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Abstract

This paper is devoted to obtain the largest possible set of symmetries for
the two-dimensional Ricci flow ((2D) Rf) equation. By using the classical
symmetry method, the structure of Lie algebra of symmetries is obtained and
the optimal system of subalgebras of the equation is constructed. Also some
reduced equations and group invariant solutions are obtained. By applying the
nonclassical symmetry method for the ((2D) Rf) equation we concluded that
the analyzed model do not admit supplementary, nonclassical type, symmetries.
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1 Introduction

The Ricci flow is an evolution equation that was introduced by Hamilton in
his seminal paper, “Three-manifolds with positive Ricci curvature” in 1982
[8]. Ricci flow is a very useful tool for studying the special geometries which a
manifold admits. If (M, ¢(t)) be a smooth Riemannian manifold, Ricci flow is
defined by the equation

—q(t) = —2Ric, 1

~o(t) 1)
where Ric denotes the Ricci tensor of the metric g. By using the concept of
Ricci flow, Grisha Perelman completely proved the Poincaré conjecture around
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2003 [14]. The Ricci flow also is used as an approximation to the renormaliza-
tion group flow for the two-dimensional nonlinear o-model, in quantum field
theory, see [7] and references therein. The ricci flow equation is related to one
of the models used in obtaining the quantum theory of gravity. Because some
difficulties appear when a quantum field theory is formulated, the studies focus
on less dimensional models which are called mechanical models.

The symmetry group method plays a fundamental role in the analysis of dif-
ferential equations.The theory of Lie symmetry groups of differential equations
was first developed by Sophus Lie [10] at the end of the nineteenth century,
which was called classical Lie method. Nowadays, application of Lie trans-
formations group theory for constructing the solutions of nonlinear partial
differential equations (PDEs) can be regarded as one of the most active fields
of research in the theory of nonlinear PDEs and applications. The fact that
symmetry reductions for many PDEs can not be obtained via the classical sym-
metry method, motivated the creation of several generalizations of the classical
Lie group method for symmetry reductions. Consequently, several alternative
reduction methods have been proposed, going beyond Lie’s classical procedure
and providing further solutions. The nonclassical symmetry method of reduc-
tion was devised originally by Bluman and Cole in 1969 [2], to find new exact
solutions of the heat equation. The description of the method is presented in
[5, 9]. Many authors have used the nonclassical method to solve PDEs. In
[6] Clarkson and Mansfield have proposed an algorithm for calculating the de-
termining equations associated to the nonclassical method. A new procedure
for finding nonclassical symmetries has been proposed by Bila and Niesen in
[1]. Classical and nonclassical symmetries of nonlinear PDEs may be applied
to reduce the number of independent variables of the PDEs. Particularly, the
PDEs can be reduced to ODES. The ODEs may also have symmetries which
enable us to reduce the order of the equation and we can integrate to obtain
exact solutions.

This paper is organized as follows: In section 2, by using the classical Lie
symmetry method the most general Lie symmetry group of the ((2D) Rf)
equation is determined and the optimal system of one-dimensional subalge-
bras is constructed. Section 3, is devoted to obtain Lie invariants, similarity
reduced equations corresponding to the infinitesimal and the most general
group-invariant solutions of ((2D) Rf) equation. In section 4, we focus on
the nonclassical symmetries of the ((2D) Rf) equation, symmetries generated
when a supplementary condition, the invariance surface condition, is imposed.
Some concluding remarks are presented at the end of the paper.
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2 Lie Symmetries of ((2D) Rf) Equation

As we know, transformations which map solutions of a differential equation
to other solutions are called symmetries of the equation. The procedure of
finding the Lie symmetry group of a PDE was described in many studies
such as [13, 12]. Before performing the Lie symmetries of Ricci flow, let us
restate the mechanical model of Ricci flow that introduced by Cimpoiaus and
Constantinescu [4].

