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Abstract

In this paper, we established the conditions ofdbeurrence of local bifurcation
(such as saddle-node, transcritical and pitchfosith particular emphasis on the
Hopf bifurcation near of the positive equilibriunoipt of eco-epidemiological
mathematical model consisting of prey-predator rhadeolving SIS infectious
disease in prey population are established. After $tudy and analysis, of the
observed incidence transcritical bifurcation neayuéibrium point & as well as
the occurrence of saddle-node bifurcation at equiim points k&, E,. It is worth
mentioning, there are no possibility occurrencetlué pitchfork bifurcation at
each point i= 0,1,2. Finally, some numerical simulations arged to illustration
the occurrence of local bifurcation of this model.

Keywords: Eco-epidemiological model, Equilibrium Points, Lbb#durcation,
Hopf bifurcation.
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1 I ntroduction

Mathematical modeling is an important interdiseiply activity which involves
the study of some aspects of diverse disciplinemloBy, Epidemiology,
Physiology, Ecology, Immunology, Genetics, Physiasee some of those
disciplines. In fact, both mathematical ecology andthematical epidemiology
are distinct major fields of study in biology. Biltere are some commonalities
between them. Recently, these two major fieldswdysare merged and renamed
as a new field of study called eco-epidemiology. e other hand eco-
pidemiology is the branch of biomathematics thatlaretands the dynamics of
disease spread on the predam@y system, whereas considered interaction
between predators and their prey is a complex phenon in ecology. Many
researchers, especially in the last two decade® pi@posed and studied number
of eco-epidemiological models involving two or margeracting species have
already been performed in this particular directieee for example [1-3] and the
references there in.

Bifurcation theory is the mathematical study of mip@s in the qualitative or
topological structure of a given family, such as thtegral curves of a family of
vector fields, and the solutions of a family of fdiential equations. Most
commonly applied to the mathematical study of dyicahrsystems, a bifurcation
occurs when a small smooth change made to the ptganalues (the bifurcation
parameters) of a system causes a sudden 'quditativopological change in its
behavior, for example, see [4-6]. The bifurcatioccwrs in both continuous
systems (described by ODEs, DDEs or PDES), seex@mple [7-12] and discrete
systems (described bymaps), see for example [12Hé&iri Poincaré [18] was
first introduced the name "bifurcation” in 1885the first paper in mathematics
showing such a behavior also later named variopsstyf stationary points and
classified them. Perko L. [19] established the aionas of the occurrence of local
bifurcation (such as saddle-node, transcritical agitthfork). However,the

necessary condition for the occurrence of the Hoipdircation presented by
Hirsch M.W. and Smale S. [20] while, Haque M. arehturino E. [21] Explained

the sufficient condition for the occurrence of tHepf bifurcation in addition to

them, nots see for example [22,23, 24]. R. Lati@gyéh and R. Kamel Naji [25]
had previously studied local bifurcation (such addte-node, transcritical and
pitchfork) and Hopf bifurcation around each of thguilibrium points of prey-

predator model involving Sl infection disease inthbdhe prey and predator
species.

In this paper, we will establish the conditions thle occurrence of local
bifurcation and Hopf bifurcations around each o #quilibrium points of a
mathematical model proposed by Karrar Q., Azhaakl Raid N. [26].
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2 Mode Formulation [26]

An eco-epidemiological mathematical model consgstoi prey-predator model
involving SIS infectious disease in prey populaticnproposed and analyzed in
[26].

N
ds S+I1
= =1S(1—==)-GSP —1SI-6:S +al
= MSI+61S — elPy —y1l —al >
(1)
%Z _XZPlPZ —-0,P; + e_|_ClsP1 + (1-m) ecIP; —72P1 + BPZ
P2 )PP /
=7 = 12P1P2 + ©2Py + m eCalPy - v2P2 —v3P2 - BPo.
Where 0<g 1; i = 1,2 represent the conversion rate constand O< m < 1

represents the infection rate of susceptible poedidiat predation the infected
prey. This model consists of a prey, whose totgutetion density at time T is
denoted by N(T), interacting with predator whosltpopulation density at time
T is denoted by P(T). Note that, there is an Si®lepic disease in prey
population divides the prey population into two sslas namely S(T) that
represents the density of susceptible prey spemiesme T and I(T) which
represents the density of infected prey speciéisnatT. Therefore at any time T,
we have N (T) = S (T) + | (T)Also, The disease is transmitted from a prey to
predator during attacking of predator to prey, Whidivides the predator
population into two classes namely( P that represents the density of susceptible
predator species at time T andx(TB which represents the density of infected
predator species at time T. Therefore at any timee have P(T)=FT) + Py(T).

All the parameters are moreover assumed to beiymwsihd described as given in
[26].

Now, for further simplification of the system (2he following dimensionless
variables are used in [26].

S
t=rT,x==, y=—, z=2P,, w=2 P,
k r r

1
k k)
Thus, system (2) can be turned into the followiirgahsionless form:

Z=x(1—x— (1 +u)y—z— up) +uzy = fu(X, y, 2, W) A

% =Yy (U1X — uz— (uz + us)) Fupx =f(X, Y, 2, W)(2) >

:—f = z(— UgW + ugx+ ug(1—m)y— (u; + U1o)) + ugw = f3(X, Y, Z, W)

J
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d
d—vtv =UezZW + (U + LlbMy )Z — (Uo+ Wi+ U2 )W = f4(X, Y, Z, w).

