the free symmetric strict monoidal category on a single generating
object; the tensor product is denoted by +. The category V P of linear repre-
sentations of the symmetric groups is the category of tensorial species in the
sense of [7]. Linear symmetric operads are monoids in V P equipped with the
substitution tensor product. The Lie operad lie is a Lie algebra in V P equipped
with the convolution tensor product coming from P with +. We are interested
in a relaxedly associative tensor operation on the category V C of linear repre-
sentations of the cyclic groups, which is derived by convolution and restriction
from + on P. The object ω in V C made up of all the roots of unity repre-
sentations of the cyclic groups turns out to be a Lie algebra for this lax tensor
structure. By a theorem of Klyachko [8], the representation of the symmetric
groups induced along J by ω is lie. While the monoidal structure on V P is
traditional, the object lie is rather complicated. In contrast, we have only a lax
monoidal structure on V C, yet the object ω is quite easily understood.


2. The Symmetric and Cyclic Groupoids


Write P for the symmetric groupoid; it is the category whose objects are nat-
ural numbers and whose morphisms are permutations; so the homset P(m, n) is
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empty for m 6= n and the endomorphism monoid P(n, n) is the permutation (or
symmetric) group Pn on the set {1, 2, . . . , n}. Write C for the cyclic groupoid;
its objects are natural numbers and the endomorphism monoid C(n, n) is the
cyclic group Cn of order n. Up to isomorphism there is a unique faithful functor
J : C → P which is the identity on objects; to be explicit we choose the J that
takes a distinguished generator of Cn to the permutation i 7→ i + 1 (mod n).


3. Substitudes


Following [5] we use the term “substitude” for a slight weakening of the notion
of multicategory. More precisely, a substitude is a category A together with:


• for each integer n ≥ 0, a functor


Pn : A op × · · · ×A op ×A −→ Set


whose value at (A1, . . . , An, A) is denoted by Pn(A1, . . . , An; A);
• for each partition1 ξ : m1 + · · ·+ mn = m, a natural family of functions


µξ : Pn(A•; A)× Pm1(A1•; A1)× · · · × Pmn(An•; An) −→ Pξ(A••; A)


called substitution, where we use the shorthand


Pk(X•; X) = Pk(X1, . . . , Xk; X) and


Pξ(X••; X) = Pm(X11, . . . , X1m1 , . . . , Xn1, . . . , Xnmn ; X); and


• a natural family of functions


η : A (A,B) −→ P1(A; B)


called the unit;


subject to three conditions that can be found in [5].


4. Restriction


As a particular case of Proposition 4.1 of [4], given any functor J : C → A ,
we can restrict the substitude structure on A to C by defining


Pn(C1, . . . , Cn; C) = Pn(JC1, . . . , JCn; JC),


by defining the substitution operation to be that of A restricted to objects
which are values of J , and by defining the unit to be the composite


C (C,D)
J−→ A (JC, JD)


η−→ P1(JC, JD).


In particular, addition of natural numbers gives a monoidal structure on P
which restricts along J to yield a substitude structure on C.


1The summands in our partitions are allowed to be zero and in non-monotone order.
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5. Lax and Oplax Monoidal Categories


Here we use the term linear to mean enrichment (in the sense of [6]) over the
base monoidal category V of vector spaces over an algebraically closed field k
of characteristic zero. Recall from [4] that a lax monoidal structure on a linear
category X consists of linear functors


⊗
n


: X ⊗ · · · ⊗X −→ X


(called n-fold tensor product) together with natural substitutions


µξ : ⊗
n
(⊗
m1


(X11, . . . , X1m1), . . . , ⊗
mn


(Xn1, . . . , Xnmn)) −→ ⊗
m


(X11, . . . , Xnmn)


and unit η : X → ⊗1(X), satisfying three axioms. An oplax monoidal structure
on the linear category X is a lax monoidal structure on X op; again we have
linear functors


⊗
n


: X ⊗ · · · ⊗X −→ X


however, we have cosubstitutions


δξ : ⊗
m


(X11, . . . , Xnmn) −→ ⊗
n
(⊗
m1


(X11, . . . , X1m1), . . . , ⊗
mn


(Xn1, . . . , Xnmn))


and counit ε : ⊗1(X) → X.


6. Standard Convolution


For any small substitude A and any cocomplete lax monoidal linear category
X , the linear category of functors from A to X , with natural transformations
as morphisms, supports the standard convolution lax monoidal structure (see
[5]) in which the n-fold tensor product is defined by


⊗
n
(F1, . . . , Fn)(A) =


∫ A1,...,An


Pn(A1, . . . , An; A)×⊗
n
(F1A1, . . . , FnAn)


where S×V denotes the coproduct of S copies of the object V and the integral
notation denotes the “coend” (see [10]).


