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ON THE EQUIVALENCE OF QUILLEN’S AND SWAN’S
K-THEORIES


PAUL EBELING AND FRANS KEUNE


Abstract. The K-theory of rings can be defined in terms of nonabelian de-
rived functors as described in [9]; see also the books [7] and [8] of Inassaridze
for a similar approach. In fact both Swan’s theory and Quillen’s theory can
be described this way. The equivalence of both K-theories is proved by Ger-
sten [5]. In this paper we give a proof using these descriptions that involve
nonabelian derived functors.
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Introduction


Quillen’s higher algebraic K-groups of a unital ring R are defined as the
homotopy groups of the space that is obtained from the classifying space of the
elementary group of the ring R:


Kn(R) = πn(BE(R)+) (for n > 2).


In Section 4 we replace this space by a simplicial set Z∞W̄E(R) also depending
functorially on R, having a geometric realization which is homotopy equivalent
to BE(R)+. This description depends on the notion of integral completion in
the sense of Bousfield and Kan [3].


Swan’s K-groups of a (nonunital) ring R are defined by means of a free
simplicial resolution of R. In Section 8 we consider a simplicial group H(R)
depending functorially on R, having Swan’s K-groups of R as homotopy groups.
Writing K ′


n(R) for these groups the formula becomes


K ′
n(R) = πn−2(H(R)).


The main result is the theorem in Section 8, which says that Swan’s K-groups
coincide with Quillen’s when extended to the category of nonunital rings in the
standard way: K ′


n(R) ∼= Kn(R+, R). Here R+ stands for the ring obtained from
R by formally adjoining a unity element. The proof uses Gersten’s result [5]:
free associative nonunital rings have trivial K-theory which historically was
the missing part of the earliest proof of the equivalence of these K-theories by
Anderson [1].


It should be noted that the proof in Section 8 is a corrected and improved
version of the proof in the unpublished paper [11].
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1. The Plus Construction


The so-called plus construction is used in Quillen’s definition of the higher
K-groups of a unital ring. Its defining properties are described in the theorem
below; see also Property P1. Good references for the plus construction are
Loday’s thesis [13] and the book by Berrick [2].


Theorem and definition ([13], Théorème 1.1.1). Let X be a connected
CW-complex with basepoint ∗, and let N be a perfect normal subgroup of π (=
π1(X, ∗)). Then there exists a connected CW-complex X+ and a map j : X →
X+ such that


(i) π1(j) : π1(X, ∗) → π1(X
+, j(∗)) identifies with the canonical projection


π → π/N .
(ii) The map j induces an isomorphism on integral homology.


In the sequel the following properties will be used.


Property P1 ([13], Proposition 1.1.2). The pair (X+, j) is universal (in
the homotopy category) among pairs (Y, f), where Y is a connected space and
f : X → Y a continuous map satisfying π1(f)(N) = 0.


A consequence is that the plus construction is functorial up to homotopy
([13], Corollaire 1.1.3).


Property P2 ([13], Proposition 1.1.7). Let G be a group with a perfect
commutator subgroup [G,G]. Then B[G,G]+ is up to homotopy the universal
covering of BG+, where in both cases the plus construction is relative to the
subgroup [G,G]. (As usual BG is the classifying space of the group G.)


The plus construction is used in the definition of higher K-groups as follows.
Let R be a unital ring. The general linear group GL(R) of R has the elementary
subgroup E(R) as the commutator subgroup (the ‘Whitehead Lemma’). Apply
the plus construction to the classifying space BGL(R) of GL(R) relative to the
subgroup E(R) (which is perfect), and finally take homotopy groups.


Definition. Kn(R) = πn(BGL(R)+) for n > 1.


From Property P2 one deduces


Kn(R) = πn(BE(R)+) for n > 2


(and of course π1(BE(R)+) = 0). In this paper this identity is taken as def-
inition of Kn for n > 2. An important property of the space BE(R)+ is the
following.


Property P3. BE(R)+ is an H-space. ([13], §1.3.4.)


2. The Integral Completion of a Group


In Section 4 the space BE(R)+ will be replaced by the integral completion
(in the sense of Bousfield and Kan [3]) of BE(R). The definition and properties
of this completion are given in the next section. We will need the notion of
integral completion of a group.
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Let G be a group. The subgroups ΓiG (for i > 1) are defined inductively by


Γ1G = G,


Γi+1G = [ΓiG,G].


