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Abstract

Some useful fixed point Theorems are derived by applying Cantor like The-
orem as proved in complete Generalized metric spaces.
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1 Introduction

In 2000 A. Branciary[1] had initiated the study of Generalized metric spaces(g.m.s.).
A g.m.s.(X, d) is one where X 6= φ, and d : X ×X → R+ (non-negative reals)
is a function to satisfy:

(i) d(x, y) = 0 if and only if x = y in X
(ii) d(x, y) = d(y, x) for x, y ∈ X

(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all x, y ∈ X and for all distinct
members u, v as distinct from x and y.
While a metric space is treated as a g.m.s. Branciary has shown in [1] that there
is a g.m.s. that is not a metric space. Since this initiation theory of g.m.s., es-
pecially in fixed point theory, a rapid stride has taken place, primarily through
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works of researchers like Lahiri and Das[3] who were also responsible for intro-
ducing Generalized vector Metric Space where they have proved analogue of
Banach Contraction Principle in a complete metric space. B.E.Rhoades[4] and
Azam and Arshad [2] have also contributed in this area by proving some use-
ful fixed point Theorems. These researchers have employed Picards Iterative
scheme in proving main Theorems. In this paper we have been able to invite an
alternative route to achieve a fixed point of an operator that is not necessarily
continuous over a g.m.s. To that end we have proved a Cantor like theorem
in a g.m.s. and with its aid we deal with various types of operators acting on
g.m.s. including mixed type contractive operator and Ciric-type contractive
operator. Our findings shall include known and important results as available
to date.

Definition 1.1 A sequence {xn} is said to be a Cauchy sequence in a g.m.s.
(X, d) if

lim
m,n→∞

d(xm, xn) = 0

Definition 1.2 A g.m.s. (X, d) is said to be complete if every Cauchy
sequence in X is convergent in X.

Let x ∈ X. For r > 0 let Br(x) = {y ∈ X|d(x, y) < r} be an open ball
centered at x with radius r.

Theorem 1.3 The family {Br(x)} together with empty set contributes a
base for a topology τd in X.

Branciari observed that in a g.m.s. (X, d) the topology τd is Hausdroff.
See [1]. We assume that (X, d) is free from isolated points. Now we define

ρ : X×X → R+ by the following rule: ρ(x, y) =
∫ d(x,y)
0 ϕdt where ϕ : R+ → R+

is a Lebesgue-integrable function which is summable and non-negative such
that for each ε > 0,

∫ ε
0 ϕdt > 0. Then by routine checkup we find (X, ρ) is a

g.m.s. such that τd ⊂ τρ.

Theorem 1.4 If {xn} is a ρ-convergent in X, then it is ρ-Cauchy.

Proof. Suppose ρ− lim
n→∞

xn = u ∈ X i.e., lim
n→∞

∫ d(xn,u)
0 ϕdt = 0

For ε > 0 take v in X distinct from xn and u so that d(u, v) < ε
4
.

For large n we have |
∫ d(xn,u)
0 ϕdt| < ε

4
. Now d(xm, xn) ≤ d(xm, u) + d(u, v) +

d(v, xn)
Since d is coordinate-wise continuous (See Branciary[1]) we have for large n
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d(v, xn) ≤ d(u, v) + ε
4
.

Thus d(xm, xn) ≤ d(xm, u) + d(u, v) + d(v, xn) ≤ ε
4

+ ε
4

+ ε
4

+ ε
4

= ε for large m
and n.
So

∫ d(xm,xn)
0 ϕdt ≤

∫ ε
0 ϕdt. As ε > 0 is arbitrary, we have lim

m,n→∞

∫ d(xm,xn)
0 ϕdt =

0, so {xn} is ρ− Cauchy in X.

Theorem 1.5 Let (X, ρ) is complete. If {Fn} is a sequence of non-empty
ρ-closed sets in X such that F1 ⊃ F2 ⊃ . . . with ρ−Diam(Fn)→ 0 as n→∞
then

⋂∞
i=1 Fi is a singleton.

Proof. Take xn ∈ Fn(n = 1, 2, . . .). Now xm ∈ Fn if m > n. Therefore
lim
m,n

ρ(xm, xn) ≤ ρ−Diam(Fn)→ 0 as n→∞. Similar is the case when n > m.

