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Abstract

The weight and nonlinearity of quadratic MRS function fn,s have been stud-
ied . This paper studies the weight and nonlinearity of odd variables quadratic
rotation symmetric function which contains two MRS functions fn,2 and fn,3.
First, we give the equivalent form of fn,2 + fn,3 by using recursive formula and
the equivalent form of fn,2 + fn,3 which can be obtain by nonsingular affine
transformation for n = 3, 5, 7 . Furthermore, we characterize the weight and
nonlinearity of fn,2 + fn,3 from the existing research results.

Keywords: Boolean function, Rotation symmetry, Weight, Nonlinearity,
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1 Introduction

Boolean functions have many applications in coding theory and cryptography.
A detail account of the latter applications can be found in the book [1]. Ro-
tation symmetric Boolean functions were first introduced at Eurocrypt 1998.
Recently, rotation symmetric Boolean functions have attracted attention due
to their simplicity-invariant under rotation transform - for efficient computa-
tion. In [2], rotation symmetric functions are used for fast hash function design.
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It has been found that this class of functions is extremely rich in terms of cryp-
tographically significant functions, and a lot of research about RotS functions
in characteristic GF (2) has been done in [3-9] where the authors studied some
important cryptographic properties of these functions. Homogeneous rotation
symmetric Boolean functions have been extensively studied because of their
applications in cryptography. In [2], the weight and nonlinearity of quadratic
rotation symmetric functions were estimated and exactly formulated for some
specific functions. In [3], more formulations for the exact values were carried
out. In [5], the weight and nonlinearity of quadratic MRS functions fn,s were
characterized. By analyzing the naturally associated permutation of fn,s, it
showed that both values are directly connected to the cycle structure of the
permutation. We will be interesting to examine the weight and nonlinearity
of quadratic rotation symmetric functions which contain two MRS functions.

2 Notation and Preliminaries

We define Vn to be the vector space of dimensional n over the finite field
GF (2) = {0, 1}. There are 2n vectors in Vn. An n variable Boolean function
f(x1, x2, · · · , xn) = f(x) is a mapping from Vn to GF (2). The set of all n vari-
able Boolean functions is denoted by Bn. An n variable Boolean function can be
seen as a multivariate polynomial overGF (2).More precisely , f(x1, x2, · · · , xn)
can be written as a0 +

∑n
i=1 aixi +

∑
1≤i<j≤n aijxixj + · · · + a12···nx1x2 · · ·xn,

where the coefficients a0, ai, aij, · · · , a12···n ∈ {0, 1}. This representation of f
is called thealgebraic normal form (ANF) of f . The number of variables in the
highest order product term with nonzero coefficient is called the algebraic de-
gree , or simply the degree of f . A Boolean function is said to be homogeneous
if its ANF contains terms of the same degree only. Functions of degree at most
1 are called affine functions. The set of all affine functions in Bn is denoted
by An.We define the weight of a function by the number of x ∈ Vn such that
f(x) = 1, denoted by wt(f). A function f ∈ Bn is balanced if wt(f) = 2n−1.
The distance between two functions f and g,denoted by d(f, g), is defined by
wt(f + g), where the addition f + g is taking place in GF (2). The set of all
integers is denoted by Z.

Definition 2.1 The nonlinearity of a function f ∈ Bn is the minimum dis-
tance between f and the set of all affine functions An, and denoted by NL(f).
That is, NL(f) = minl∈And(f, l).

Definition 2.2 Two functions f, g ∈ Bn are affinely equivalent if g(x) =
f(xA+ b) for some nonsingular n× n matrix A over GF (2) and b ∈ Vn. If f
and g are affinely equivalent, we write them as f ≡ g.
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It can be easily checked that weight and nonlinearity are invariant under
nonsingular affine transforms. That is, if f ≡ g then wt(f) = wt(g) and
NL(f) = NL(g). We say that the weight and nonlinearity are affine invari-
ants. The following formula in Lemma 2.3 can be found in [10].

Lemma 2.3 Let h(x) =
∑k
i=1 x2i−1x2i +

∑n
i=2k+1 aixi be an n variable func-

tion for k ≤ n
2
. Then the nonlinearity is given by NL(h) = 2n−1 − 2n−k−1.

If all the linear terms vanish then its weight is the same as the nonlinearity;
otherwise it is balanced.

Once a quadratic function is transformed to the equivalent function as in
Lemma 2.3, its weight and nonlinearity can be found in Lemma 2.3.

