

Gen. Math. Notes, Vol. 16, No. 1, May, 2013, pp. 33-39 ISSN 2219-7184; Copyright © ICSRS Publication, 2013 www.i-csrs.org
Available free online at http://www.geman.in

φ- Pairs and a Unique Common Fixed Point Theorem for Six Maps in Cone Metric Spaces

K. Prudhvi

Department of Mathematics
University College of Science, Saifabad
Osmania University, Hyderabad
Andhra Pradesh, India
E-mail: prudhvikasani@rocketmail.com

(Received: 31-1-13 / Accepted: 12-3-13)

Abstract

In this paper, we prove φ -pairs and a unique common fixed point theorem for six maps in cone metric spaces. Our result generalizes and extends some recent results.

Keywords: Coincidence points, Common fixed point, Cone metric space, φ -pairs.

1 Introduction and Preliminaries

In 2007, Huang and Zhang [4] have introduced the concept of cone metric spaces and established some fixed point theorems for contractive mappings in these spaces. Subsequently Abbas and Jungck [1] and Abbas and Rhoades [2] have studied common fixed point theorems in cone metric spaces (see also,[4],[6] and the references mentioned therein). In [3] Di Bari and Vetro have introduced the concept of φ-map and proved some fixed point theorems generalizing some known results. In this paper we extend the fixed point theorem for three maps of R.P. Pant et al., [5] into six maps in cone metric spaces.

Throughout this paper R_+ denotes the set of all non negative real numbers, E is a real Banach space, $N = \{1,2,3,\ldots\}$, the set of all natural numbers and θ denotes the zero element of E.

The following definitions are due to Huang and Zhang [4].

Definition 1.1: Let B be a real Banach Space and P a subset of B. The set P is called a cone if and only if:

- (a). P is closed, non-empty and $P \neq \{\theta\}$;
- (b). $a, b \in R$, $a, b \ge 0$, $x, y \in P$ implies $ax + by \in P$;
- (c). $x \in P$ and $-x \in P$ implies $x = \theta$.

Definition 1.2: Let P be a cone in a Banach Space B, define partial ordering ' \leq ' with respect to P by $x \leq y$ if and only if $y-x \in P$. We shall write x < y to indicate $x \leq y$ but $x \neq y$ while X < y will stand for $y-x \in Int P$, where Int P denotes the interior of the set P. This Cone P is called an order cone.

Definition 1.3: Let B be a Banach Space and $P \subset B$ be an order cone. The order cone P is called normal if there exists K>0 such that for all $x, y \in B$,

$$\theta \le x \le y$$
 implies $\|x\| \le K \|y\|$.

The least positive number K satisfying the above inequality is called the normal constant of P.

Definition 1.4: Let X be a nonempty set of B. Suppose that the map $d: X \times X \rightarrow B$ satisfies:

(d1). $\theta \le d(x, y)$ for all $x, y \in X$ and

$$d(x,y) = \theta$$
 if and only if $x = y$;

- (d2). d(x,y) = d(y,x) for all $x,y \in X$;
- (d3). $d(x,y) \le d(x,z) + d(y,z)$ for all $x,y,z \in X$.

Then d is called a cone metric on X and (X, d) is called a cone metric space. The concept of a cone metric space is more general than that of a metric space.

Definition 1.5: Let (X, d) be a cone metric space. We say that $\{x_n\}$ is

- (i) a Cauchy sequence if for every c in B with $c >> \theta$, there is N such that for all n, m > N, $d(x_n, x_m) << c$;
- (ii) a convergent sequence if for any $c >> \theta$, there is an N such that for all n > N, $d(x_n, x) << c$, for some fixed x in X. We denote this $x_n \to x$ (as $n \to \infty$).

Definition 1.6. [8]: Let f, g: $X \rightarrow X$. Then the pair (f, g) is said to be (IT)-Commuting at $z \in X$ if f(g(z)) = g(f(z)) with f(z) = g(z).

Definition 1.7: Let P be an order cone. A non-decreasing function $\varphi: P \to P$ is called a φ -map if

- (i). $\varphi(\theta) = \theta$ and $\theta < \varphi(\omega) < \omega$ for $\omega \in P \setminus \{\theta\}$,
- (ii) . $\omega \in IntP$ implies $\omega \varphi(\omega) \in IntP$,

(iii).
$$\lim_{n \to \infty} \varphi^{n}(\omega) = \theta$$
 for every $\omega \in P \setminus \{\theta\}$.