Thus {xn} is ρ−Cauchy in X which is ρ−Complete. Take u ∈ X such that
ρ− lim

n→∞
xn = u.

or, lim
j→∞

∫ d(xn+j ,u)
0 ϕdt = 0

So, u is a ρ-limit point of Fn and therefore u ∈ Fn.
This is true for n = 1, 2, . . . and hence u ∈ ⋂∞

i=1 Fi. Assuming v ∈ ⋂∞
i=1 Fi, we

have ρ(u, v) ≤ ρ−Diam(Fn)→ 0 as n→∞, and hence u = v.
Proof is now complete.

Theorem 1.6 Suppose (X, ρ) is complete and f : (X, ρ)→ (X, ρ) is an op-

erator satisfying
∫ d(f(x),f(y))
0 ϕdt ≤ α

∫ d(x,f(x))
0 ϕdt+β

∫ d(y,f(y))
0 ϕdt+γ

∫ d(x,y)
0 ϕdt

where 0 ≤ α, β, γ and
∑
α < 1; then f has a unique fixed point in X.

The proof of Theorem (1.6) rests upon the following lemma.

Lemma 1.7 Suppose (X, ρ) is complete and f : (X, ρ) → (X, ρ) satisfy∫ d(f(x),f(y))
0 ϕdt ≤ α

∫ d(x,f(x))
0 ϕdt+β

∫ d(y,f(y))
0 ϕdt+γ

∫ d(x,y)
0 ϕdt where 0 ≤ α, β, γ

and
∑
α < 1. Then Gλ = {x ∈ X :

∫ d(x,f(x))
0 ϕdt ≤ λ, λ ∈ R+} is a non-empty

ρ-closed,ρ-bounded set in X such that f(Gλ) ⊂ Gλ.

Proof. Take x = x0 ∈ X, and put xn = f(xn−1), n = 1, 2, . . ..

Then ρ(x2, x1) = ρ(f(x1), f(x0)) =
∫ d(f(x0),f(x1))
0 ϕdt

≤ α
∫ d(x1,f(x1))
0 ϕdt+ β

∫ d(x0,f(x0))
0 ϕdt+ γ

∫ d(x1,x0)
0 ϕdt

= α
∫ d(x1,x2)
0 ϕdt+ β

∫ d(x0,x1)
0 ϕdt+ γ

∫ d(x1,x0)
0 ϕdt

or, (1− α)ρ(x2, x1) ≤ (β + γ)ρ(x1, x0)
or, ρ(x2, x1) ≤ β+γ

1−αρ(x1, x0)

And by induction, ρ(xn+1, xn) ≤ (β+γ
1−α)nρ(x1, x0) which can be made arbitrarily

small with inrease of n as β+γ
1−α < 1. Hence xn ∈ Gλ for large n, i.e., Gλ 6= φ.

Let {xn} ⊂ Gλ with ρ− lim
n→∞

xn = u ∈ X. Then

ρ(u, f(u)) ≤ ρ(u, xn) + ρ(xn, f(xn)) + ρ(f(xn), f(u)) (1)
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write ρ(f(xn), f(u)) =
∫ d(f(xn),f(u))
0 ϕdt ≤ α

∫ d(xn,f(xn))
0 ϕdt + β

∫ d(u,f(u))
0 ϕdt +

γ
∫ d(xn,u)
0 ϕdt

This gives from (1)

ρ(u, f(u)) =
1 + γ

1− β
ρ(u, xn) +

1 + α

1− β
λ→ 1 + α

1− β
λ, n→∞ (2)

Now 0 ≤ α, β, γ < 1 and α + β + γ < 1 give α+γ
1−β < 1.

Therefore sup
γ
{α+γ
1−β } ≤ 1

or,α+1
1−β ≤ 1

Passing on n→∞ in (2) we have ρ(u, f(u)) ≤ λ and hence u ∈ Gλ. So Gλ is
ρ− closed. Finally take x, y ∈ Gλ; so we have ρ(x, f(x)) ≤ λ and ρ(y, f(y)) ≤
λ;so ρ(x, y) ≤ ρ(x, f(x))+ρ(f(y), f(x))+ρ(y, f(y)) ≤ 2λ+ρ(f(y), f(x)), where
ρ(f(y), f(x)) ≤ αρ(x, f(x)) + βρ(y, f(y)) + γρ(y, x) ≤ (α + β)λ+ γρ(x, y).
So ρ(x, y) ≤ 2λ+ (α + β)λ+ γρ(x, y)
And ρ(x, y) ≤ α+β+2

1−γ λ

Therefore sup
x,y∈Gλ

ρ(x, y) ≤ α+β+2
1−γ λ

or, ρ−Diam(Gλ) <∞ and Gλ is ρ− bounded.
Finally, taking x ∈ Gλ, we have
ρ(f(x), f(f(x))) ≤ αρ(x, f(x)) + βρ(f(x), f(f(x))) + γρ(x, f(x))
or, ρ(f(x), f(f(x))) ≤ α+γ

1−β ρ(x, f(x)) ≤ α+γ
1−βλ ≤ λ since α + β + γ < 1.