The metric tensor of the space, g;;, can be written in the conformally flat
frame

o 1
ds® = gijdx'da? = 2@V o dy = §e¢(X’Y’t)(dX2 +dY?) (2)

using Cartesian coordinates X, Y or the complex variables 2x =Y + 11X, 2y =
Y —iX. According to the equation (1), the function ¢(X,Y,t) must satisfy
the equation

0 ¢ _
ae - A¢7 (3)

where A is Laplacian. By introducing the field

'LL(Z', Y, t) = ed)?

the equation (3) takes the form u; = (Inu),, or in the equivalent form:
wlu, + Uy Uy — Ullyy = 0, (4)
The infinitesimal generator of (4) is as follow:
X =& (z,y,t,u)0, + E(z,y, t,u)d, + E(z,y, t,u)0 + p(z,y,t,u)d,  (5)

Cimpoiaus and Constantinescu, also obtained the Lie symmetry group of this
equation [4]. They proved that this equation admits a 6-parameter Lie group,
G, with the following infinitesimal generators for its Lie algebra, g.

Xl = 8:(:7 X2 = aya X3 = ata (6)
Xy =t0; + uoy, X5 =20, — ud,, Xe = y0y — u0,.

Since every linear combination of infinitesimal symmetries is an infinitesimal
symmetry, there is an infinite number of one-dimensional subgroups for G.
Therefore, it is important to determine which subgroups give different types of
solutions. So, we must find invariant solutions which can not be transformed
to each other by symmetry transformations in the full symmetry group. This
led to the concept of an optimal system of subalgebra. For one-dimensional
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subalgebras, this classification problem is the same as the problem of classifying
the orbits of the adjoint representation [12]. Optimal set of subalgebras is
obtained by selecting only one representative from each class of equivalent
subalgebras. The problem of classifying the orbits is solved by taking a general
element in the Lie algebra and simplifying it as much as possible by imposing
various adjoint transformation on it [13]. We have the following theorem:

A one-dimensional optimal system for Lie algebra of ((2D) Rf) equation is
given by

1)X1 +aX2—|—bX3, 4)X1 —|—CX4—|—dX6, 7)X3—|-CX5—|-dX6,
2)X1 :EX2+CX4, 5)X2:|:X3+CX5, 8)X4+CX5+dX6, (7)
3)X1 :l:X3+CX6, 6)X2+CX4+dX5,

where a, b, ¢ and d are real numbers and a # 0,b # 0 [11].

3 Similarity Reduction of ((2D) Rf) Equation

In this section, the two-dimensional Ricci flow equation will be reduced by
expressing it in the new coordinates. The ((2D) Rf) equation is expressed
in the coordinates (z,y,t,u), we must search for this equation’s form in the
suitable coordinates for reducing it. These new coordinates will be obtained
by looking for independent invariants (z, w, f) corresponding to the generators
of the symmetry group. Hence, by using the new coordinates and applying
the chain rule, we obtain the reduced equation. We have listed the result for
some cases in Table 1.

Table 1: Lie invariants, similarity solutions and reduced equations.

i h {zi, wi,v;} U; Similarity reduced equations

1 X+ X {ye ™", t,uy} L Plre=2f+zff+ 2 e =0
2 X2+X4 {zvteiyaueiy} fey fszfwfsz +wffzw =0

3 Xy+ Xs+dXs (& W%,ua®™} o fu(f2- f) - daf?

+f(dfz +dzfzz +fzw) =0

4 Xo+ Xs+Xs (S mS,uzy L f2fu— 2 fufot ffat ffw =0
5 X+ X5 {ln%,t,um} % [Pfo—f2+ffz=0

6 X3+ Xo {e,t—lnyuy}y L fPfu—fofut [faw=0

T X1+ X {y —o,t,u} f fPho—f2+ff =0

8 Xo+ X3 {z,t —y,u} f 2w —fofw+ ffaw=0

By reducing the equations obtained in Table 1 to ODEs we can solve them
[11]. In Table 2, we obtain the invariant solutions of ((2D) Rf) equation
corresponding to some of the similarity reduced equations.
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Table 2: Group invariant solutions of the ((2D) Rf) equation.