As usual [H1, H2] denotes the subgroup generated by the commutators [h1, h2] =
h1h2h


−1
1 h−1


2 with h1 ∈ H1 and h2 ∈ H2. Clearly, the subgroups ΓiG are normal
subgroups of G. The series of subgroups


G D Γ2G D Γ3G · · ·
is known as the lower central series of the group G. It induces a tower of groups


· · · → G/Γ3G → G/Γ2G → 1


in which every group homomorphism G/Γi+1G → G/ΓiG is a central extension.
The integral completion CG (= G∧


Z in the terminology of [3]) of G is defined
as the inverse limit of the tower of groups:


CG = lim←−
i


G/ΓiG.


It was pointed out to the authors that this construction also appears in the
literature under the name “pronilpotent completion”.


In an obvious way C is a functor Gr → Gr, where Gr denotes the category
of groups. This functor can be viewed as the inverse limit of the functor which
assigns to every homomorphism G → N , with N a nilpotent group, the group
N , and to every commutative triangle


N


²²


G


99ssssss


%%KKKKKK


N ′


with N and N ′ nilpotent, the map N → N ′. The existence of this inverse limit
follows from the existence of small cofinal diagrams, e.g. given by the tower of
groups above.


3. The Integral Completion of a Space


We will use here the simplicial terminology. For a category C the category
of simplicial C-objects is denoted by sC. The category of reduced simplicial
sets is denoted by rsSet. It is the full subcategory of sSet, the category of
simplicial sets, consisting of those X ∈ sSet which have only one vertex, i.e. X0


is a one-element set.
The functor G : rsSet → sGr assigns to a reduced simplicial set its loop group


GX, which is a simplicial group satisfying πi(GX) ∼= πi+1(X) for all i > 0. This
functor G has a right adjoint W̄ : sGr → rsSet, which is the simplicial analogue
of the classifying space functor.


The reduced simplicial set W̄H is called the classifying complex of the sim-
plicial group H. The adjunction of G and W̄ induces a natural simplicial map
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X → W̄GX, which induces isomorphisms on the homotopy groups when X is
a Kan complex. A good reference for this is May [14].


A functor T : Gr → Gr determines a functor T̃ : rsSet → rsSet in the follow-
ing way: let X be a reduced simplicial set; first form its loop group GX, next
apply T dimension-wise to obtain a simplicial group TGX, and finally take the
classifying complex. In a formula: T̃ = W̄TG, where T stands for T applied
dimension-wise. In particular the integral completion C : Gr → Gr as defined
in Section 2 determines a functor


Z∞ = C̃ : rsSet → rsSet.


This functor assigns to a reduced simplicial set its so-called integral completion.
This integral completion functor was introduced by Bousfield and Kan [3]. The
definition given here is in fact one of various possible definitions: it is the
definition they give in Chapter III of [3]. Some of the main properties of the
integral completion functor are:


Property I1 ([3], Ch. I, Lemma 5.5, p. 25). Let f : X → Y be a map in
rsSet. Then Z∞f : Z∞X → Z∞Y is a homotopy equivalence if and only if f
induces an isomorphism on integral homology.


Property I2 ([3], Ch. V, Proposition 3.4, p. 134). For X ∈ rsSet there
is a natural map i : X → Z∞X which is a weak homotopy equivalence if X is
nilpotent.


Property I3 ([3], Ch. II, Lemma 5.4, p. 63). Let p : E → B (in rsSet)
be a fibration with connected fibre F such that the Serre action of π1(B) on
Hi(F ;Z) is nilpotent for all i > 0. Then Z∞(p) : Z∞E → Z∞B is a fibration
and the inclusion Z∞F → Z∞(p)−1(∗) is a homotopy equivalence ([3],Ch. II,
Lemma 5.1, p. 62). The action of π1(B) on H∗(F ;Z) is in particular nilpotent
if π1(E) acts nilpotently on πi(F ) for all i > 1.