Here:
_ Mk _0 _a c2 _Y _ A _6; _eck
U= =, b= —, =, W= =, U= —, == , ==, lg=——,
s T T C1 r Cl r r
_ €K —_ Y2 _B _ Y3
Ug= y o= —, lii= =, o= —.
r r r r

With, x(0) > 0, y(0)> 0, z(0)> 0, w(0)> Oand it is observed that the number
ofparameters have been reduced from Sixteen isytsiem (1) to Thirteen in the
system (2).Obviously the interaction functions loé tsystem (2) are continuous
andhave continuous partial derivatives on the Yalhg positive fourdimensional
spaceRi = {(x, y, z, W)€ R* : x(0)> 0, y(0)> 0, z(0)> 0, w(0)> 0}. Therefore
these functions are Lipschitzian 86, and hence the solution of the system (2)
exists and is unique.Further, in the following tteao, the boundedness of the
solution of the system (2) iR} is established by [26].

Theorem 1: All the solutions of system (2) which initiate ieR$are uniformly
bounded.

3 The Stability Analysis of Equilibrium Points of
System (2) [26]

It is observed that, system (2) has at most thi@ledically feasible equilibrium
points E=(x, y, z, w); i = 0, 1, 2; which are mentioned hwvitheir existence
conditions in [26] as in the following:

1. The Vanishing Equilibrium Point: Eg = (0,0,0,0) always exists and, 5
locally asymptotically stable in the IRt. If the following conditions hold

u,> 1+=(3.a)
Us

However, it is (a saddle point) unstable otherwidere details see [26].

2. The Predator Free Equilibrium Point: E; = (X,5, 0, 0) exists uniquely in the
Int. R} if and only if the following conditions are hold.

uy> 1+=2 (3.a)
Us
uz
1+ uq

<®<1-u, B
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Where
5= 1-(X+uy) (1+ Lj_);'fu—s
Y T u- (D g

While Xrepresents a positive root of the following secarder polynomial
equation

AxP+ Ay x+A3=0

Where

Ai=u>0

A=-(lth++ W) <0

As=(l+ W) — (L)

And it is locally asymptotically stable if the folving conditions are satisfied:

),22 <(u1+u2 +2(u3+u5)))?+ (us(1+uq)+ uz)y+ us(uy—1)—us

(3.0

2u1

£<min{a,b }.
Where

_ (uy+2ui9+ui;+uq2)—u9(1-m)y

ug

b= u;(Uig+ Uiz)+ ugo(ugotusg+usz)— u9§((1—m)(u10+ uiz)+ u11)
ug(uiotuigtusz)

However, it is (a saddle point) unstable otherWikee details see [26].

3. Finally, the Positive (Coexistence) Equilibrium Point: E,= (X, Y, z, W)
exists and it is locally asymptotically stable saswn in [26].

4  ThelLocal Bifurcation Analysis of System (2)

In this section, the effect of varying the parametalues on the dynamical
behavior of the system (2) around each equilibrpomts is studied. Recall that
the existence of non hyperbolic equilibrium poimtsgstem (2) is the necessary
but not sufficient condition for bifurcation to agc Therefore, in the following
theorems an application to the Sotomayor's thedqfd@for local bifurcation is
adapted.

Now, according to Jacobian matrix of system (2egiby Eq. (4.1) in [26], it is
clear to verify that for any nonzero vector V 3,(w, Vs, Va)' we have :
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- 2V1(V1 +(1+u)v, + Vs)
2v, (ulvl - u4V3)
2v, (u8V1 +Uy1-m)v, - U6V4)
2v, (ugmvz + u6V4)

D*F(V, V)= (4.a)

and D3F(V, V,V)=(0,0,0,00.

So, according to Sotomayor'stheorem the pitchfaftkrdation does not occur at
each pointEi =0, 1, 2.

4.1 Thelocal Bifurcation Analysis Near Eq
Theorem 2: Assume that the following condition holds:

M1 # M2 (4.b)
Where

+ug(1- +
T R e e e I L

M [0] ue(u7+u10) [0]
( ” v, +—u11 vz ).

Uztusy [0]  [0] , AUstust+ly  [0] [0] Uay [0] 0] [0] | Ue(u7+Uio)
“22( Us )v1 l~|J2 (( Us )v1 +t U )+(u5)171 V3 “|J2 + Ugp

0 0

Then, the system (2) near the vanishing equilibrpomt & with the parameter
u3 = 1+ has:
5

1. No saddle- node bifurcation.
2. Transcritical bifurcation.

Proof: According to the Jacobian matrixgiven by Eq.(4.2) in [26], the system
(2) at the equilibrium point daas zero eigenvalue (sgy= 0) at u, =u;, and the
Jacobian matrixovithu, = u; becomes:
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[ u
-3 U, 0 0
u5
Jo =Jo(uz)=| U, — (U3 +ug) 0 0
0 0 = (u; +uy,) Uy
| 0 0 u; = (Uyp +Uy; +Up,) |
Now, letV[0] = (vl[o], vl vgo], vio] ) be the eigenvector corresponding to the

eigenvaluely, = 0. ThugJ; — Ao, I )V = 0, which gives:
vz[o] :uivl[o] : i I'= @ and v1 : ;o] are any nonzero real numbers.
5 11
Let Yl = (@l Iyl O be the eigenvector associated with the

eigenvaluely, = 0 of the matrlx]OT Then we havé/yT

— Aox DY =

solving this equation foy[® we obtain

- ((u3+u5) Lpz ’Lpz ,l.|J3 ’(u7+u10) L|J[ ]) T ' Where L|J£O] and Lpgo] are any

uz

L|J[0]

nonzero real numbers.