Consider ρ =

(
1 2 · · · n− 1 n
2 3 · · · n 1

)
, a permutation of rotation on {1, 2,

· · · , n}. The permutation ρ gives rise to an action on Vn such that, for x =
(x1, x2, · · · , xn) ∈ Vn and k ∈ Z, ρk(x) = (xρk(1), · · · , xρk(n)). The indices can
be written explicitly as , for i = 1, 2, · · · , n,

ρk(i) =

{
n if (i+ k) ≡ 0(modn),
(i+ k)(mod n) otherwise.

The orbit of x ∈ Vn under ρ is the set {ρk(x)|k ∈ Z}. Similarly, we
can extend the action to a monomial m(x) = xi1 · · · xid ∈ Bn by defin-
ing ρk(m(x)) = xρk(i1) · · ·xρk(id). We define the orbit of m(x) similarly by
{ρk(m(x))|k ∈ Z}.

Definition 2.4 A function f ∈ Bn is called rotation symmetric if and only
if for any (x1, · · · , xn) ∈ Vn, f(x1, · · · , xn) = f(ρk(x1, · · · , xn)) for any 1 ≤ k ≤
n.

If a monomial m(x) appears in a rotation symmetric function as a term
then all monomials in the orbit of m(x) should also appear in the function
as terms. An example of a quadratic rotation symmetric function in B6 is
x1x3 + x2x4 + x3x5 + x4x6 + x5x1 + x6x2. The simplest quadratic functions f
generated by cyclic permutations of the variables in a single monomial. We call
such functions monomial rotation symmetric functions, or MRS functions, for
brevity. Thus any quadratic MRS function f(x) in n variables can be written as

fn,j(x) = x1xj + x2xj+1 + · · ·+ xnxj−1 (1)

for some j with 2 ≤ j ≤ [n+1
2

], or, in the special case when n is even and
j = n

2
+ 1, as

fn,n
2
+1(x) = x1xn

2
+1 + x2xn

2
+2 + · · ·+ xn

2
xn (2)
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The latter function (2) has only n
2

terms, whereas the functions in (1) have
n terms. Because of this, we call the function fn,n

2
+1(x) the short quadratic

function in n variables. In [5], the weight and nonlinearity of MRS functions are
characterized using the structure of the cycle decomposition of the associated
permutation ρs, where

ρs =

(
1 2 · · · n− 1 n
s s+ 1 · · · s− 2 s− 1

)

for 2 ≤ s ≤
⌈
n
2

⌉
.

3 Main Results

In this paper, we will characterize the weight and nonlinearity of functions
which contain two MRS function fn,2 and fn,3, where n is odd, and

fn,2 = x1x2 + x2x3 + · · ·+ xnx1

fn,3 = x1x3 + x2x4 + · · ·+ xnx2

In order to study the weight and nonlinearity of fn,2 + fn,3, we need to find
the recurrence relation of the function and affine equivalence function for n =
3, 5, 7.

Lemma 3.1 For odd n, we have

fn,2 + fn,3 ≡ y1y2 + y3y5 + y4y6 + fn−6,2 + fn−6,3 + y8 + yn−1 + 1 (3)

fn,2 + fn,3 + x2 + xn−1 ≡ y1y2 + y3y5 + y4y6 + fn−6,2 + fn−6,3 (4)

where fn−6,2 = y7y8 + y8y9 + · · ·+ yny7, fn−6,3 = y7y9 + y8y10 + · · ·+ yny8.

Proof. We can obtain the affine equivalent functions of (3) and (4) by the
different nonsingular affine transformation, respectively .
For (3), we define the affine transformation by

y1 = x1 + x3 + x4 + xn y2 = x2 + x3 + xn−1 + xn
y3 = x3 + x4 + x6 + x7 y5 = x5 + xn−1 + 1
y4 = x4 + x5 + x7 + x8 + 1 y6 = x6 + xn + 1
yi = xi, i > 6.

For (4), we define the affine transformation by
y1 = x1 + x3 + x4 + xn + 1 y2 = x2 + x3 + xn−1 + xn
y3 = x3 + x4 + x6 + x7 y5 = x5 + xn−1
y4 = x4 + x7 + x8 + xn−1 y6 = x6 + xn
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yi = xi, i > 6.

