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Abstract

For any graph G = (V, E), a subset S of V' is a dominating set if every
vertex in V — S is adjacent to at least one verter in S. A dominating set S is
said to be a complementary connected dominating set if the induced subgraph
(V —8) is connected. The minimum cardinality of a complementary connected
dominating set is called the complementary connected domination number and
is denoted by v..(G). The connectivity k(G) of a connected graph G is the
minimum number of vertices whose remouval results in a disconnected or trivial
graph. In this paper we find an upper bound for the sum of the complementary
connected domination number and connectivity of a graph and characterize the
corresponding extremal graphs.
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1 Introduction

The graph G = (V, E') we mean a finite, undirected and connected graph with
neither loops nor multiple edges. The order and size of G are denoted by n
and m respectively. The degree of any vertex u in GG is the number of edges
incident with u and is denoted by d(u). The minimum and maximum degree
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of a graph G is denoted by §(G) and A(G) respectively. For graph theoretic
terminology we refer to Chartrand and Lesniak [1] and Haynes et.al [2, 3].

In a graph G, a subset S C V' is a dominating set if every vertex in V' — .S is
adjacent to at least one vertex in S. The minimum cardinality of a dominating
set is called the domination number of G and is denoted by (G). T. Tamizh
Chelvam and B. Jayaprasad [6] introduced the concept of complementary con-
nected domination in graphs. Also V.R. Kulli and B. Janakiram [4] studied
the same concept in the name of the nonsplit domination number of a graph.
A dominating set S is said to be a complementary connected dominating set
if the induced subgraph (V' — S) is connected. The minimum cardinality of
a complementary connected dominating set is called the complementary con-
nected domination number of G and is denoted by 7..(G) and such a set S
is called a v.— set. The connectivity x(G) of a connected graph G is the
minimum number of vertices whose removal results in a disconnected or trivial
graph.

Several authors have studied the problem of obtaining an upper bound
for the sum of a domination parameter and a graph theoretic parameter and
characterized the corresponding extremal graphs. J. Paulraj Joseph and S.
Arumugam [5] proved that 7(G) + k(G) < n and characterized the corre-
sponding extremal graphs. In this paper, we obtain an upper bound for the
sum of the complementary connected domination number and connectivity
of a graph and characterize the corresponding extremal graphs. We use the
following theorems and notations.

Theorem 1.1 [6/ For any graph G, v..(G) < n — 1 and equality holds if
and only if G is a star.

Theorem 1.2 [1] For a graph G, k(G) < §(G).

Notation 1.3 H(mq,ms,...,m,) denotes the graph obtained from the graph
H by attaching m; pendant edges to the vertexv; € V(H),1 <1 < n. The graph
Ks(my, my) is called a bistar and it is also denoted by B(my,ms).

Notation 1.4 H(P,,,, Py,, ..., Pn,) is the graph obtained from the graph H
by attaching an end vertex of P, to the vertex v; in H,1 <i < n.

Notation 1.5 Let G be a reqular graph. The graph G(r) is obtained from
the graph G U Ky by adding v number of edges between the vertex of Ki and
any r vertices of G.

2 Main Results

Observation 2.1 Suppose n > 3, Y is a matching of K,, and G = K, —Y
then ve.(G) < 2.
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Theorem 2.2 For any connected graph G, v..(G) + k(G) < 2n — 2 and
equality holds if and only if G is isomorphic to K.

Proof: 7..(G)+k(G)<n—-1+5d<n—14+n—-1=2n-2.

Let Yee(G) + k(G) = 2n — 2. Then 7..(G) =n—1 and k(G) = n — 1 which
gives (& is a complete graph as well as a star graph. Hence G is isomorphic to
K5. The converse is obvious. O

Theorem 2.3 For any connected graph G, v..(G) + k(G) = 2n — 3 if and
only if G is isomorphic to K5 or Ks.

Proof: Let 7..(G) + k(G) = 2n — 3. Then there are two cases to consider
(1) Yee(G) =n — 1 and K(G) =n — 2 (i1) Yee(G) =n —2 and k(G) =n — 1.
Case 1. 7..(G) =n—1and k(G) =n — 2

Then G is a star graph and hence x(G) = 1 which gives n = 3. Thus G is
isomorphic to K 5.
Case 2. 7..(G) =n—2and kK(G) =n—1

Since k(G) = n—1, we have G is a complete graph. But v..(K,,) = 1 which
gives n = 3. Hence G is isomorphic to K3. The converse is obvious. 0

Theorem 2.4 For any connected graph G, ve..(G) + k(G) = 2n — 4 if and
only if G is isomorphic to K13 or K4 or Cy.