Now, consider:

6F2 6F3 6F4
" uy

o =R, (X ) = G 2)'=(%,x,0,0].

So,E,,(Eo, u3) = (0,0, 0, 0%and hence §!°! )'F,_( Eq, u3) =0

Thus, according to Sotomayor'stheorem for localrbdtion,the saddle-nod
bifurcation can't occur. While the first conditiaf transcritical bifurcation is
satisfied. Now, since

1000
1 000
PR, (X w) =15 o o o
0 000

WhereDFE,,( X, u;) represents the derivative &, ( X, u;) with respectto X =
(x,V,z, w) . Further, it is observed
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VIO ]
_ ! _ 0l
1 000 1 1 A

—V

1 000 ! Vi
DE, ( E,, u)VIol = 5 =
uz( 0r Uz) 0 000 VgO] 0
0 00O (U7+U10)V[30] 0

11 ]

% _ ((uz+us) 0 0 0] (us+ ) 0
(W) [DE,, (B up)v o]z (e gl g, o Y, el )
(-vl[o], vl[O], 0,0 )T
— _us _[0] [0]
—-u—ivl Y, #0.

Moreover, by substituting, , u; andV[®l in (4.a) we get:

u. +u, +1
- 2v£°] [vf’] M +Vl301J

Us

2
240

D?F( Ey, u3)(V1O, o]y = Us :
20 (v{‘” (Uglls +Us (1=m)) _ U (U +Uyo) Vlst

-u, v )

uS ull

usm us (U, +u
2V[301( 9 V&O] + 6(Uz +Uy,) VgO]J

U5 ull

Hence, it is obtain that:

WC)T[D?F (B, uz) (VIO VIN)]= 2 (1 - o).
According to condition (4.b) we obtain that:
WI)T[D2F (Eq, up) (VI VD] £0 .

Thus, according to Sotomayor’stheorem system (3) thenscritical bifurcation

atky, with the parameteu, = u; . Otherwise, when condition (4.b) does not

satisfied,the system (2) has no any type of bifimoaand thiscomplete the proof.
|

4.2 Thelocal Bifurcation Analysis Near E;

Theorem 3: Assume that left the condition (3.b) holds andthet following
conditions hold
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Uz + us + 2u; (x> (ug + 2(uz +us) ) x" + (ug +us(1+uy) )y (4.c)
uf +2x" + (14+u)y>1 (4.d)
(us + us)(uf +2x" + (1 + uy)y-1)+@i+u, y)((A+u)x" — u3)

£ugx"(1- @ + 2x" + (1 +w)y)) (4.e)
us + us>ux” + uy(1+uy)y" (4.
Uy +Ugp < Ugx” + Ug(1 —m)y" (4.9)
a7 asy. (4.h)
Where:

1= p1P291q2(1 + U1)q3 + P1P3G1q3Us + P2q1q2Ug + Ug -

2= P1P2G192(1 + q2) +P1P391G293U1 P4 (Ug(1 — M)q1q3 + ug) + ugmq,qs.

Here:
:(u10+u11+u12) — ugy +(usx" —(uz+us))riry _n
! uy+ugmy” -’ 2 (u§+u1J’A) ' 13 L4
_ 3 — A _ A _ (uiptugitugy)
p1-= s 2= X — (uz tus) ,p3=1+tudx —uz ,pp=———"-.
Uq174 Uq1
With:

rn=uy (Wl +2x"+ (1 +u)y” — 1D+ @Wd +uyHx" .
r=(us + us)(d + 2x" + (1 4wy -1)+@d+uy y)((A+uy)x" — ug)+
ux"(1- @ +2x" + (1 +up)y)).
3= Up1 (o + Ur2) (U7 + Ugg — (Ugx” + ug(1 —m)y") — (uy; + ugmy")) .
1= x (us + us — (ux" + us(1+u)y")) + uzugy”.
Then system (2) near the predator free equilibpamt E with the parameter

ug _ (u3+u5+2u1XA2)—((u1+2(u3+u5))xA+(u3+u5(1+u1))yA) , has:

us+x"

1. No transcritical bifurcation.
2. Saddle-node bifurcation.
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Proof: According to the Jacobian matrixglven by Eq. (4.5) in [26], the system
(2) at the equilibrium point £has zero eigenvalue (say, = 0) atu, =uf ,itis
clearly thatuy> 0 provided that condition (4.c) holds, and theobéan matrix J
with u, = u becomes:

Ji = 11(u)=[jij]axa wherej;; = a;jfor alli, j = 1,2,3,4 excephy & ja;
which are given byj;;= 1- (uff + 2x" + (1 + wy)y) &j = ulf+u, y' .

