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Abstract
Some useful fized point Theorems are derived by applying Cantor like The-
orem as proved in complete Generalized metric spaces.
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1 Introduction

In 2000 A. Branciary[1] had initiated the study of Generalized metric spaces(g.m.s.).
A gm.s.(X,d) is one where X # ¢, and d : X x X — R™ (non-negative reals)
is a function to satisfy:
(1) d(xz,y) =0 if and only if z =y in X

(1) d(z,y) = d(y, z) for x,y € X

(133) d(z,y) < d(z,u) + d(u,v) + d(v,y) for all z,y € X and for all distinct
members u, v as distinct from x and y.
While a metric space is treated as a g.m.s. Branciary has shown in [1] that there
is a g.m.s. that is not a metric space. Since this initiation theory of g.m.s., es-
pecially in fixed point theory, a rapid stride has taken place, primarily through
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works of researchers like Lahiri and Das[3] who were also responsible for intro-
ducing Generalized vector Metric Space where they have proved analogue of
Banach Contraction Principle in a complete metric space. B.E.Rhoades[4] and
Azam and Arshad [2] have also contributed in this area by proving some use-
ful fixed point Theorems. These researchers have employed Picards Iterative
scheme in proving main Theorems. In this paper we have been able to invite an
alternative route to achieve a fixed point of an operator that is not necessarily
continuous over a g.m.s. To that end we have proved a Cantor like theorem
in a g.m.s. and with its aid we deal with various types of operators acting on
g.m.s. including mixed type contractive operator and Ciric-type contractive
operator. Our findings shall include known and important results as available
to date.

Definition 1.1 A sequence {z,} is said to be a Cauchy sequence in a g.m.s.
(X, d) if

Definition 1.2 A g.m.s. (X,d) is said to be complete if every Cauchy
sequence in X s convergent in X.

Let x € X. For r > 0 let B,(z) = {y € X|d(x,y) < r} be an open ball
centered at x with radius 7.

Theorem 1.3 The family {B,(x)} together with empty set contributes a
base for a topology T4 in X.

Branciari observed that in a g.m.s. (X,d) the topology 7, is Hausdroff.
See [1]. We assume that (X,d) is free from isolated points. Now we define
p: XxX — R" by the following rule: p(z,y) = JI@Y) St where o 1 RT — RY
is a Lebesgue-integrable function which is summable and non-negative such
that for each ¢ > 0, [5 wdt > 0. Then by routine checkup we find (X, p) is a
g.m.s. such that 74 C 7,.

Theorem 1.4 If {z,} is a p-convergent in X, then it is p-Cauchy.

Proof. Suppose p — lim x, =u € X ie., lim ) St = 0

For e > 0 take v in X distinct from x,, and u so that d(u,v) < £.

For large n we have |f§’(1’"’“) pdt| < 5. Now d(xp,, v,) < d(@p,u) + d(u,v) +
d(v,z,)

Since d is coordinate-wise continuous (See Branciary[1]) we have for large n
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d(v,z,) < d(u,v) + 5.

Thus d(xp,, vn) < d(@p,uw) +d(u,v) +d(v,2,) <+ 5+ 5+ 5 = ¢ for large m
and n.

So fdlmen) st < Js @dt. As e > 0 is arbitrary, we have lim Jilamoan) oy —

m,n—00

0, so {z,} is p — Cauchy in X.

Theorem 1.5 Let (X, p) is complete. If {F,} is a sequence of non-empty
p-closed sets in X such that Fy D Fy D ... with p— Diam(F,) — 0 as n — oo
then N2, F; is a singleton.

Proof. Take z,, € F,(n=1,2,...). Now z,, € F, if m > n. Therefore
Lllr{ll (X, xn) < p—Diam(F,) — 0 as n — oo. Similar is the case when n > m.

Thus {z,} is p — Cauchy in X which is p — Complete. Take u € X such that

— lim z,, = u.
p n—oo n

or, lim f(fl(x"”’u) edt =0
j—o0
So, u is a p-limit point of F,, and therefore u € F,.
This is true for n = 1,2, ... and hence u € N2, F;. Assuming v € N2, F;, we
have p(u,v) < p — Diam(F,) — 0 as n — oo, and hence u = v.
Proof is now complete.

