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Abstract

This technical note presents the derivation of an integral function credited
to Goldstein [2] in 1932 and recently employed in the authors’ previous work [1]
in Archive of Applied Mechanics. The particular form of this improper integral
is developed using techniques involving contour integration and the calculus of
residues.
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1 Introduction

The problem of axially-symmetric slip flow generated by an infinite cylinder
undergoing impulsive motion was recently investigated by Crane and McVeigh
[1]. In accounting for momentum slip close to the cylinder wall, they obtained
the non-dimensional shear stress analytically in terms of the Bingham number,
Bn, in the cases where the cylinder moved under both uniform velocity and
acceleration. In denoting the non-dimensional variables of axial velocity, cylin-
der radius and time by U , R and T , respectively, they presented the unsteady
Navier Stokes momentum equation as follows:
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subject to, for T > 0

UR=1+ = 1 +
λ

2

(
∂U

∂R

)
R=1+

, U → 0 as R→∞ (2)

and, for T > 0:
U = 0 for R > 1 (3)

where λ is an empirically-derived slip-length parameter. In this work, the
Laplace transform of f(T ) is the function f̄(p); taken to be:

L{f(T )} =

∫ ∞
0

exp(−pT )f(T )dT = f̄(p)

Now, investigating radiating heat flow from an infinite region of constant ini-
tial temperature and bounded internally by a circular cylinder, Goldstein [2],
derived the transform:

Ψ̄(p) =
1

p

[
1 +

K0(
√
p)

µ̂
√
pK ′0(

√
p)−K0(

√
p)

]
(4)

where K0 denotes the modified Bessel function of the second kind of order 0,
and in the work herein, Crane and McVeigh [1] specify µ̂ = 2λ. The associated
inverse is thus:

Ψ(T ) =
4

µ̂π2

∫ ∞
0

exp(−b2T )

b

[
1

(bJ1 + J0/µ̂)2 + (bY1 + Y0/µ̂)2

]
db (5)

where J0 and J1 are cylindrical Bessel functions of the first kind of order 0 and
1, respectively and where Y0 and Y1 denote the cylindrical Bessel functions of
the first kind having order 0 and 1. Accordingly, Crane and McVeigh [1], give:

Bn =
2

λ
Ψ(T ) (uniform velocity) (6)

and

Bn =
2

Tλ

∫ T

0

Ψ(T )dT (uniform acceleration) (7)

2 Derivation

From (4), the complex inversion integral is:

Ψ(T ) =
1

2πi

∫ γ+i∞

γ−i∞

1

p

[
1 +

K0

(√
p
)

µ̂
√
pK ′0

(√
p
)
−K0

(√
p
)] exp(pt)dp, t > 0 (8)
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The integration in (8) is to be performed along a line, p = γ, in the complex
plane where p is a point having coordinates (x + iy). The real number, γ, is
to be so large that all singularities of the integrand lie to the left of the line
(γ-i∞, γ+i∞). Since p = 0 is a branch point of the integrand, the adjoining
Bromwich contour is chosen as the integration path (Fig. 1). This comprises
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Figure 1: The modified Bromwich contour

the line AB (p = γ + iy), the arcs BDE and LNA of a circle of radius R and
centre at (0, 0), and the arc HJK of a circle of radius, ε, with centre at (0, 0).
Set

Ψ(T ) =

∫
AB

+

∫
BDE

+

∫
EH

+

∫
HJK

+

∫
KL

+

∫
LNA

(9)

and since the only singularity, p = 0, of the integrand is not inside the con-
tour, the integral on the left is zero by Cauchy’s theorem. Further, it is readily
shown that, as R tends to infinity, the integrals along BDE and LNA vanish
in the limit. Along the inner circle, HJK, where p = εexp(iθ), then, on taking
the limit as ε becomes vanishingly small:

Ψ(T ) =

∫
HJK

= i

∫ −π
π

[
1− K0(0)

K0(0)

]
dθ = 0 (10)
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and so, ∫
AB

= −
∫
EH

−
∫
KL

(11)

Along the path, EH, where p = xexp(iπ) = −x:∫
EH

=
1

iπ

∫ √ε
√
R

exp(−b2t)
b

[
1 +

K0(ib)

iµ̂bK ′0(ib)−K0(ib)

]
db (12)

Introducing the identities:

ib = bexp(
1

2
π) and K ′0(ib) =

1

2
π [J1(b) + iY1(b)]

so that, along EH, as R→∞ and ε→ 0:∫
EH

=
1

iπ

∫ 0

∞

exp(−b2t)
b

[
µ̂b (−J1 + iY1)

−µ̂bJ1 − J0 + i (Y0 + µ̂bY1)

]
db (13)

and, on taking the complex conjugate, then:∫
EH

=

1

iπ

∫ 0

∞

exp(−b2t)
b

[
µ̂2b2 (J2

1 + Y 2
1 ) + µ̂b (J0J1 + Y0Y1) + iµ̂b (J1Y0 − J0Y1)

2µ̂b (Y0Y1 + J0J1) + µ̂2b2 (J2
1 + Y 2

1 ) + J2
0 + Y 2

0

]
db

(14)
Similarly, for the path KL, where p = xexp(−iπ) = −x.∫
KL

=

1

iπ

∫ ∞
0

exp(−b2t)
b

[
µ̂2b2 (J2

1 + Y 2
1 ) + µ̂b (J0J1 + Y0Y1) + iµ̂b (J0Y1 − J1Y0)

2µ̂b (Y0Y1 + J0J1) + µ̂2b2 (J2
1 + Y 2

1 ) + J2
0 + Y 2

0

]
db

(15)

Denoting the real and imaginary parts of the integrand in (14) by Re(A) and
Im(A), respectively; likewise, for KL in (15) respectively by Re(B) and Im(B),
so that (11) can be written:

Ψ(T ) = −
∫
EH

−
∫
KL

=
1

iπ

∫ ∞
0

exp(−b2t)
b

[Re(A) + Im(A)] db− 1

iπ

∫ ∞
0

exp(−b2t)
b

[Re(B) + Im(B)] db

(16)
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and so, from (14) and (15), Re(A)=Re(B) and Im(A)=-Im(B); hence:

Ψ(T ) =
2

iπ

∫ ∞
0

exp(−b2t)
b

Im(A)db (17)

where

Im(A) =
iµ̂b (J1Y0 − J0Y1)

2µ̂b (Y0Y1 + J0J1) + µ̂2b2 (J2
1 + Y 2

1 ) + J2
0 + Y 2

0

(18)

Introducing the identities:

Y ′0 = −Y1 and J ′0 = −J1

and, using the Wronskian relation:

J0Y
′
0 − Y0J ′0 = 2/πb

returns (17) as the real-valued function, that is:

Ψ(T ) =
4µ̂

π2

∫ ∞
0

exp(−b2t)
b

[
db

2µ̂b (Y0Y1 + J0J1) + µ̂2b2 (J2
1 + Y 2

1 ) + J2
0 + Y 2

0

]
(19)

and finally, following some algebra, Goldstein’s result (5) is recovered; namely:

Ψ(T ) =
4

µ̂π2

∫ ∞
0

exp(−b2t)
b

[
1

(bJ1 + J0/µ̂)2 + (bY1 + Y0/µ̂)2

]
db (20)
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