Now, letv[tl = (vl[l], vz[l], E], vf] )" be the eigenvector corresponding to the
eigenvaluel,,, = 0. Thu¢/{ — 1,, I )V[* = 0, which gives:

vl[l]z qlqzvf] ,vz[l]z -q1q3v£1]&v§1] = qlvf] here vf] is any nonzero real

number, according to left the condition (3.b) a#dl), (4.e) we have:z[l] exist.

Let @it = (@M, @l gl Wt )T be the eigenvector associated with the
eigenvaluel,,, = 0 of the matrix/{”. Then we hav§Ji" — 4, I )y = 0. By
solving this equation forp[*! we obtain:

O = @ip 0t prps W, pawt™, Wl )T hereyl! is any nonzero real number.

It is clear thalpgl], q;gl] exists under the condition (4.f).

Now, since

0F

- —(OF 0F 0F 0F
=R, (Ku) = G2,

uz,uz,uz

Y =(x%x0,0),where X =(x, y, z, W)
So,E, (Ey, u¥) = (-x",x",0,0) and hence

WA)TE, (Ey, ub) = pix "yl (ps — py) = pyix" vl (5 + ") #£0 , wherep;#0

Under the condition (4.f) & (4.9) .Thus, accordilogthe Sotomayor's theorem for
local bifurcation, the transcritical bifurcationnéaoccur while the first condition
of saddle-node bifurcation is satisfied. Further,sbibstitutingé, , uf and V1

in (4.a) we get:

" 20,0, (g + v - @) g |
- 2q1q3VE'] (UlquIzVﬂl] —Uy VEtl] )
20 (ugCht Ve — (g - m) v +ugl))
2082 (U - u,mey ey’

D?F( E,, v, vy =
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Hence, it is obtain that:

W) [D2F By, uf) (v, V)] = 2, (of YL (- ).
According to condition (4.h) we obtain that:

(WY [D2F(Ey, u)(vIY,vI)] # 0, and hence system (2) hassaddle-node
bifurcation at E with the bifurcation point given hyfand thiscomplete the
proofm

4.3 Thelocal Bifurcation Analysis Near E,

In order to study the local bifurcation analysignthe positive equilibrium point
E,=(x,Yy,z,w) of system (2) in the InR%. Note the following, according to
the Jacobian matrixdiven by Eq. (4.13) in [26], the characteristic atjon of J,
can be written as:

M+ B+ N+ A+C, =0 (4.0)
Where the coefficients:
Ci= - (bhyg + byg + byp),

Cy= byg (D11 + bpp + b33) + 011(D22 + 3g) + o bz + p3baz + b3z — ( sabast

b33+ F12),

C3= D34(b23 by + 11 by + bpo byz ) + bua (b bup + P12 + by b1z ) + by bpg by +
D12 b1 bzt o 31 D1a—( Br1( 22 Dast+D33 Das + o b33) + br1 o bz + 11 b3z ba3),

C 4 = baa(boz bay + o by baz -odba(Up+2X +(1+1) Y +2) - bagbasbos - byiboobas)+
Das( D11 bz D33 + 1 32 D13 - B111230a2 - 12021033 - D120310023 - 12231013) - 12331

Note that, according to the elements Hfitlis easy to verify that:

Ci=ki—k
Co=ks—ks
Cs=ks— ks
Ci=ki— ks
Further:
A].:ClCZ- C3.

= kiks+ ko kg + ks — ((kika + koks + ks ),

and
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Az = C3(C,Co- C3) -CECy.

Where:

Ki=lg+ U+ tho+ Uy + Uip+ 2X +(1+w) Y + (1+ w) Z.
ko=1+ux + Wz .

ks = Uz (1+ u7+u9my + UW )+ (Uro+ Uy + U12)(U2+2X +(1+w) y “+H(1+ W) Z+ U+
Us + Uy + Lho+ LW ) + (WX +Uo(1-M) Y )(UsZ +UnX ) + (Wp+2X +(1+) Y + Z)( g
Z+ Ut Us + Uy + Uho + W ) + X (1+ 1627 ) + 2u(1+U)X + (Us + s+ WZ) (Ur +
Uio + LW )

ks = (tot tha+ tyo) (1+ th + UgX "+Ug(1- m) y) +UZ (U2+2X +H(1+w) y +(1+ Us)
z + g +u5+ W +u10+ UgW )+ (u8x +u9(1 m) y ) ( u2+2x +(1+u1) y +(1+ u4) z + W
+ Ug) + ulX(U2+2X+(1+Ul)y+ Z+ U + Ut UGW) s + Ut WZ) + g Ur+
UeMy + UgW') + ( (1+u) X)* + Uglomy + UgX Z +u3 .

ks = Wa(Ur+ugmy +usw’) (1+ux) + uGz*(U4u9my*z* + (Urtuemy +  UsW)
(Uz+2X +(1+) Y +(1+W)Z +ugtls) + ((1+w) X)? + u3) + (o + Uy + i)
(Ullomy Z +2Us (1+U) X + WX'Z) + W(lptthy) (UeX+Ug (1-m) y) +
u4u9myz “(Up+2X +(1+ul) y+ Z+1) + (Lb+u1y) (u7 + o + W) (1+w) X+
UsX Z (U3 + Us+ UgZ ) + My+ My + My(Up+2X +(1+W) Y + 2).