4. The Integral Completion of W̄E(R)


For any group H, there is a simplicial group which is H in every dimension,
having the identity as degeneracy and boundary maps. This object is a constant
simplicial group and we denote it by H again.


Proposition 1. Let R be a unital ring. Then the geometric realization
|Z∞W̄E(R)| of Z∞W̄E(R) is homotopy equivalent to BE(R)+, the equivalence
being functorial in R.


Proof. The plus construction has its simplicial analogue in rsSet, the cate-
gory of reduced simplicial sets. There exists a map j : W̄E(R) → W̄E(R)+ in
rsSet such that its geometric realization |j| : BE(R) → |W̄E(R)+| is the map
j : BE(R) → BE(R)+ of Section 1. Consider the commutative square (which
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is functorial in R)


W̄E(R)
j //


i
²²


W̄E(R)+


i
²²


Z∞W̄E(R)
Z∞(j)


// Z∞(W̄E(R)+)


It suffices to prove that i : W̄E(R)+ → Z∞(W̄E(R)+) and Z∞(j) are homotopy
equivalences. The first map is a homotopy equivalence because of Property I2
and Property P3: the space BE(R)+ is an H-space, so it is nilpotent. The map
Z∞(j) is a homotopy equivalence because of Property I1. ¤


The proof above can also be found in [5], where it is attributed to E. Dror.
In exactly the same way one proves the homotopy equivalence of the spaces
|Z∞W̄GL(R)| and BGL(R)+.


Corollary. For n > 2 we have Kn
∼= πnZ∞W̄E.


5. Derived Functors


Let Gr be the category of groups. In this section we will review the theory
of (left) derived functors of a given functor T : Gr → Gr as introduced in [9].
The situation is analogous to the Abelian case where projective resolutions are
used.


Let G be a simplicial group. For each n > 1 we define


Zn(G) = { (x0, . . . , xn+1) ∈ Gn+2
n | dixj = dj−1xi for all 0 6 i < j 6 n + 1 },


a subgroup of Gn+2
n (= Gn × · · · × Gn, n + 2 times). The elements of Zn(G)


are those n + 2 -tuples of elements of Gn that fit together in exactly the same
way as the n + 2 faces of an n + 1 -simplex do. The group Zn(G) will be
called the group of n-spheres in the simplicial group G. There is an obvious
homomorphism d : Gn+1 → Zn(G) which assigns to an n + 1 -simplex x the
n-sphere (d0x, . . . , dn+1x) of its faces. A simplicial group is called aspherical if
for each n > 1 the map d : Gn+1 → Zn(G) is surjective, that is if every n-sphere
is the boundary of an n + 1 -simplex.


For n > 0 there is an isomorphism


ᾱ : πn(G) → Zn(G)/dGn+1,


which is induced by the homomorphism


α : G̃n → Zn(G), g 7→ (1, . . . , 1, g),


where G̃n =
⋂


i Ker di.
The isomorphism ᾱ has the useful property that it respects the natural action


of G0 on G, given by conjugating G dimension-wise by the images of elements
of G0 under the degeneracy maps. The action obviously induces actions on
G̃n and Zn(G) by restricting the actions on Gn and the n + 2 -fold product
Gn × · · · ×Gn respectively.
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For any set X let FX be the free group on the elements of X. A simplicial
group G is called free if there is a subset Xn of Gn for each n > 0 such that
G ∼= FXn and moreover the degeneracy maps si : Gn → Gn+1 (i = 0, . . . , n)
map Xn into Xn+1 for each n > 0. An example of a free simplicial group is the
loop group GX of a reduced simplicial set X.


Let H be a group. A free resolution (G, ε), or simply G, of H consists of:


(1) a free aspherical simplicial group G;
(2) a group homomorphism ε : G0 → H, which induces an isomorphism


π0(G) → H.


Free resolutions do exist. What is more, there are functorial free resolutions
G(H). One example is the cotriple resolution Gn(H) = F n+1(H). Another
example is GW̄ (H), the loop group on the classifying complex of H.