7. Symmetry


A symmetry on a substitude A is a natural family of isomorphisms


γσ : Pn(A1, . . . , An; A) −→ Pn(Aσ(1), . . . , Aσ(n); A)


for each permutation σ satisfying certain axioms documented in [5]. For ex-
ample, the symmetry on the monoidal category P induces a symmetry on the
substitude C. A symmetry on a lax or an oplax monoidal linear category X is
a natural family of isomorphisms


cσ : ⊗
n
(X1, . . . , Xn) −→ ⊗


n
(Xσ(1), . . . , Xσ(n))


for each permutation σ satisfying certain axioms documented in [5]. If A and
X are symmetric, there is an induced symmetry on the standard convolution
lax linear monoidal category X A .
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8. Induced Representations


Let H be a subgroup of the group G. Then the inclusion i : H → G can
be regarded as a functor between one-object categories. Right Kan extension
along i defines a linear functor


IndG
H : V H −→ V G


between the categories of linear representations; it is right adjoint to restriction
along i which takes the representation V of G to the representation VH of H
with the same vector space and restricted action. For any S we write k[S] for
the vector space with basis S; if S is a G-set then k[S] is a linear representation
of G. For any representation M of H, we have the induced representation of G
given by


IndG
H(M) = V H(k[G]H ,M).


The functor IndG
H : V H −→ V G is faithful: to see this we need to observe


that the counit IndG
H(M)H = V H(k[G]H ,M)H → V H(k[H],M)H


∼= M is an
epimorphism, but this follows from the fact that the inclusion k[H] → k[G]H is
a split monomorphism in V H .


9. Duality for Induced Representations


In Part 8, if G is finite then IndG
H is also left Kan extension Lani along


i : H → G. We have


IndG
H(M) = V H(k[G]H ,M) ∼= k[G]∗ ⊗k[H] M∼= k[Gop]⊗k[H] M ∼= k[G]⊗k[H] M


= Lani(M),


since k[G]H has a dual in V H and Gop ∼= G as groups.


10. Kan Extensions along J : C → P


The functor V J : V P → V C defined by restriction along J has a left adjoint
LanJ and a right adjoint RanJ . There is a natural bijection between natural
transformations LanJ(M) → F and natural transformations M → FJ . Also
there is a natural bijection between natural transformations F → RanJ(M)
and natural transformations FJ → M . The formulas for left and right Kan
extension are respectively:


LanJ(M)(p) =


∫ r


P (J(r), p)×M(r) ∼= k[Pp]Cp ⊗k[Cp] M(p) and


RanJ(M)(p) ∼=
∫


r


M(r)P (p,J(r)) ∼= HomCp(k[Pp]Cp ,M(p)),


where V S denotes the vector space of functions from the set S to the vector
space V . It follows for this J , using Parts 8 and 9, that LanJ and RanJ are
isomorphic faithful functors.
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11. Left Kan Extension along a Product


Suppose we have functors F : A → V , F ′ : A ′ → V , J : A → B, and
J ′ : A ′ → B′. We write F ⊗ F ′ : A ⊗A ′ → V for the functor defined by


(F ⊗ F ′)(A, A′) = FA⊗ F ′A′.


An easy calculation shows that the left Kan extension of the functor F ⊗ F ′


along J × J ′ : A ×A ′ → B ×B′ is given by


LanJ×J ′(F ⊗ F ′) ∼= LanJ(F )⊗ LanJ ′(F
′).


12. Restriction Followed by Convolution


Given any functor J : C → A into a monoidal category A , as a particular
case of Part 4 we obtain a restriction substitude structure on C defined by


Pn(C1, . . . , Cn; C) = A (JC1 ⊗ · · · ⊗ JCn, JC).


Now we can apply standard convolution as in Part 6 to obtain a lax monoidal
structure on the linear category V C ; explicitly we have


⊗
n
(M1, . . . , Mn)(C) =


∫ C1,...,Cn


A (JC1, . . . , JCn; JC)×M1C1 ⊗ · · · ⊗MnCn.


13. Convolution Followed by Restriction


Given our same functor J : C → A into the monoidal category A as in
Part 12, we can restrict the convolution monoidal structure on V A to V C by
means of the left Kan extension functor K = LanJ : V C → V A . This leads to
a substitude structure on V C defined by


Pn(M1, . . . , Mn; M) = V A (⊗
n
(KM1, . . . , KMn), KM)


∼=
∫


A


V
( ∫ A1,...,An


A (A1 ⊗ · · · ⊗ An, A)×(KM1)A1 ⊗ · · · ⊗ (KMn)An, (KM)A
)


∼=
∫


A


V
( ∫ A1,...,An


A (A1 ⊗ · · · ⊗ An, A)×


×
∫ C1,...,Cn


A (JC1, A1)× · · · ×A (JCn, An)⊗M1C1 ⊗ · · · ⊗MnCn, (KM)A
)


∼=
∫


A;C1,...,Cn


V (A (JC1 ⊗ · · · ⊗ JCn, A)⊗M1C1 ⊗ · · · ⊗MnCn, (KM)A)


∼= V A
( ∫ C1,...,Cn


A (JC1 ⊗ · · · ⊗ JCn,−)⊗M1C1 ⊗ · · · ⊗MnCn, KM
)
.