K6 = Una(UalbMy Z + (Ur + LMY + LW) (U#2X +(L+U) Y + (1+ W)Z + s +g))
+ (UrotUprtlno) ((1+U1)X) +uj) + UsZ (UgUomy Z +2Ug(1+th) X + UX Z +
(Ur+Uemy +Ugw ) (1 + UX))+(Uzttny’) (UsX +Us(1-m) y) (L+U)X + Us(Uztlhy')
(U7 + Uio+ UeW ) + WgUiX °Z + Mg + My + My(Up+2X +(1+) Y + 2).

K7= Up1(mMs + Me(Uso+Uso) ) + UsZ (Mg + My(Usg*Uno) ) + Uglg(1+W) Xy Z

Kg =Up1 (Ms + My(Uyg+Un) ) + UsZ (Ms + Me(Uro+Uno) ) Uslalgy Z

Here:

mp = (U10+ Uit U12)(U3 + Ut WZ + U7 + Upo + LW )+ UeZ (ugx +Ug(1-m) y + X )
+UpX (UK +Ug(1-m) ¥) +(Us + Ust WaZ) (U + Uio + W)

M2=UiX (2 thot Lhrt Uizt Uy +USW J+Us Z ((Ug + Ust WZ )+( UeX +Ug(1-m) y)( Uy
+Ugo +UgW +Uz +Us+UsZ ).

M3 = WX (1+ (p+2X +(1+ul) Y+ Z)(UrtUo + UsW) ) + (Us+Us+Us Z )(UgX +Ug(1-
m) y)(uz+2X +(1+w)y + 7).
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my = (Lt3+U5+U42 ) (1+(uz+2x +H1+w)y +2z ) (U7+U10+U6W ) + WX (Ug+2X +(1+u)
Y +Z) (UgX +Ug(1-m) y) + Wp(1-m) (+thy ) X Z .

Ms = (UpH2X +(LHU)y +2 ) (Usomy Z +UsX (Ur+Uomy +UsW')) +(Ur+Usmy +Ugw)
(Us(Up+ury )+ (UsHUstUs Z ).

me = (U7+U9my +UgW D) (ulx F(1+w) x (tuy) + (WFust wZ) (Wp+2X +
(1+w)y +2)) + MZ (Usy +UsZ (Uz+Usy )).

M7 = o2 + (W+2X +(1+W)y +Z) 61 + (W+Ury ) 64 + UsZ 05

Mg = 01 + (W+2X +(1+W)y +Z) 62 + (W+Ury ) 63 + UeZ O .

With:

61 = X (UgX +Ug(1-m) y) + (U + Ust UsZ )(Uzr+Uomy +UsW ) + LMy Z .

62 = WX (Ur+Uomy +UsW ) + (s + Ust W Z )(UgX +Ug(1-m) y ) .

63= U (U7 + Upo + UeW ) + (1+u) X (Ugx +Uo(1-m) y ) .

64= W(1-M)X Z + Ug(UgX +Ug(1-m) y ) +(1+u) X (Ur+Uomy +UeW ) .

05 = Wy (1+U) X + (L + Us+ WZ) X, 06 = X~ + WaUsy .

According to described above, the local bifurcatenmalysis near the positive
equilibrium point R of system (2) can be derived easily as shown iridh@wing

theorem.

Theorem 4: Suppose that the following conditions

x*>1Zil (4.))
M7> Mg&Ms< Mg + (Lyo+Uzo) (My7-Mg) (4.k)
w2+ (1+u)y+z>1 4.L)
(UstUstUs 7)) (U+2X + (L+)y +Z -1) + (+ny) ((1+U) X - Ug) #

UiX (1-(+2x + (1+w) y +2)) (4.m)
z'> max{:‘j: %ﬁwlz’} (4.n)
B1# B2 (4.0)

where:
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Bl = tlhl(hl + (1 + ul)hz + 1) + t2h1h2u1 +u9mh2 +t3 (ushl + ug(l - m)hz +
ughs).

B2 =tyhouy +ughs.

Here:

P =—

hy= (A+ug)x*—uz)ng +x*n,
(1-(uz+2x*+(1+u)y*+ z9))n,’ n, (u6z*—(u10+u§1+u12))n2

nq h3_(u9mz*n1 +(uy+uomy*+ugw*)n,)
, hs=

(uz +u1y*)((u62*—(u10 +uiq +u12))(n3 +u82*n2)_n4—u9m2*>

t - ]
! Nangy
_ (UGZ*—(u10+u;1+ulz))n3— n4,u,9mZ*
5 =
(ui1—usz*)n,
—(uéz*—(u10+u’{1+u12))
t3: * *
(u11-uez")

With:

ni=uy” (1- (W+2X + (1+w) Y +2)) - ety ) X .

n, =ux” (1 (WH2X+ (1+w) y +2)) + (UtUstls Z) (Uz+2X +(1+w)y +2 -1)
+Hztury ) ((T+w) X + Wg).

n3 = W(1-m) Z (1- (p+2X + (1+W) y +2)) + tZ ((1+w) X + W) .
ny = (Uz" — u;1)(U2+2X*+ (1+uw) y*+z* - 1).