Proof: Let v..(G) + k(G) = 2n—4. Then there are three cases to consider
(1) Yee(G) =n — 1 and K(G) = n — 3, (ii) Yee(G) =n —2 and £K(G) = n — 2,
(177) Yee(G) =n — 3 and k(G) =n — 1.

Case 1. 7.(G)=n—1and K(G)=n—3

Then G is a star graph and hence x(G) = 1 which gives n = 4. Thus G is
isomorphic to K 3.

Case 2. 7..(G) =n—2 and k(G) =n — 2

Then n —2 < 9. If § = n— 1 then G is a complete graph which is a
contradiction. Hence 6 = n — 2. Then G is isomorphic to K,, — Y where Y
is any matching in K,,. Then v, <2 . If .. = 1 then n = 3 and hence G is
isomorphic to K; s which is a contradiction. If 7., = 2 then n = 4. Hence G
is isomorphic to Cy or Ky — e. But v..(Ky —e) =1 # n — 2 which gives G is
isomorphic to Cy.

Case 3. 7..(G) =n—3 and kK(G) =n—1

Since k(G) = n—1, we have G is a complete graph. But v..(K,,) = 1 which
gives n = 4. Hence G is isomorphic to K4. The converse is obvious. U
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Theorem 2.5 For any connected graph G, v..(G) + k(G) = 2n — 5 if and
only if G is isomorphic to any one of the following graphs (i) Ki4 (ii) Ks
(1ii) K4 — e (iv) C5 (v) Py (vi) K3(1,0,0).

Proof: Let 7..(G) + x(G) = 2n — 5. Then there are four cases to consider
(1) Yee(G) =n — 1 and k(G) =n — 4, (ii) Yee(G) =n — 2 and kK(G) =n — 3,
(171) Yee(G) =n — 3 and k(G) =n — 2, (iv) Ye(G) =n —4 and k(G) =n — 1.

Case 1. 7..(G) =n—1and k(G) =n —4

Then G is a star graph and hence x(G) = 1 which gives n = 5. Thus G is
isomorphic to K 4.

Case 2. 7..(G) =n—2and kK(G) =n—3

Then n —3 < 9. If 6§ = n— 1 then G is a complete graph which is a
contradiction. If § = n — 2 then G is isomorphic to K, — Y where Y is a
matching in K. Then 7. < 2 and hence n = 4 which gives G is isomorphic to
either Cy or K, — e which is a contradiction to x(G) = n—3. Hence § = n —3.

Let X = {vy,vq, -+ ,v,_3} be a minimum vertex cut of G and let V — X =
{.’El, T, l‘g}.

Sub Case 2.1. (V — X) = K3

Then every vertex of V — X is adjacent to all the vertices in X. Sup-
pose E((X)) = 0. Then G is isomorphic to K3 or Koz or K33 which is a
contradiction to V..(G) =n — 2.

Suppose E((X)) # 0. Let vyvy € E(G). Then V — {x1,29, 23,01} is a
complementary connected dominating set of G' which is a contradiction.

Sub Case 2.2. (V — X) = K; UK,

Let x1 9 € E(G). Then x3 is adjacent to all the vertices in X and xy, x9
are not adjacent to at most one vertex in X. If | X| > 3 then there exists an
vertex v; € X such that vy z1, vy 29 € E(G). Then V — {21, 29,v,} is a com-
plementary connected dominating set of G which is a contradiction. If | X| =1
then G is either Py or K3(1,0,0). Suppose | X| =2 and let X = {vy,ve}. If 24
and x5 are adjacent to all the vertices in X. Then G is a graph obtained from
(K4 —e) UK, by joining a vertex of K to two vertices of K, — e of degree 2 or
K4(2). But for these graphs v.. # n—2. If z; and x5 are adjacent to v; and not
adjacent to vy then also .. # n — 2. If x; is not adjacent to v; and x5 is not
adjacent to vy then G is isomorphic to Cs or Cy(2). But 7..(C4(2)) = 2 # n—2.
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Hence G is isomorphic to Cj.
Case 3. 7..(G) =n—3 and k(G) =n —2

Then n —2 < 9. If § = n— 1 then G is a complete graph which is a
contradiction. Hence 6 = n — 2. Then G is isomorphic to K,, — Y where YV
is any matching in K,,. Then v, < 2. If .. = 1 then n = 4 and hence G
is isomorphic to either Cy or K4 —e. But 7..(Cy) = 2 # n — 3. Hence G is
isomorphic to K, — e.

Case 4. 7..(G) =n—4 and kK(G) =n—1

Since kK(G) = n—1 we have G is a complete graph. But v..(K,) = 1 which
gives n = 5. Hence G is isomorphic to K5. The converse is obvious. UJ

Theorem 2.6 For any connected graph G, v..(G) + k(G) = 2n — 6 if and
only if G is isomorphic to any one of the following graphs (i) K5 (ii) Kg
(173) Cg (1v) Ps (v) B(2,1) (vi) C5(1,1,0) (vii) K3(2,0,0) (viii) Ko 5 (iz) Cs(2)
(x) Cy(3) (zi) K5 — M where M is a matching in K5 (vii) K¢ —Y where Y
s a perfect matching in Kg.