Remark. From Lemma 3.1, we can obtain the equivalent form of fn,2+fn,3
if the equivalent forms of fn,2 + fn,3 for smaller n are determined.
If n = 3, then f3,2 + f3,3 = x1x2 + x2x3 + x3x1 + x1x3 + x2x1 + x3x2 = 0.
If n = 5, then f5,2 + f5,3 = x1x2 + x2x3 + x3x4 + x4x5 + x5x1 + x1x3 + x2x4 +
x3x5 + x4x1 + x5x2 ≡ y1y2 + y3y4 + y5 (5)
f5,2 + f5,3 + x2 + x4 ≡ y1y2 + y3y4 + y5 (6)
If n = 7, then f7,2 + f7,3 = x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x7 + x7x1 +
x1x3 + x2x4 + x3x5 + x4x6 + x5x7 + x6x1 + x7x2 ≡ y1y2 + y3y5 + y4y6 (7)
f7,2 + f7,3 + x2 + x6 ≡ y1y2 + y3y5 + y4y6 (8)

We can get the results by the following nonsingular affine transforma-
tions,respectively.
For (5):

y1 = x1 + x3 + x4 + x5 y2 = x2 + x3 + x4 + x5
y3 = x3 + x5 + 1 y4 = x4 + x5 + 1
y5 = x5

For (6):
y1 = x1 + x3 + x4 + x5 + 1 y2 = x2 + x3 + x4 + x5
y3 = x3 + x5 + 1 y4 = x4 + x5
y5 = x5

For (7):
y1 = x1 + x3 + x4 + x7 y2 = x2 + x3 + x6 + x7
y3 = x3 + x4 + x6 + x7 y5 = x5 + x6 + 1
y4 = x4 + x7 y6 = x6 + x7 + 1

For (8):
y1 = x1 + x3 + x4 + x7 + 1 y2 = x2 + x3 + x6 + x7
y3 = x3 + x4 + x6 + x7 y5 = x5 + x6 + 1
y4 = x4 + x7 y6 = x6 + x7 + 1

From Lemma 3.1, the recurrence relation of fn,2 + fn,3 shows that the
equivalent form of fn,2 + fn,3 depends on the equivalent form of fn−6,2 + fn−6,3.
Therefore, for odd n, we just need to discuss the three congruence classes of
mod 6.

Lemma 3.2 (1) If n = 6k + 1, k = 2, 3, 4, · · ·, then
fn,2 + fn,3 ≡ x1x2 + x3x5 + x4x6 + x7x8 + x9x11 + x10x12 + · · ·+ x6k−8x6k−6

+f7,2 + f7,3 + ax6k−4 + bxn−1 + 1
where a = b = 0, k is odd; a = b = 1, k is even.
(2) If n = 6k + 3, k = 1, 2, 3, 4, · · ·, then
fn,2 + fn,3 ≡ x1x2 + x3x5 + x4x6 + x7x8 + x9x11 + x10x12 + · · ·+ x6k−2x6k + 1
(3) If n = 6k + 5, k = 1, 2, 3, 4, · · ·, then

fn,2 + fn,3 ≡ x1x2 + x3x5 + x4x6 + x7x8 + x9x11 + x10x12 + · · ·+ x6k−2x6k
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+f5,2 + f5,3 + ax6k+2 + bxn−1 + 1
where a = b = 0, k is even; a = b = 1, k is odd.

Proof. We only prove (1) here, and the proofs of (2) and (3) are similar.
If n = 6k+1, and k is even, then 6k+1−7 = 6k−6 = 6(k−1) is odd multiple
of 6, by lemma 3.1, thus
fn,2 + fn,3 ≡ y1y2 + y3y5 + y4y6 + fn−6,2 + fn−6,3 + y8 + yn−1 + 1.

≡ z1z2 + z3z5 + z4z6 + z7z8 + z9z11 + z10z12 + fn−12,2 + fn−12,3 + 1.
≡ x1x2 + x3x5 + x4x6 + · · · + x10x12 + · · · + x6k−8x6k−6 + f7,2 + f7,3
+x6k−4 + xn−1 + 1.

If k is odd, then 6k + 1− 7 = 6k− 6 = 6(k− 1) is even multiple of 6, we have
fn,2 + fn,3 ≡ y1y2 + y3y5 + y4y6 + fn−6,2 + fn−6,3 + y8 + yn−1 + 1.

≡ z1z2 + z3z5 + z4z6 + z7z8 + z9z11 + z10z12 + fn−12,2 + fn−12,3 + 1.
≡ x1x2+x3x5+x4x6+· · ·+x10x12+· · ·+x6k−8x6k−6+f7,2+f7,3+1.

Based on the results of Remark and Lemma 3.2, we can obtain the equiv-
alent form of fn,2 + fn,3.