are satisfied. Then for the parameter value

(u4ugz*y*((1+u1)x*—u3))

U= — + Z . system (2) at the equilibrium
1 mS_(m6+(u10+u12)(m7_m8)) t y 2) d

point B has:

1. No transcritical bifurcation.

2. Saddle-node bifurcation.

Proof: The characteristic equation of that given by Eqg. (4.i) having zero
eigenvalue (say = 0) if and only if G=0 and then Ebecomes a nonhyperbolic
equilibrium point. Now, by substituting the valuke o7, in C, we get:
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(ui; — WZ)(ms —(me + (U0 + Usz) (M — M)+ Uillgy Z (1+u) X - W) = O,
whereuj;> 0 under the conditions (4.]) & (4.k). Clearly tdacobian matrix of
system (2) at the equilibrium poing &ith parametery = u;, becomes:

J5 = Jo(ui1)=[cij]axa, wherec;; =b;; for alli, j = 1,2,3,4 excepts, & cqq Which
are given by:

C34 = Uy — WZ &Cpy= UsZ - (Upot uj;t+ Uio).

Now, letv(2l = (v, vl 42 T pe the eigenvector corresponding to the
eigenvalue. = 0. Thus

(J; — A1)V = 0, which gives:

vl =yl pl= hpl?l pl = - hwlPlandvl? is any nonzero real number.

It is clear thatvl[z] andvz[z] exists under the conditions (4.j), (4.L) & (4.m),
while v*! exist under the conditions (4.j), (4.L), (4.m) &1).

Let @2 = (PP, g ¢ ¢l )T be the eigenvector associated with the
eigenvalué\ = 0 of the matrix/;”. Then we havé/;” — A 1)y!?l = 0. By solving
this equation fony?! we obtain:

P2l = (=t g2 ) e WP herey!™ is any nonzero real number.
Clearly, according to conditions (4.)), (4.L), (3.& (4.n) we havapgz] andtp[zz]
exists, whilap[;]exist under the condition (4.n).

Now, since

oF Fi 0F, 0F; 0F4\T
— =E, (X, uyq1)=(,—,—,—) =(0,0,w, -w ), where
ouqy ull( 11) (111 U1 U11 U11 ) ( -5

X=(X,y,z w.
So,F,,, (E2, uiy) = (0,0, w*, -w* )T
and hence

UgptUsn

) # 0, under condition
(4.n)

WEYE, (Ey uiy) =w gl (t5-1) 2w gl (

* *
U1~ UpZ
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So, according to the Sotomayor's theorem for Ibdaircation, the transcritical
bifurcation can't occur while the first conditiorf saddle-node bifurcation is
satisfied. Further, by substitutiBg u;, and V2 in (4.a) we get:

2 () + () 7+
2h2Vg2] (ulh.lVE] - U4Vg2] )
207 (Ul + U, @ M) +uht?) |
2uf? (ugmhy —ughl?)

D?F( E,, uj,) (V2 vi2l) =

Hence, it is obtain that:

(W )T[D2F (By ui ) (V2L V)] = 2020l (- Bo) -
According to condition (4.0) we obtain that:

(WEY[D2F (Eyui)(VEL,VED] # 0, and hence system (2) has saddle-node
bifurcation at E with the bifurcation point given hyj, and thiscomplete the
proof. m

5  TheHopf Bifurcation Analysis of System (2)

In this section, the occurrence of Hopf-bifurcatioear the equilibrium pointsof
the system3) is investigated as shown in thebelow.

5.1 TheHopf Bifurcation Analysis Near E,

To discuss the possibility of Hopf bifurcation tecar,it should be noted the
following:

The conditions of Hopf bifurcation fan = 4 are constructed according to the
Haque and Venturino methods [21]. Consider theatharistic equation given by:

pa(y) =y* + C1y3 +Cy2 +C3y +C, =0
Here:

Ci= - tr (J(X)), C;= Ni(J(X)),C5= - No(I(X)) and C,= deiJ(x)) with Ny(J(X))
and N(J(X)) represent the sum of the determent of the féeninors of order
two and three of J(X respectively. Clearly, the first condition of Hbjfurcation
holds if and only if

Ci> O, | = 1,3,A1 = C1C2- Cg> O, Cf = 4A]_> O, Az = 63(61C2' C3) = 612C4 = O,

consequentlyC, :@(%j"@ So, the characteristic equation becomes:
1
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pa(r) = (v? + %j) (v + oy + ﬁ—i) =0. (5.a)

Clearly, the roots of Eq.(5.a) are

. |C 1 ’ A
V1,2:i I\/C:j and ]/3'4, :E(_ Cl i Clz _4C—i) .

Now, to verify the transversality condition of Hopffurcation, we substitute
v(q) =31(q) + id2(q) into Eq. (5.a), and calculating its derivative lwiespect to
the bifurcation parameteny, p.(y(q))= 0, also comparing the two sides of this
equation and then equating their real and imagiparis, we have:

Y(q)81(q) - ©(9)8,(q) + ©(q)=0
(5.b)

®(q)8:(q) +'¥(9)82(q) +T(q) = 0.