Proof: Let 7..(G) + k(G) = 2n — 6. Then there are five cases to consider
(1) Yee(G) =n—1 and k(G) =n —5 (i1) Y.(G) =n —2 and kK(G) =n —4
(7i1) Yee(G) =m —3 and kK(G) =n—3 (iv) Y.(G) =n—4 and kK(G) =n—2
(V) Yee(G) =n =5 and kK(G)=n—1

Case 1. 7.(G) =n—1and kK(G)=n—5

Then G is a star graph and hence k(G) = 1 which gives n = 6. Thus G is
isomorphic to K 5.

Case 2. 7.(G) =n—2and k(G) =n —4

Then n —4 < §(G). If 6(G) = n—1 then G is a complete graph which is a
contradiction to k(G) = n—4. If §(G) = n—2 then G is isomorphic to K,, — Y
where Y is a matching in K. Hence 7..(G) < 2. Then n < 4 which is a con-
tradiction to kK(G) = n —4. Suppose §(G) =n—3. Let X = {vy,va,- -+ , 0,4}
be a minimum vertex cut of G and let V — X = {zy, xq, x5, 24}. If (V — X)
contains at least one isolated vertex then §(G) < n—4 which is a contradiction.
Hence (V — X) is isomorphic to Ky U K. Let us assume z125, 324 € E(G).
Also every vertex of V' — X is adjacent to all the vertices of X. If |X| > 2
then (X — {v1}) U {x1, 22} is a complementary connected dominating set of



32 C. Sivagnanam et al.

G which is a contradiction. If | X| =1 then {5, 23} is a complementary con-
nected dominating set of G which is a contradiction. Thus 6(G) = n — 4.

Sub Case 2.1. (V — X) = K,

Then every vertex of V' — X is adjacent to all the vertices in X. Suppose
E((X)) = ¢. Then |X\ < 4 and hence G is isomorphic to Ks4,1 < s < 4. But

/Vcc(G) ( ) 7é 2n —

Suppose E((X)) # ¢. If any one of the vertex in X say vy is adjacent to
all the vertices in X and hence 7..(G) = 1. Then n = 3 which is impossible.
Hence every vertex in X is not adjacent to at least one vertex in X. Hence
Yee(G) = 2. Then n = 4 which is also impossible.

Sub Case 2.2. (V — X) =P, UK,

Let z; be the isolated vertex in (V' — X) and let (zq, 3, x4) be the path in
(V — X). Then z; is adjacent to all the vertices in X and x5, 24 are not adja-
cent to at most one vertex in X and z3 is not adjacent to at most two vertices
in X. If | X| > 3 then X U{z;} is a complementary connected dominating set
of cardinality n — 3 which is a contradiction. If |X| = 2 then {x3,z4,v2} is a
complementary connected dominating set of G or G is isomorphic to Cs.Thus
G is isomorphic to Cg. If | X| = 1 then G is isomorphic to Ps or B(2,1) or
C3(1,1,0) or Cy4(1,0,0) or the graph G which is obtained from (K —e) U K,
by adding an edge between a vertex of K; and a vertex of degree three in
Ky —e. But 7..(C4(1,0,0)) = 7.(G1) = 2 # n — 2. Hence G is isomorphic to
P; or B(2,1) or C3(1,1,0).

Sub Case 2.3. (V — X) = K3 U K,

Let x; be the isolated vertex in (V' — X) and let ({2, z3, x4}) be the
complete graph. Then x; is adjacent to all the vertices in X and zo, x3, x4
are not adjacent to at most two vertices in X. If |X| > 3 then X U {z;}
is a complementary connected dominating set of cardinality n — 3 which is
a contradiction. If | X| = 2 then {vy, 21,22} or {vy,z1, 23} or {vy, 21,24} is a
complementary connected dominating set of G. Hence 7..(G) < 3. Thenn <5
which is a contradiction. If | X| =1 then 7..(G) < 2 and hence n < 4 which is
a contradiction.