Let G be a free resolution of a group H and G′ a free resolution of a group
H ′. In [9] it is proved that a homomorphism h : H → H ′ can be covered by
a simplicial homomorphism g : G → G′, i.e. π0(g) : π0(G) → π0(G


′) induces
f via the isomorphisms π0(G) → H and π0(G


′) → H ′. Moreover, two such
simplicial homomorphisms are Gr-homotopic. As a consequence one can define
derived functors of a functor T : Gr → Gr. On objects the n-th derived functor
LnT : Gr → Gr is defined as follows. Let H ∈ Gr; take a free resolution G of
H; then put


LnT = πn(TG),


where TG means: T applied dimension-wise to G. On morphisms LnT is defined
by


(LnT )(h) = πn(Tg),


where g : G → G′ covers h : H → H ′, G and G′ being free resolutions of H and
H ′ respectively.


Example. Let T : Gr → Gr be the Abelianization funtor. What are its
derived functors? GW̄H is a free resolution of H ∈ Gr. Therefore


(LnT )(H) = πn(TGW̄H) = πn(GW̄H/[GW̄H, GW̄H])


= Hn+1(W̄H;Z) = Hn+1(H;Z)


(cf. [14], p.121). So LnT is the homology functor Hn+1(−;Z).


One can also consider functors T : Rg → Gr on the category Rg of nonunital
rings instead of Gr. The role of the free group is then taken over by the free
ring: for X a set FX is the ring of polynomials without constant term in the
non-commuting variables x ∈ X, with coefficients in Z. Analogously one then
considers: free simplicial rings, rings of n-spheres in a simplicial ring, etc. Then
too one has a theory of derived functors for functors from Rg to Gr. More
generally, the procedure is applicable to functors T : A → Set∗, where A is a
category of triple algebras and Set∗ the category of pointed sets. In fact this is
how the theory is presented in [9].
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6. Derived Functors of the Integral Completion


We will consider the derived functor LnC of C : Gr → Gr, the integral
completion functor as described in Section 2. Let H be a group. Note that
for any simplicial set X the simplicial group GX is free. It follows that the
simplicial group GW̄H is a free resolution of H. The groups (LnC)(H) are
therefore the homotopy groups of CGW̄H, a simplicial group which has as
classifying complex the integral completion of W̄H (cf. Section 3):


Z∞W̄H = W̄CGW̄H.


Hence


(LnC)(H) = πn(CGW̄H) ∼= πn+1(W̄CGW̄H) = πn+1(Z∞W̄H).


In the special case H = GL(R) with R a unital ring, we obtain


Lemma. For each n > 0 there is a canonical isomorphism


(LnC)(GL(R)) ∼= πn+1(Z∞W̄GL(R)) ∼= Kn+1(R).


7. Derived Functors of GL


In [9] higher K-functors were defined as derived functors of GL : Rg → Gr
by the formula


K ′
n(R) = Ln−2GL (n > 3)


and K ′
1 and K ′


2 are then defined by the exactness of


1 → K ′
2 → L0GL → GL → K ′


1 → 1.


Since St(FX) ∼= GL(FX) for free rings FX, we have L0GL = L0 St, where
St denotes the Steinberg group. It is easily seen that L0 St = St, i.e. St is a right
exact functor, see [10] for details. Hence the exact sequence above becomes


1 → K ′
2 → St → GL → K ′


1 → 1,


which shows that the functors K ′
1 and K ′


2 coincide with the classical ones. It
will be proven in Section 8 that the functors as defined above are isomorphic to
the functors Kn as defined in Section 1.


Remark. The groups K ′
n(R) defined in this section coincide with the groups


Kn(R) as defined by Gersten [4], since Gersten uses the cotriple resolution of R
for their definition, which is simply one of possible resolutions of R. In [17] Swan
proved that his functor Kn, which he defined in [16], coincides with Gersten’s.


8. Comparison of Both K-theories


In this section we prove the main theorem.


Theorem. Let R ∈ Rg. Then for all n > 2,


K ′
n(R) ∼= Kn(R+, R).
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Let R be a nonunital ring. Form the simplicial ring FR by applying the free
resolution functor. Adjoining a unit in every dimension of FR we get a split
homomorphism of simplicial unital rings,


(FR)+ // Z ,
kk


where the right-hand side is interpreted as a constant simplicial ring.
The adjunction of G and W̄ induces a cotriple on sGr. By first applying this


cotriple resolution to the diagram E((FR)+) → E(Z), and then the integral
completion functor C, we define the two following bisimplicial groups together
with a split homomorphism.