Where:

B(q)= 4B1(@))*+ 30 (DB Co(0) + 26,(0) () - 1Bu()83(@) - L1 (@ G(0)) |

D(q)= 1261(9))* 82(q) + 6C1(0) 31(q)52(q)+ 2C,(q) 82(q) - 4G2(q))*(5.C) \

0(q) =(1(9))’ C1(@)+C5(9) 3u(@)+C> () E2(0)*Ca(q) -3C1(@)31(q) (32(9))*
Co (@) (B2(0))’

I'(q) = 361(q))* 52(q)C1(q) + C5(q) S2(q)+ 2C,(q) 31(q)82(q) - €1 (@) (32(q))>. y

Solving the linear system (5.b) by using Cramerls for the unknown8, () and
8,(q) , gives that:

(¥ (+T(q)@(q) .

5,(q) = - F(@¥(q)+0(q)P(q)
(w@) +(@@)" "

w(@) +(@@)"

81(‘1) =
Therefore the second necessary and sufficient tondf Hopf bifurcation
d ¢

2o (Ref)lg=q =81(@)lq=q#0.

Will be satisfied if and only if

(DY (@) +T(7)2(q) #0 (5.d)

Finally, according to the above results in thedaihg theorem, the conditions of
Hopf bifurcation of the positive equilibrium poiBt are established.
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Theorem 5: Suppose that the conditions (4.j), (4.k) with thiotving conditions
are satisfied:

k> ko&k s> kg (5.e)
Kiks+ ko kg + k> kiks+ ko k3 + Ks (5.9
(ke-ko)? + 4ks> 4ks (5.9)
(ki-k2)’b > a (5.h)
A1>C38& Hi# Hy (5.i)
Where:

a=(k—ke)( kiks+ ko ka + ks — ( kika+kz k3 + ks ) ) > 0.

b= Lhz*(me + (UotUr2) (My-Mg) - Me)+ U4U8y*Z*((1+U1) X - Ug)> 0.

_41-G) c
Hy = =555+ 22s; + Me + (Luotha) (Mr-Me) - M,
1
(A1-C3) C3 C3
= +2)+ 235,
Hz 2 (S4 C1) . S2

Here:
§1= Ugo + (U+2X +(1+W) Y+ Z) + (Ustustg 2) .
So= 1+ uxX +Ugmy + (X +Ug(1-m) y ) .

§3= UX + (Ur + UMy + UeW') (1+th) X + (Wilomy Z + 2us(1+U) X + gX'Z ) +
(U+2X +(1+w) Yy + Z) (U7 + ugmy + UgW ) +(UstUs+UsZ ) ).

S4= WUgMmy Z +(U7 + UMy +UgW )(1+ (W+2X +(1+W) Y+ Z) + (Ug+Ustus Z))+
UX (Up+2X +(1+w) y + Z ) + ((1+w) X )2+ u? ) .

a— (ki—k3)?b
ms—(mg+(u19+us2)(My—mg)) (k1 —kz)?’

(2) has a Hopf bifurcation near the poing .E

Then at the parameter valug ; =

the system

Proof: Consider the characteristic equation of the syg@nat & which is given
by Eg. (4.1). Now, to verify the necessary and isight conditions for a Hopf
bifurcation to occur we need to find a parametay (8,,) satisfy that:

Ci(fiy1) >0;i =1, 3,A1(Tly1) >0,C5 (f11) — 444 (f131)> 0, Az (T144) =0.
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WhereC; ; i = 1, 3represent the coefficients of charastariEq.( 4.i).Therefore it
is observed that, =0 gives:

(ks — ko) (Kiks+ ko ks + ks — (' kika + ko ka + ks )) - (kl'k2)2 (k7 —ke) =0
It is easy to verify that, the parameter's valug gatisfy the above equation is:

a— (ki—k3)?b

ms—(me+(us9+usz)(m;—mg)) (k1 —kz)? '’

Uy =

Whereti,; is a positive parameter under the conditions,(#jk) and (5.h). Now,
atu;; =i, the characteristic equation given by Eq.(4.i) barwritten as:

Ps)= (B +2) (B +Cudo +3) = 0.

Thus, the roots beconmg, ,= + i\/E and 1, ,, :l(— Cit [C} —4ﬁ).
’ Cl ’ 2 C1

Clearly, atu;; =1y, there are two pure imaginary eigenvaluds (& 4, ,) and

two eigenvalues which are real and negative pravithe conditions (5.f) and
(5.9) holds .

Now for all values af;;in the neighborhood ofi,, , the roots in general of the
following form:

Az x = o1(Un1) + iox(thy) and A,y = ®1(U11) - iwa(U11) 5 Azzw = %(— C:

/Cf — 4%). Clearly,Re€A; x5 (U11)) |y, =5,,= ®1(li1; ) = 0, that means the first

condition of the necessary and sufficient condgidior Hopf bifurcation is
satisfied atu;; =i, .

Now to verify the transversality condition we mysbve tha®(ii;,)¥ (1) +
I'(ti;1)®(f41) # O,where the form of®, ¥, I' and® are given in Eq.(5.c). Note

that for u;; =1i;;we have ;= 0 and w,= % , Substitution into (5.c) gives the

1
following simplifications:

Y(iiy1) = - 203(Ty1)
- 4 C3 4 o
O(Tiy1) = Ca( ull)_c_i C,(q1)

['(Ti11) = w2(Tiq4 )(63(7111)—2_? 61(7111))

D(fiy4)=2 wZ(Cfill) (C,Cy- 2C5) .
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Where:

_ 4G —
Cl_ dull |U,11=ﬁ11_ 1

_ a6 —
CZ_ dull |U,11=ﬁ11_ Sl- SZ

_ a6 —
C3_ dull |U,11=ﬁ11_ 53- 54

_ 4C,
4 du11

|u11=ﬁ11= Ms—( Me + (Liotuo) (Mr-mg)).