Sub Case 2.4. (V — X) = Kh U K,

Let xy x9, xz3x4 € E(G). Since 6(G) = n — 4 each z;,1 < ¢ < 4 is non-
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adjacent to at most one vertex in X. If | X| > 3 then N(z1) N N(z3) N X #
¢. Let v; € N(z1) N N(z3) N X. Then V — {x1,x3,v1} is a complementary
connected dominating set of G which is a contradiction. Let |X| = 2. If
{N(z1) UN(x9)} N{N(x3) UN(z4)} = ¢ then x(G) = 1 # n — 4 which is
a contradiction. Hence we assume with out loss of generality x; and z3 are
adjacent to vy. Then {vy, 9,24} is a complementary connected dominating
set of G which is a contradiction. Hence |X| = 1. Then G is isomorphic to P;
or C3(Ps, Py, Py) or the graph G5 which is obtained from C3(2,0,0) by joining
the pendant vertices by an edge. But 7..(C3(Ps, P1, P1)) = Vee(G2) =2 #n—2
which is a contradiction. Hence G is isomorphic to Ps.

Sub Case 2.5. (V — X) = K, UK,

Let o1 75 € E(G) and z324 € E(G). Then each x;, i = lor 2 is non adja-
cent to at most one vertex in X and each z;, j = 3or4 is adjacent to all the
vertices in X. For this graph v..(G) < 3 and hence n < 5. Thus n = 5. Then
| X| = 1. Hence G is isomorphic to B(2,1) or K3(2,0,0).

Case 3. 7.(G) =n—3 and kK(G) =n—3

Then n—3 < 6(G). If § = n—1 then G is a complete graph which is a con-
tradiction to k(G) =n—3. If § = n—2 then G is isomorphic to K, —Y where
Y is a matching in K,,. Then 7..(G) < 2. If 7.(G) = 1 then n = 4. Hence G
is isomorphic to Ky — e. But k(K4 — e) = 2 # n — 3 which is a contradiction.
If v..(G) = 2 then n = 5. But 7..(K5—Y) = 1. Hence there is no graph satisfy
the given conditions. Hence 6(G) = n — 3. Let X = {vy,vq, - ,v,-3} be a
minimum vertex cut of G and let V' — X = {x, x9, 23}.

Sub Case 3.1. (V — X) = K3

Then every vertex of V' — X is adjacent to all the vertices in X. Suppose
E((X)) = ¢. Then |X| < 3 and hence G is isomorphic to Ky3 or K33. But
Yee(K33) = 2 # n — 3. Hence G is isomorphic to Ky 3. Suppose E((X)) # ¢.
If v; € X for some i, is adjacent to all the vertices in X and hence 7..(G) = 1.
Then n = 4 which is a contradiction. Hence every vertex in X is not adjacent
to at least one vertex in X. Hence 7..(G) = 2. Then n = 5. Hence G is
isomorphic to Ky 3.

Sub Case 3.2. (V — X) = K; UK,

Let x1 x5 € E(G). Since § = n— 3 we have z3 is adjacent to all the vertices
of X and z1, x5 are non adjacent to at most one vertex in X. Suppose x; is adja-



34 C. Sivagnanam et al.

cent to all the vertices of X. Then {z5, x3} is a complementary connected dom-
inating set of G and hence v..(G) < 2. If 7..(G) = 1 then n = 4. Hence G is
isomorphic to either Py or K5(1,0,0). But vee(Ps) = Yee(K3(1,0,0)) =2 # n—3
which is a contradiction. If 7..(G) = 2 then n = 5. Hence G is isomorphic to
Cy4(2) or Cy4(3). Suppose d(z;) =n —3,1 <i < 2.. Then 7.(G) =2 or 3. If
Yee(G) = 3 then n = 6. Then we get the graphs with 7..(G)+x(G) # 2n—6. If
Yee(G) = 2 then n = 5. Hence G is isomorphic to C5 or Cy(2) or C5(Ps, P, P)
or the graph G3 which is obtained from C3(2,0,0) by joining the pendant
vertices by an edge. If G is isomorphic to C5 or C3(Ps, Py, P;) or G3 then
Yee(G) + K(G) # 2n — 6. Hence G is isomorphic to Cy(2).

Case 4. 7..(G) =n—4 and k(G) =n — 2

Then 6(G) > n—2. If 6(G) = n—1 then G is a complete graph which is a
contradiction. Hence 6(G) = n — 2. Then G is isomorphic to K,, — M where
M is a matching in K,. Thus 7..(G) < 2. If 7..(G) = 1 then n = 5. Hence

G is isomorphic to K5 — M where M is a matching in Ks. If 7..(G) = 2 then
n = 6 and hence G is isomorphic to Kg—Y where Y is a perfect matching in K.

Case 5. 7.(G) =n—5and k(G) =n—1

Since k(G) = n—1 we have G is a complete graph. But ~..(K,) = 1 which
gives n = 6. Hence G is isomorphic to Kg. The converse is obvious. [l

3 Conclusion
In this paper we found an upper bound for the sum of complementary con-
nected domination number and connectivity of graphs and characterized the

corresponding extremal graphs. Similarly complementary connected domina-
tion number with other graph theoretical parameters can be considered.
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