A’ Invariant solution A’ Invariant solution
2 3 2cqef1(sF¢2)
Al —2s + C1 ./44 —1+8761(S+02)
3 1 Ins—c2 \2 2 1 s+c2\2
A AL cgecrs
G
—c?e’s
Af cas® AF
es (c1—s)—scicy
Al c1(l4c1)scl .Al crecl(ste2)
3 —s1(1+c1—ds)+dcica(1+c1)(ds—1)e1t! 8  1—ec1(ster)

4 Nonclassical Symmetries of ((2D) Rf) Equa-
tion

In this section, we will apply the so called nonclassical symmetry method
[2]. Beside the classical symmetries, the nonclassical symmetry method can
be used to find some other solutions for a system of PDEs and ODEs. The
nonclassical symmetry method has become the focus of a lot of research and
many applications to physically important partial differential equations as in
[1, 6, 5, 9]. Here, we follow the method used by Cai Guoliang et al, for ob-
taining the non-classical symmetries of the Burgers-Fisher equation based on
compatibility of evolution equations [3]. For the non-classical method, we must
add the invariance surface condition to the given equation, and then apply the
classical symmetry method. This can also be conveniently written as:

XPA; |a10,85-0= 0, (8)
where X is defined in (5) and A; and A, are given as:
Ay = uPuy + Uy, — Uiy, Ay = —&uy — Euy — Euy (9)
Without loss of generality we choose €2 = 1. In this case using A, we have:
_ 1 2
u = —&uy — &y, (10)
Total differentiation D; of the equation gives
Dy(uPuy) = Dy(utiyy — Uptly) = Wiy + Ullyyr — Ugglly — Ugplyy
= (90 - flux - €2uy)umy + U(SO - gluac - §2uy)azy
—(p = &lug — Euy)puy — (0 — Eluy — Euy),y (11)

= quxy - glua:uzy - €2uyuxy + u((pzy - Sluxzy - €2uocyy)
— (" — EUgy — fZUyw)uy — Uy (¥ — fluacy - 52“91/)
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and
Di(v*u) = Dy(u*(p — &uy — E2uy)) = 2uup + vt — 2uupu, &
— Uyt — 2uuuyE? — utuy, &P
= 2u(§0 - gluw - £2uy)90 + UQSOt - 2u(§0 - glux - £2uy)uz£1 (12)
—UQ(QO - gluz - §2uy)$§1 - 2“(@ - gluz - gzuy)uyg2
—u?(p — luy — Euy), &
On the other hand we have:
D, (uuy) = Dp(uttyy — uzuy)
= 20Uy + Uy = Ullyyy — Ugg Uy (13)
= 2uu,(p — Euy — Euy) + u (o — Eluy — E2uy)p = Wllgyy — Ugrtly

and

Dy (u?ug) = Dy (wtizy — uguy)
= 2ty Uy + Uy = Ullyyy — Uyy Uy (14)
= 2uuy (o — 'y — Euy) + U (P — Eue — Euy)y = Wlayy — Uyyty.

By equality of (11) and (12) and substituting the (13) and (14) in them, the
governing equation is obtained as follow

2up? + uPpt — 2uu, o — 2uu, 2o — pug, — up™ + e uy, + u, =0

= 2uup + Ut — Pugy, — up™ + puy, + u, =0 (15)
where !, ©*, ¥ and ¢ are given by
Sox = Dx(SO - Slux - §2uy - 6311,,5) + glux:c + €2uocy _I' €3u:ct
Spy = Dy((:p - gluac - £2uy - fgut) + glua:y + £2uyy + £3uyt7 (16)

Sot = Dt(QD - glum - £2uy - £3ut) + fluaﬁt + £2uyt + ggutt )
e = DwDy<§0 - élum - éguy - ggut) + gluwzy + §2Umyy + §3u$yt

Substituting them into the (15), we can get the determining equations for
the symmetries of the ((2D) Rf) equation. By substituting £ = 1 into the
determining equations, we obtain the determining equations of the nonclassi-
cal symmetries of the original equation (4). Solving the system obtained by
this procedure, the only solutions we found were exactly the solution obtained
through the classical symmetry approach (6). This means that no supplemen-
tary symmetries, of non-classical type, are specific for ((2D) Rf) equation.

5 Conclusion

In this paper, by using the adjoint representation of the symmetry group on its
Lie algebra, we have constructed an optimal system of one-dimensional subal-
gebras for a well-known partial differential equation in mathematical physics
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called: two-dimensional Ricci flow equation. Moreover, by applying the crite-
rion of invariance of the equation under the prolonged infinitesimal generators,
we find the most general Lie point symmetries group of the ((2D) Rf) equa-
tion. Also by applying the nonclassical symmetry method for the ((2D) Rf)
equation we concluded that the analyzed model do not admit supplementary,
nonclassical type symmetries.
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