Further, by substitution into Eq.(5.d) we get that:
O(Y(G) +T(§)D(G) = Hi- Ho# 0 yields, under the condition (5.i).

So, we obtain that the Hopf bifurcation occurs athe equilibrium pointgat
the parametemn,; = ii;; and the proof is complete. [

6  Numerical Simulation Analysis of System (2)

In this section the dynamical behavior of systemi¢2studied numerically for
different sets of parameters and different setmitil points. The objectives of
this study are: first investigate the effect ofyrag the value of each parameter on
the dynamical behavior of system (2) and secondircorour obtained analytical
results. It is observed that, for the following séthypothetical parameters that
satisfies stability conditions ofthe positive eduium point, system (2) has a
globally asymptotically stable positive equilibriymint as shown in Fig. (1).

Note that, from now onward the red, blue, sky kdne green colors are used to
describing the trajectories of the susceptible pteinfected preyy, susceptible
predatorz and infected predatev respectively.

uu=05u=0.1,4=01,u=0.5 4=0.5,
Us=0.3,4=0.2,84=0.54=0.54y=0.1, 6.%)
Uiq = 0.3, Uo = 0.2, m=0.6.
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Fig. 1: Time series of the solution of system (2) thattsthfrom four different
initial points (1.5, 0.8, 0.9, 0.9), (0.5, 0.4, 0®9), (0.4, 0.4, 0.7, 0.7) and (0.3,
0.3, 0.5, 0.5) for the data given by Eq. (6.1).t(ajectories ofx as a function of
time, (b) trajectories of as a function of time, (c) trajectories mfas a function
of time, (d) trajectories ok as a function of time.

Clearly, figure (1) shows that system (2) has daglly asymptotically stable as
the solution of system (2) approaches asymptoyidallthe positive equilibrium
pointe; = (0.41, 0.4, 0.18, 0.06) starting from four diéfet initial points and this
is confirming our obtained analytical results, F2&.

Now, in order to discuss the effect of the paramnset@lues of system (2) on the
dynamical behavior of the system, the system igesbhumerically for the data
given in Eq. (6.1) with varying one parameter ediohe. It is observed that
varying the parameters values; i =1,3,4,5,6,9,11,12and m, do not have any
effect on the dynamical behavior of system (2) tredsolution of the system still
approaches to positive equilibrium poiB = (x ,y ,z ,w).

However, we note that varying the infection ratesusceptible prey and predator
up anduy, respectively keeping other parameters fixed @smgin Eq. (6.1), leads
to occurrence of local bifurcation as shown in ).
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Fig. 2. Time series of the solution of system (2) for tlagadyiven by Eq.
(6.1)with varying in the values wf andi;, which summarized in the following
table (1).

Table 1: Numerical behaviors and local bifurcation of sys{@nas varying in
some parameters with keeping to the rest of thanpeters fixed as in Eq. (6.1)

Parameter varied in | Numerical behavior of system (2) L ocal bifurcation of
system (2) system (2)

0.1<u,<0.9 Approaches to the positive stable| Saddle-node bifurcation
pointint. R}

0.001<u, <0.0099 | Approaches to the stable poikt | Saddle-node bifurcation
0.001<u7< 0.0036

1.2 < up< 34.94 Approaches to the stable pdiat | Transcritical bifurcation

Clearly, figure (2) show that the occurrence ofaldaifurcation (such as saddle-
node and transcritical) of system (2) and thelusdues in table (1) satisfy the
stability conditions of the equilibrium point ofstem (2).

7 Conclusion and Discussion

In this paper, we established the conditions ofdbeurrence of local bifurcation
(such as saddle-node, transcritical and pitchfaikh particular emphasis on the
Hopf bifurcation near of thepositive equilibrium ipb of eco-epidemiological

mathematical model involving SIS infectious diseasprey population whereas,
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this disease passed from a prey to predator thrattghking of predator to prey .
The dynamical behavior of system (2) has been tigaed local bifurcation as
well as Hopf bifurcation. Further, it is observethat the system (2) near the

vanishing equilibrium point (§ with the parameten; = 1+— has transcritical
bifurcation. While the system (2) near the pred&tes equnlbrlum point(B with

(u3+u5+2u1X ) ((u1+2(u3+u5))x +(u3+u5(1+u1))y)
—— , has Saddle-

node bifurcation. Also the system (2) near the tpasiequilibrium point (&) at
the parameter

the parameten? =

(u4u8 z'y* ((1+u1)x*—u3))

mS_(m6+(u10+u12)(m7_m8))

+ W5z, has saddle-node bifurcation.

Uyj=—

Note that, the system (2)at each poini=®,1,2 has no pitchfork bifurcation.
Finally, the conditions of occurrence of the Hofffilcation near the positive
equilibrium point (E)are given.
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