Theorem 1.6 Suppose (X, p) is complete and f : (X, p) = (X, p) is an op-
erator satisfying fél(f(m),f(y)) pdt < afg(%f@)) odt+ 3 fgl(yyf(y)) ngt—f-’}/féj(x’y) odt
where 0 < «, 8,7 and Y. a < 1, then f has a unique fixed point in X.

The proof of Theorem (1.6) rests upon the following lemma.

Lemma 1.7 Suppose (X, p) is complete and f : (X,p) — (X, p) satisfy
FIU@TO) sy < o (110 Sgp g 90IO) Sap o (95D it where 0 < o, By
and Y a < 1. Then Gy ={z € X : fod(w’f(w)) edt < A\, X € R} is a non-empty
p-closed,p-bounded set in X such that f(G)) C G.

Proof. Take x = 2o € X, and put z,, = f(z,1),n=1,2,....

Then p(x,21) = p(f(21), f(z0)) = fo /7 o

=a [ odt + B J3 0 odt oy fy ) ot

or, (1 — a)p(xs, 1) < (6 +7)p(x1, 7o)

or, p(x%xl) < {ffzp(xl,xo)

And by induction, p(z,41, 2,) < (252)"p(21, z) which can be made arbitrarily

small with inrease of n as % < 1. Hence z,, € G, for large n, i.e., G\ # ¢.
Let {z,} C G, with p — Jgg}oxn =u € X. Then

p(u, f(w)) < pu, xn) + p(wn, f(@n)) + p(f(20), f(u)) (1)
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write p(f(z,), f(u) = fo 7 pdt < a f§TED pdt 4 B g pdt +

v J5 e dt
This gives from (1)

1 1 1
Now 0 < a,B,vy<land a+ 8+ <1 give a+g < 1.
Therefore sup{ ‘”7} <1

or, 24 < 1
-8
Passmg on n — oo in (2) we have p(u, f(u)) < A and hence u € G. So G, is
p — closed. Finally take x,y € Gy; so we have p(z, f(x)) < X and p(y, f(y)) <

Aso p(z,y) < pl, f(2)+p(f(y), F(2)+ply, f(y) < 22+p(f(y), f(x)), where
p(f (), f(x)) < apla, f(x)) + Bply, f(y)) + 1oy, 2) < (@ + B)A+7p(z,y).
So p(z,y) < 2X + ( + B)A +7p(z, y)

And p(z,y) < %57“)\
Therefore sup p(x,y) <
z,yeG )

or, p — Diam(G,) < oo and G is p — bounded.

Finally, taking x € GG, we have

p(f(x), f(f(2)) < ap(z, f(x)) + Bp(f(x), f(f(x))) +vp(z, f(2))

or, p(f(x), f(f(2))) < TFp(z, f(z)) < TFA < Asince a+ f+7 < 1.
Therefore f(x) € Gy and f(G,) C G. Proof of Lemma (1.7) is now complete.

atf+2
1—v )\

Proof of Theorem (1.6) Take A =  and G,, = {z € X : p(z, f(z)) < 1}.
Then G, is a decreasing chain of non-empty p — bounded and p — closed sets
such that f : G, — G, such that p — Diam(G,) < a+6+21 (See Lemma

(1.7))— 0 as n — oo. Hence Theorem (1.5) applies to show that ﬂ Giis a
i=1

singleton= {v} for some v € X. Clearly f(v) = v, and uniqueness of v is also
clear

We close the paper by adding another application of Theorem (1.5) to prove
a fixed point Theorem in a g.m.s. where operators involved form a class so
large that includes several contraction type of operators as known to date.

Theorem 1.8 Let (X, p) be complete and f : X — X satisfy [T pqr <
wlmax{ [7Y) pdt, [T Gqp, ([T@TGD oai)] where ¢ : RT — R* is summable
(Lebesgue) and non-negative such that for each ¢ > 0, [5 @dt > 0; and ¢ :
Rt —> R* is upper semi-continuous with ¥ (t) # t as t > 0 such that 0 <

Stl>l£)t ¢() < 1. Then f has unique fixed point in X.
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The proof of Theorem (1.8) rests on the following lemma:

Lemma 1.9 Under the hypothesis of Theorem (1.8) if a,, = p(xy, Tpi1)
where x, = f*(x) and x € X and p(u,v) = J#ww) ot u, v € X then lim o, =
0.