Q+
pq = (C(GW̄ )


q+1
E((FR)+))p −→ Zpq = (C(GW̄ )


q+1
E(Z))p


Let Q denote the fibre (or kernel) of this map. Taking homotopy in each row
of these bisimplicial groups, we can consider the usual long exact sequence of
a fibration. Since the homomorphism splits, this sequence of simplicial groups
degenerates into split short exact sequences


1 // πh
q Q // πh


q Q+ // πh
q Z


kk
// 1.


Again computing homotopy, each of these fibrations induces a long exact se-
quence, which too is split. Hence for every p and q we have a split short exact
sequence


1 // πv
pπ


h
q Q // πv


pπ
h
q Q+ // πv


pπ
h
q Z


ll
// 1.


Repeating this process, but now taking vertical homotopy groups first, we have


1 // πh
q πv


pQ // πh
q πv


pQ
+ // πh


q πv
pZll


// 1.


Note that for each p, the simplicial group Q+
p∗ is the result of an application


of the functor C to a free Gr-resolution of E((FpR)+). Hence,


πh
q πv


pQ
+ = (LpC)(E((FqR)+)) = πp+1Z∞W̄E((FqR)+).


Using the description of the Quillen K-groups from Section 6, it follows that
for all p and q we have a short exact sequence


0 −→ πh
q πv


pQ −→ Kp+1((FqR)+) −→ Kp+1(Z) −→ 0.


Using Gersten’s theorem on the K-theory of free rings [5], we find that for all
p and q


πh
q πv


pQ = 0,


and hence, e.g. by Quillen’s spectral sequence [15] we also have


πv
pπ


h
q Q = 0.
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By letting p = 0 and applying this formula to the relevant split exact sequence
above, we obtain an isomorphism


πv
0π


h
q Q+ ∼→ πv


0π
h
q Z.


We will now determine these homotopy groups. Note that the functorial homo-
morphisms GW̄ (H) → H are homotopy equivalences for any simplicial group
H. From this it follows that all the maps dv


i : Q+
p,q+1 → Q+


p,q are homotopy
equivalences too, since the functor C is applied dimension-wise. Hence,


πv
pπ


h
q Q+ = 0 for p > 0


and


πv
0π


h
q Q+ = πqCGW̄E((FR)+) = πq+1Z∞W̄E((FR)+).


Performing the same calculation for Z and substituting this into the isomor-
phism above, we find the following proposition, which can be seen as a gener-
alization of Gersten’s theorem to include some types of free simplicial rings:


Proposition 2. For each q > 0 we have


πqZ∞W̄E((FR)+) ∼= πqZ∞W̄E(Z).


Let FR once again be the cotriple resolution of R in Rg. Then F0R → R
induces a surjective homomorphism E(FR) → E(R). Its kernel is denoted by
HR. From the long exact sequence of the fibration HR → E(FR) → E(R) it
follows that πnHR = K ′


n+2(R) for all n > 0 and π0HR = Ker(St(R) → E(R)).
Hence we have


πnHR = K ′
n+2(R) for all n > 0.


Note that the simplicial group HR is also the kernel of the homomorphism
E((FR)+) → E(R+). To see this, apply the snake lemma to the following
diagram having split exact rows:


HR


²²
1 // E(FR)


²²


// E(((FR)+))


²²


// E(Z)


id
²²


// 1


1 // E(R) // E(R+) // E(Z) // 1


This gives the desired identification of the simplicial group HR with the kernel
of E((FR)+) → E(R+).


The point of introducing this simplicial group HR is that the fibration


1 → HR → E((FR)+) → E(R+) → 1


has good behavior under application of the composite functor Z∞W̄ . We need
to verify the requirements of Property I3. Taking classifying complexes we
obtain the following fibration in sSet:


W̄HR → W̄E((FR)+) → W̄E(R+).
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Recall that for any simplicial group G the usual action of π1(W̄G) = π0(G) on
πi(W̄G) is the action induced by dimension-wise conjugation of G by degenerate
elements originating from G0.


Lemma. There is a natural isomorphism GL(Zi(FR)) → Zi(GL(FR)) which
is induced by the projection maps Zi(FR) → FiR.