Therefore f(x) ∈ Gλ and f(Gλ) ⊂ Gλ. Proof of Lemma (1.7) is now complete.

Proof of Theorem (1.6) Take λ = 1
n

and Gn = {x ∈ X : ρ(x, f(x)) ≤ 1
n
}.

Then Gn is a decreasing chain of non-empty ρ− bounded and ρ− closed sets
such that f : Gn → Gn such that ρ − Diam(Gn) ≤ α+β+2

1−γ
1
n

(See Lemma

(1.7))→ 0 as n → ∞. Hence Theorem (1.5) applies to show that
∞⋂
i=1

Gi is a

singleton= {v} for some v ∈ X. Clearly f(v) = v, and uniqueness of v is also
clear

We close the paper by adding another application of Theorem (1.5) to prove
a fixed point Theorem in a g.m.s. where operators involved form a class so
large that includes several contraction type of operators as known to date.

Theorem 1.8 Let (X, ρ) be complete and f : X → X satisfy
∫ d(f(x),f(y))
0 ϕdt ≤

ψ[max{
∫ d(x,y)
0 ϕdt,

∫ d(f(x),x)
0 ϕdt,

∫ d(y,f(y))
0 ϕdt}] where ϕ : R+ → R+ is summable

(Lebesgue) and non-negative such that for each ε > 0,
∫ ε
0 ϕdt > 0; and ψ :

R+ → R+ is upper semi-continuous with ψ(t) 6= t as t > 0 such that 0 <
sup
t>0

t
t−ψ(t) < 1. Then f has unique fixed point in X.
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The proof of Theorem (1.8) rests on the following lemma:

Lemma 1.9 Under the hypothesis of Theorem (1.8) if αn = ρ(xn, xn+1)

where xn = fn(x) and x ∈ X and ρ(u, v) =
∫ d(u,v)
0 ϕdt, u, v ∈ X then lim

n→∞
αn =

0.

Proof. Suppose αn > 0 for all n. Then
αn = ρ(xn, xn+1) =

∫ d(f(xn−1),f(xn))
0 ϕdt

≤ ψ[max{
∫ d(xn−1,xn)
0 ϕdt,

∫ d(f(xn−1),xn−1)
0 ϕdt,

∫ d(xn,f(xn))
0 ϕdt}]

= ψ[max{ρ(xn, xn−1), ρ(xn, xn−1), ρ(xn, xn+1)}]
= ψ[max{ρ(xn, xn−1), ρ(xn, xn+1)}]
If max. value= ρ(xn, xn+1), then one has αn ≤ ψ(αn) < αn which is untenable.
Hence max. value= ρ(xn, xn−1). So we have αn ≤ ψ(αn−1) < αn−1. That
means {αn} is a decreasing sequence, and let lim

n
αn = α. If α > 0 we have

ψ(α) < α. By u.s.c. property of ψ we get α = lim
n→∞

αn ≤ lim sup
n→∞

ψ(αn−1) ≤
ψ( lim

n→∞
αn−1) = ψ(α) < α, which is a contradiction. Therefore α = 0.

Proof of Theorem (1.8). From sup
t>0

t
t−ψ(t) < 1 it follows that ψ(t) < t for

t > 0. For any natural number n, put Gn = {x ∈ X : ρ(x, f(x)) ≤ 1
n
}. By

Lemma (1.9) we may assume Gn 6= φ for all n. Now we verify that f maps Gn

in Gn. Take x ∈ Gn.
The ρ(f(x), f(f(x))) ≤ ψ[max{ρ(f(x), x), ρ(f(x), x), ρ(f(x), f(f(x)))}]
= ψ[max{ρ(f(x), x), ρ(f(x), f(f(x)))}]
If max. value= ρ(f(x), f(f(x))), we get ρ(f(x), f(f(x))) ≤ ψ(ρ(f(x), f(f(x)))) <
ρ(f(x), f(f(x)))- a contradiction. Hence max. value= ρ(f(x), x). So ρ(f(x), f(f(x))) ≤
ψ[ρ(x, f(x))] < ρ(x, f(x)) ≤ 1

n
. That means f(x) ∈ Gn i.e., f(Gn) ⊂ Gn.