Proof. Suppose «a,, > 0 for all n. Then

n = p(Tp, Tpy1) = f(;i(f(mn D4 (en)) pdt

< dlmax{ 5 dt, Jo T dt, f3 T gt

- ¢[max{p(xn7 xn—l) P(fm xn—l): :O(xna xn—l—l)}]

= %D[maX{P(l"m J;n—l)a p(znv xn-H)H

If max. value= p(z,, p41), then one has a,, < ¥ () < a,, which is untenable.
Hence max. value= p(x,,x,_1). So we have «a,, < ¥(a,_1) < an_1. That
means {«,} is a decreasing sequence, and let limay, = a. If a > 0 we have

() < . By u.s.c. property of ¢ we get a@ = hm a, < limsup¢(a,_1) <

n—oo
P(lim ay—1) = ¢(a) < o, which is a contradlctlon. Therefore a=0.

Proof of Theorem (1.8). From sup % < 1 it follows that 1 (t) <t for
>0

t > 0. For any natural number n, put G, = {x € X : p(z, f(z)) < %} By
Lemma (1.9) we may assume G,, # ¢ for all n. Now we verify that f maps G,

in G,,. Take z € G,,.

The p(f(z), f(f(x))) < P[max{p(f(z), x), p(f(2), x), p(f(2), f(f(x)))}]

= plma{p(F(2), 2), p(f (), F(F@))Y]

If max. value= p(f(z), f(f(x))), we get p(f(z), f(f(2))) < v(p(f(z), f(f(2)))) <
p(f(x), f(f(x)))-acontradiction. Hence max. value= p(f(z),x). So p(f(z), f(f(z))) <
Vlp(x, f(2))] < p(z, f(x)) < +. That means f(z) € G, ie., f(Gn) C Gy

We now show that G,, is p — closed in X. Let {z,, } C G,, with p — lilgn Ty, =

€€ X. So p(xy,, f(xn,)) < L forall k. So
)

p(& F()) < p(&s ) + planys [(n,)) + p(f (2ny), F(E)) (3)
Where p(f(zn,), f(§)) < dmax{p(&, zn,), plan,, f(2n,)), p(& F(£))}]. Now

two cases arise to consider. J
Case 1. Let max. value= [ () @dt which — 0 as k — oo. And therefore

f;(f(x"’“)’f(g)) edt — 0 as k — oo and in consequence from (3) we have

d(&,1(8) 1
| ar= (4)
0 n

mn

Case 2. Let max. value= max{f:(f( ) edt fo €. gpdt}
= max{L, [T pdt} as [ par < 1
If max. value= %; that means
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Otherwise max. value= f d&TO) bdt and from (3) we get

ST pdt < L p(JET D par < 1y

dle, B [HETEO) Ly
Jo (7€) SOdt( - 4{9@,/'(5» *) < %
fo pdt

AESE) pap < L 0 <1 ¢
or, pat > nfd@ TED gy w(fod(&f(ﬁ)) pdt) = 1 Stlig) (@)

d(&.£(6))
/ pdt <
0

Combining (4), (5) and (6) we conclude that £ € G,, and G,, is p — closed.
Finally, to estimate p — Diam(G,,), take z,y € G,,. Then

or,

d(&,f(€)) odt

< % Therefore

(6)

1
n

(o) Wof@) @) A i A (@)1 )
/ odt < / odi+ / gpdt—ir / pdt < —+—+ / odt (7)
0 0 0 0 non 0

fél(f(r),f(y)) ﬂ?t )S w[max{f(fl(m’y) wdt, féi(f(r),w) wdt, féi(y,f(y)) wdt}]
< tplmax{ fy " @dt, L}]
Case 1 arises due to

(8)

Case 2 arises due to
d($>y) 1
/ pdt > — (9)
0

In case 2 we will have from (7), fod(m’y) pdt < 2 + 1/}(]61(36’1/) @dt). As before we
arrive at

d(z,y) 2 t 2
dt < —su < — 10
/o 7 et — v(t) n (10)

Hence upon combining (8) and (10) one concludes that p — Diam(G,,) < oo
and p — Diam(G,,) — 0 as n — 0o. So we invite Theorem (1.5) to apply here
for desired conclusion. The proof is now complete.
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