Proof. The simplicial kernel Zi(FR) is an inverse limit of a suitable system of
rings and the functor GL preserves inverse limits. By inspecting the pullback
diagrams, it is clear that Zi(FR) is completely determined by the projection
maps p∗ : Zi(FR) → FiR. We have a homomorphism (GL(p1), . . . , GL(pi+2)) :
GL(Zi(FR)) → (GL(FiR))i+2. Its image is precisely Zi(GL(FR)). ¤


Proposition 3. The usual action of π1(W̄E((FR)+)) on πi(W̄E((FR)+))
is trivial for i > 1.


Proof. For i > 0 we have the isomorphism


πi(E(FR)+) → Zi(E((FR)+))/dE((FR)+)i+1


which commutes with the action of E((FR)+) (see Section 5.) Using this we
have that


Zi(E((FR)+)) ∼= Zi(E(FR)o E(Z)) = Zi(GL(FR)o E(Z))
∼= Zi(GL(FR))o E(Z) ∼= GL(Zi(FR)o E(Z)).


The image of the group dE((FR)+)i+1 under this composition is the group
E(Zi(FR))o E(Z). To see this, note that d : (FR)+


i+1 → Zi((FR)+) is onto
and that the functor E preserves such maps.


The images of the elements of E((F0R)+) ⊆ Zi(E((FR)+)) are contained
in E(Zi(FR)) o E(Z). Hence the action on Zi(E((FR)+)) corresponds to an
action which becomes trivial when passing to quotients. It follows that the
action of E((FR)+) on πi+1(W̄E((FR)+)) is trivial. ¤


Corollary. The action of π1(W̄E((FR)+)) on πi(W̄HR) is trivial for all i.


Proof. For i > 1 this is a consequence of the previous lemma. For i = 1 the
action is also trivial because π1(W̄HR) maps isomorphically onto the kernel of
π1(W̄E((FR)+)) → E(R+), which identifies with the central extension St(R)o
E(Z) → E(R)o E(Z). ¤


Corollary. The action of π1(W̄HR) on πi(W̄HR) is trivial.


Proof. The homomorphism π1(W̄HR) → π1(W̄E((FR)+)) is injective by the
long exact sequence of a fibration. Now use the previous corollary. ¤


Proposition 4. The induced map Z∞W̄E((FR)+) → Z∞W̄E(R+) is a
fibration and its fibre is homotopy equivalent to W̄HR.


Proof. From Property I3 and the above corollary it follows that the map
Z∞W̄E((FR)+) → Z∞W̄E(R+) is a fibration and that the canonical map from
Z∞W̄HR to the fibre is a homotopy equivalence. From Property I2 and this
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corollary it follows that the natural map i : W̄HR → Z∞W̄HR is a weak ho-
motopy equivalence. Since all simplicial sets involved are Kan complexes, this
map is a fortiori a homotopy equivalence. ¤


Now we can finish the proof of the theorem.


Proof. Let X be the fibre of the map Z∞W̄E(R+) → Z∞W̄E(Z). We have
the following diagram which consists horizontally and vertically of long exact
sequences of suitable fibrations:


πp+1(X)


²²


∼ // πp(· · · )
o


²²


// 0


²²


// πp(X)


²²
πp+1Z∞W̄E(R+)


²²


// πpW̄HR


²²


// πpZ∞W̄E((FR)+)


o
²²


// πpZ∞W̄E(R+)


²²
πp+1Z∞W̄E(Z) // 0 // πpZ∞W̄E(Z)


= // πpZ∞W̄E(Z)


The map in the third column is an isomorphism by Proposition 2. The other
relations are evident from the diagram. The group Kp+1(R


+, R) equals πp+1(X)
for p > 1, which is in turn isomorphic to πp(W̄H(R)) by the above diagram.
The latter group equals K ′


p+1(R) for p > 1. ¤
Final remark. An alternative way to prove the equivalence of both algebraic


K-theories is by showing that the Quillen K-theory satisfies the axioms for
multirelative K-theory given in [12]. To do so, the Quillen K-theory has to be
extended to include multirelative groups. The main concern is then to extend
long exact sequences in such a way that they include K0-groups as well.
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