We now show that Gn is ρ− closed in X. Let {xnk} ⊂ Gn with ρ− lim
k
xnk =

ξ ∈ X. So ρ(xnk , f(xnk)) ≤ 1
n

for all k. So

ρ(ξ, f(ξ)) ≤ ρ(ξ, xnk) + ρ(xnk , f(xnk)) + ρ(f(xnk), f(ξ)) (3)

Where ρ(f(xnk), f(ξ)) ≤ ψ[max{ρ(ξ, xnk), ρ(xnk , f(xnk)), ρ(ξ, f(ξ))}]. Now
two cases arise to consider.
Case 1. Let max. value=

∫ d(xnk )
0 ϕdt which → 0 as k → ∞. And therefore∫ d(f(xnk ),f(ξ))

0 ϕdt→ 0 as k →∞ and in consequence from (3) we have∫ d(ξ,f(ξ))

0
ϕdt ≤ 1

n
(4)

Case 2. Let max. value= max{
∫ d(f(xnk ),xnk )
0 ϕdt,

∫ d(ξ,f(ξ))
0 ϕdt}

= max{ 1
n
,
∫ d(ξ,f(ξ))
0 ϕdt} as

∫ d(f(xnk ),xnk )
0 ϕdt ≤ 1

n
;

If max. value= 1
n
; that means∫ d(ξ,f(ξ))

0
ϕdt ≤ 1

n
(5)
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Otherwise max. value=
∫ d(ξ,f(ξ))
0 ϕdt,and from (3) we get∫ d(ξ,f(ξ))

0 ϕdt ≤ 1
n

+ ψ(
∫ d(ξ,f(ξ))
0 ϕdt ≤ 1

n
)

or,
∫ d(ξ,f(ξ))
0 ϕdt(1− ψ(

∫ d(ξ,f(ξ))
0

ϕdt)∫ d(ξ,f(ξ))
0

ϕdt
) ≤ 1

n

or,
∫ d(ξ,f(ξ))
0 ϕdt ≤ 1

n

∫ d(ξ,f(ξ))
0

ϕdt∫ d(ξ,f(ξ))
0

ϕdt−ψ(
∫ d(ξ,f(ξ))
0

ϕdt)
≤ 1

n
sup
t>0

t
t−ψ(t) <

1
n
. Therefore

∫ d(ξ,f(ξ))

0
ϕdt ≤ 1

n
(6)

Combining (4), (5) and (6) we conclude that ξ ∈ Gn and Gn is ρ− closed.
Finally, to estimate ρ−Diam(Gn), take x, y ∈ Gn. Then

d(x,y)∫
0

ϕdt ≤
d(x,f(x))∫

0

ϕdt+

d(f(x),f(y))∫
0

ϕdt+

d(f(y),y)∫
0

ϕdt ≤ 1

n
+

1

n
+

d(f(x),f(y))∫
0

ϕdt (7)

∫ d(f(x),f(y))
0 ϕdt ≤ ψ[max{

∫ d(x,y)
0 ϕdt,

∫ d(f(x),x)
0 ϕdt,

∫ d(y,f(y))
0 ϕdt}]

≤ ψ[max{
∫ d(x,y)
0 ϕdt, 1

n
}]

Case 1 arises due to ∫ d(x,y)

0
ϕdt ≤ 1

n
(8)

Case 2 arises due to ∫ d(x,y)

0
ϕdt >

1

n
(9)

In case 2 we will have from (7),
∫ d(x,y)
0 ϕdt ≤ 2

n
+ ψ(

∫ d(x,y)
0 ϕdt). As before we

arrive at ∫ d(x,y)

0
ϕdt ≤ 2

n
sup
t>0

t

t− ψ(t)
<

2

n
(10)

Hence upon combining (8) and (10) one concludes that ρ − Diam(Gn) < ∞
and ρ−Diam(Gn)→ 0 as n→∞. So we invite Theorem (1.5) to apply here
for desired conclusion. The proof is now complete.
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