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Abstract

This technical note presents the derivation of an integral function credited
to Goldstein [2] in 1932 and recently employed in the authors’ previous work [1]
in Archive of Applied Mechanics. The particular form of this improper integral
1s developed using techniques involving contour integration and the calculus of
residues.
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1 Introduction

The problem of axially-symmetric slip flow generated by an infinite cylinder
undergoing impulsive motion was recently investigated by Crane and McVeigh
[1]. In accounting for momentum slip close to the cylinder wall, they obtained
the non-dimensional shear stress analytically in terms of the Bingham number,
Bn, in the cases where the cylinder moved under both uniform velocity and
acceleration. In denoting the non-dimensional variables of axial velocity, cylin-
der radius and time by U, R and T, respectively, they presented the unsteady
Navier Stokes momentum equation as follows:
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subject to, for T' > 0

A [(OU
UR:1+:1+§<ﬁ)R:1+7 U—0a R— o (2)
and, for T' > 0:

U=0 for R>1 (3)

where A is an empirically-derived slip-length parameter. In this work, the
Laplace transform of f(7T') is the function f(p); taken to be:

CAFT)) = / " exp(—pT) F(T)T = F(p)

Now, investigating radiating heat flow from an infinite region of constant ini-
tial temperature and bounded internally by a circular cylinder, Goldstein [2],
derived the transform:

U(p) =

1 Ko(y/p) } ()

p [l N AN R AN

where K, denotes the modified Bessel function of the second kind of order 0,
and in the work herein, Crane and McVeigh [1] specify i = 2A. The associated
inverse is thus:

4 [T exp(=bT) 1
)= / b [(le o/ (Y, m/mz} =0

where Jy and J; are cylindrical Bessel functions of the first kind of order 0 and
1, respectively and where Y, and Y; denote the cylindrical Bessel functions of
the first kind having order 0 and 1. Accordingly, Crane and McVeigh [1], give:

Bn = —U(T) (uniform velocity) (6)

and

T
Bn = — / U(T)dT (uniform acceleration) (7)
0

2 Derivation

From (4), the complex inversion integral is:

1 Ko (D)
W= [“ /5% (VB) — Ko (V)

’Y+ioo 1

exp(pt)dp, t>0 (8)
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The integration in (8) is to be performed along a line, p = 7, in the complex
plane where p is a point having coordinates (z + iy). The real number, -, is
to be so large that all singularities of the integrand lie to the left of the line
(7-ic0, y+ic0). Since p = 0 is a branch point of the integrand, the adjoining
Bromwich contour is chosen as the integration path (Fig. 1). This comprises
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Figure 1: The modified Bromwich contour

the line AB (p = v+ iy), the arcs BDE and LN A of a circle of radius R and
centre at (0,0), and the arc HJK of a circle of radius, €, with centre at (0,0).

Set
I = /AB " /BDE " /E‘H i /HJK " /KL i /LNA ®)

and since the only singularity, p = 0, of the integrand is not inside the con-
tour, the integral on the left is zero by Cauchy’s theorem. Further, it is readily
shown that, as R tends to infinity, the integrals along BDFE and LN A vanish
in the limit. Along the inner circle, H.JK, where p = eexp(if), then, on taking
the limit as € becomes vanishingly small:

U(T) = /HJK = i/:r [1 — ﬁEgﬂ do =0 (10)
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and so,

/AB /EH /KL (11)

Along the path, EH, where p = xexp(im)
1 [Veexp(—b? Ko
/ =.—/ M{ljt.A ,.O@b) : ]db (12)
en T JyR b i1b K (ib) — Ko(ib)

Introducing the identities:

ih = bexp(%ﬂ) and K)(ib) — %w 1 (B) + Vi (0)]

so that, along FH, as R — oo and € — O:

0 2 Y ~
EH T Joo b —pbJy — Jo + i (Yo + f1bY7)

and, on taking the complex conjugate, then:

Jou™

1 /0 exp(—b*) {ﬂsz (J? +Y?) + fub (Jo 1 + YoY1) + ifab (1Yo — J0Y1)} db
b 20ib (YoYr + JoJu) + f20% (J +Y7) + J§ + V¢
(14)

s

Similarly, for the path KL, where p = xexp(—im) = —zx.

"

1 [ exp(=b*t) [fﬁb? (JE+YP) + fib (JoJ1 + YoY1) + ifib (JoY1 — J1Y0)] o
20b (YoY1 + JoJi) + 202 (J2 + Y2) + J2 + Y
(15)

i Jo b

Denoting the real and imaginary parts of the integrand in (14) by Re(A) and
Im(A), respectively; likewise, for KL in (15) respectively by Re(B) and Im(B),
so that (11) can be written:

o

— % N &b—b%) [Re(A) + Im(A)] db — % h %b_bzt) [Re(B) + Im(B)] db

(16)
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and so, from (14) and (15), Re(A)=Re(B) and Im(A)=-Im(B); hence:

2 00 _ 12
W(T) = = Mlm(fl)db (17)
iT Jo b
where .
_ ifib (J1Yo — JoY1)
20b (YoYr + Jor) + 0202 (J3 + ) + Jg + Y7

Introducing the identities:

Im(A)

Yy=-Y1 and J)=-./
and, using the Wronskian relation:
JoYy — YoJi =2/7b

returns (17) as the real-valued function, that is:

¥(T) = 4i /°° exp(—bt) db
2 b [20b(YoYi + JoJi) + 20 (J7 + YY) + J§ + Y7
(19)

and finally, following some algebra, Goldstein’s result (5) is recovered; namely:

4 [T exp(=b*) 1
v = fi? /0 b {(le + Jo/ ) + (bY: + Yo//fL)Q} w (20)
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