Theorem 3.3 When n = 6k + 5, k = 1, 2, 3, 4, · · ·, we have
fn,2+fn,3 ≡ y1y2+y3y5+y4y6+y7y8+y9y11+y10y12+ · · ·+y6k−2y6k+y6k+1y6k+2

+y6k+3y6k+4 + y6k+5 + 1.
When n = 6k + 3, k = 1, 2, 3, 4, · · ·,
fn,2 + fn,3 ≡ y1y2 + y3y5 + y4y6 + y7y8 + y9y11 + y10y12 + · · ·+ y6k−2y6k + 1.
When n = 6k + 1, k = 2, 3, 4, · · ·,
fn,2 + fn,3 ≡ y1y2 + y3y5 + y4y6 + y7y8 + y9y11 + y10y12 + · · ·+ y6k−2y6k + 1.

Proof. For n = 3, 5, 7, the equivalent form can be find in Remark. From
Remark, we can obtain the proof for other n.
When n = 6k + 1,
fn,2 + fn,3 ≡ y1y2 + y3y5 + y4y6 + fn−6,2 + fn−6,3 + y8 + yn−1 + 1

≡ z1z2 + z3z5 + z4z6 + z7z8 + z9z11 + z10z12 + fn−12,2 + fn−12,3 + 1
≡ x1x2+x3x5+x4x6+x7x8+x9x11+x10x12+x13x14+· · ·+x6k−2x6k+1.

When n = 6k + 3,
fn,2 + fn,3 ≡ y1y2 + y3y5 + y4y6 + fn−6,2 + fn−6,3 + y8 + yn−1 + 1

≡ z1z2 + z3z5 + z4z6 + z7z8 + z9z11 + z10z12 + fn−12,2 + fn−12,3 + 1
≡ x1x2+x3x5+x4x6+x7x8+x9x11+x10x12+x13x14+· · ·+x6k−2x6k+1.

When n = 6k + 5,
fn,2 + fn,3 ≡ y1y2 + y3y5 + y4y6 + fn−6,2 + fn−6,3 + y8 + yn−1 + 1

≡ z1z2 + z3z5 + z4z6 + z7z8 + z9z11 + z10z12 + fn−12,2 + fn−12,3 + 1
≡ x1x2+x3x5+x4x6+x7x8+x9x11+x10x12+x13x14+· · ·+x6k−2x6k+1.
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Theorem 3.3 gives the equivalent form of function which contains two MRS
functions. It is easy to computer wt(fn,2 +fn,3) and NL(fn,2 +fn,3) by Lemma
2.3.

Theorem 3.4 (1) If n = 6k + 5, k = 1, 2, 3, 4, · · ·, then
fn,2 + fn,3 ≡ x1x2 + x3x5 + x4x6 + x7x8 + x9x11 + x10x12 + · · ·+ x6k−2x6k

+xn−4xn−3 + xn−2xn−1 + xn + 1,
the function is balanced and NL(fn,2 + fn,3) = 2n−1 − 2

n−1
2 .

(2) If n = 6k + 3, k = 1, 2, 3, 4, · · ·, then
fn,2 + fn,3 ≡ x1x2 + x3x5 + x4x6 + x7x8 + x9x11 + x10x12 + · · ·+ xn−5xn−3 + 1

and wt(fn,2 + fn,3) = 2n−1 + 2
n+1
2 , NL(fn,2 + fn,3) = 2n−1 − 2

n+1
2

(3) If n = 6k + 1, k = 2, 3, 4, · · ·, then
fn,2 + fn,3 ≡ x1x2 + x3x5 + x4x6 + x7x8 + x9x11 + x10x12 + · · ·+ xn−3xn−1 + 1

and wt(fn,2 + fn,3) = 2n−1 + 2
n−1
2 , NL(fn,2 + fn,3) = 2n−1 − 2

n−1
2 .

Proof. (1) is a directly result of Lemma 2.3. The nonlinearity of (2) and
(3) can be find from Lemma 2.3. Because of the difference of quadratic form
between (2)(3)and Lemma 2.3, the weight of (2) and (3) have changed.

4 Conclusion

In this paper, we give the weight and nonlinearity of quadratic function which
contains two MRS functions fn,2 and fn,3 for odd n . First, we obtain the
recurrence relation of fn,2 + fn,3, and the equivalent forms of fn,2 + fn,3 are
determined for n = 3, 5, 7. Secondly, we give the equivalent form of fn,2 + fn,3
by discussing the value of n. Last, we get the weight and nonlinearity of
fn,2 + fn,3 .

However, it seems difficult for us to extend our method for functions which
contain more MRS functions. So, it will be interesting for us to continue
working on finding the equivalent form of function which contain more MRS
functions and characterizing the weight and nonlinearity of the functions. On
the other hand, the weight and nonlinearity of functions which contain two
different MRS functions would be another interesting problem.
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