In the case such as in Part 10 where KM is also a right Kan extension of M
along J , this last vector space is isomorphic (naturally in all variables) to


V C (⊗
n
(M1, . . . , Mn),M),


where ⊗n(M1, . . . , Mn) is defined in Part 12. In other words, the substitude
structure on V C is representable and so defines an oplax monoidal structure
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on V C . So we have both an oplax and a lax monoidal structure on V C in
which the multiple tensor product functors agree. In the situation of Part 10,
in fact, the cosubstitution operation for the oplax structure is left inverse to the
substitution operation for the lax structure and the counit is left inverse to the
unit. To reiterate, the cosubstitution and counit of the oplax monoidal structure
on V C are not invertible (as would occur if we had a true monoidal structure)
but they are split epimorphisms for which the splittings are natural and satisfy
the axioms for a lax monoidal structure. We are particularly interested in this
symmetric oplax monoidal structure on V C coming from J : C → P.


14. Lie Algebras


In the paper [5], Lie algebras were defined in any braided additive substitude.
We now make this definition explicit in the case of a symmetric oplax monoidal
linear category X . A Lie algebra in X is an object L together with a morphism


β : ⊗
2
(L,L) −→ L,


called the bracket, satisfying the two conditions


β(1 + cτ2) = 0 and λ(1 + cτ3 + c2
τ3


) = 0,


where τn is the permutation i 7→ i + 1( mod n) and λ is the composite


⊗3(L, L; L)
δ3=2+1 // ⊗2(⊗2(L,L),⊗1(L))


⊗2(β,ε)
// ⊗2(L,L)


β // L.


In particular, a Lie algebra in V , with the usual tensor product of vector spaces,
is a Lie algebra over k in the usual sense. The purpose of [1] was to study Lie
algebras in a non-standard symmetric linear substitude of representations of a
Hopf algebra.


15. The Lie Operad


Let E : P → V denote the functor which takes each object n of P to the
vector space kn and takes each permutation to the linear function represented by
the corresponding permutation matrix. This E is a symmetric strong monoidal
(symmetry and tensor-preserving) functor for the + structure on P and the
direct sum structure on V . It follows (see [3]) that left Kan extension


T = LanE : V P → V V


is symmetric strong monoidal with respect to the convolution structures. The
convolution structure on V V is merely pointwise tensor product. The functor
T takes each tensorial species F to its “Taylor series” TF defined by


(TF )V =
∞⊕


n=0
Fn ⊗ V ⊗n/Pn.


It is also true that T is strong monoidal with respect to the substitution struc-
ture on V P and the composition structure on V V . Each species F ∈ V P gives
a representation Fn = Fn of the symmetric group Pn since F is defined as a
functor on permutations of every n. Let LV denote the free Lie algebra on the
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vector space V . This gives an object L of V V which is a monoid for the com-
position structure (that is, L is a monad on the category V ) and a Lie algebra
for the pointwise tensor product. By a very general argument, it is shown in
[7] that there is a Lie algebra lie in the convolution symmetric monoidal linear
category (called “une algèbre de Lie tordue”) providing the Taylor coefficients
for L; that is, T lie ∼= L as Lie algebras. Less important for our purpose here
is that lie is also a monoid for the substitution structure on V P and so is a
symmetric linear operad [11]. The representation lien of Pn has underlying
vector space spanned by those elements of the free Lie algebra Lkn in which
each of the canonical basis vectors e1, . . . , en of kn occurs precisely once; the
permutations act by applying them to these basis vectors; so lie is a subobject
of LE. The bracket and substitution operations on lie are easily guessed.


16. The Lie Algebra ω


Let ωn denote the linear representation of Cn whose supporting vector space
is k and whose action by the generator of Cn is multiplication by a primitive
n-th root of unity; any choice of generator and primitive root gives an iso-
morphic representation. A theorem of Klyachko [8] (also see [2]) is that the
representation induced on Pn by ωn is lien; that is,


IndPn
Cn


(ωn) ∼= lien.


In other words, the roots of unity representations make up an object ω ∈ V C


satisfying


Kω ∼= lie


where K = LanJ
∼= RanJ . From Part 13 we have the isomorphisms


V C(⊗
n
(ω, . . . , ω),ω) ∼= V P(⊗


n
(lie, . . . , lie), lie)


which are compatible with the substitution and unit operations. So the bracket
on lie corresponds to a bracket on ω and we have our result.


Theorem. The roots of unity representation ω is a Lie algebra in the sym-
metric oplax monoidal linear category V C obtained by restriction along K of
the convolution structure on V P. There is an isomorphism of Lie algebras
Kω ∼= lie.
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