2 Common Fixed Point Theorem

In this section we prove ϕ -pairs and a unique common fixed point theorem for six maps in cone metric spaces, which generalizes and extends the results of R.P. Pant et al., [5]

We define common asymptotic regularity of two functions in the following way.

Definition 2.1: Let f, g h and r, s, t be self-maps on a cone metric space (X, d). The pairs (f, g) and (r, s) are said to be common asymptotically regular with respect to h and t respectively at $x_0 \in X$ if there exists a sequence $\{x_n\}$ in X Such that

$$\begin{array}{l} hx_{2n+1} = fx_{2n} = rx_{2n+2} = tx_{2n+3}, \\ hx_{2n+2} = gx_{2n+1} = sx_{2n+3} = tx_{2n+4}, \quad n = 0, 1, 2, 3, \dots, \\ and \qquad \qquad \lim_{n \to \infty} d(hx_n, hx_{n+1}) = \theta = \lim_{n \to \infty} d(tx_n, tx_{n+1}). \end{array}$$

The following theorem is an extends and improve the Theorem 3.2 [5]

Theorem 2.2: Let (X, d) be a cone metric space, P be an order cone and f, g, h and r, s, t be (self-maps) a φ -pair, that is, there exists a φ -map such

(A1):
$$d(fx, gy) \le \varphi(d(hx, hy))$$
 for all $x, y \in X$,

(A2):
$$d(rx, sy) \le \varphi(d(tx, ty))$$
 for all $x, y \in X$.

If $f(X) \cup g(X) \cup r(X) \cup s(X) \subseteq h(X)(=t(X))$ and h(X)(=t(X)) is a complete subspace of X, then the maps f, g, h and r, s, t have a coincidence point in X. Moreover (f, h), (g, h), (r, t) and (s, t) are (IT)-commuting, then f, g, r, s and h, t have a unique common fixed point.

Proof: Let x_0 be an arbitrary point in X.

36 K. Prudhvi

Since $f(X) \cup g(X) \cup r(X) \cup S(X) \subset h(X) (= t(X))$, then we can define a sequence $\{x_n\}$ in X such that

$$\begin{array}{ll} hx_{2n+1} = fx_{2n} = rx_{2n+2} = tx_{2n+3}, \\ hx_{2n+2} = gx_{2n+1} = sx_{2n+3} = tx_{2n+4}, \quad n = 0, 1, 2, \end{array} \tag{1}$$

Applying the contractive condition (A1)

 $d(hx_{2n+1}, hx_{2n+2}) = d(fx_{2n}, gx_{2n+1})$

$$\leq \varphi(d(hx_{2n}, hx_{2n+1})) \tag{2}$$

Similarly,

$$d(hx_{2n+2}, hx_{2n+3}) = d(fx_{2n+1}, gx_{2n+2})$$

$$\leq \varphi(d(h x_{2n+1}, h x_{2n+2}))$$
 (3)

That is,

$$d(hx_{2n+2}, hx_{2n+3}) \le \phi (\phi(d(hx_{2n+1}, hx_{2n+2})))$$
(4)

From (2) and (3), by the induction, we obtain that

 $d(hx_{2n+1}, hx_{2n+2}) \le \varphi(d(hx_{2n}, hx_{2n+1}))$

$$\leq \varphi(\varphi(d(hx_{2n-1}, hx_{2n})) \leq \dots \leq \varphi^{2n}(d(hx_0, hx_1)).$$
 (5)

And

$$d(hx_{2n+2}, hx_{2n+3}) \le \varphi^{2n+1}(d(hx_0, hx_1)). \tag{6}$$

Fix $\theta << \epsilon$ and we choose a positive real number δ such that

$$\varepsilon - \varphi(\varepsilon) + I(\theta, \delta) \subset IntP$$
, where $I(\theta, \delta) = \{y \in E : ||y|| < \delta\}$.

Also choose a natural number N such that

$$\begin{array}{l} \varphi^{m}((d((fx_{0}\,,\;gx_{1})\,))\in\;\;I(\theta\,,\delta)\;\text{for all}\;m\geq N,\;\text{then}\\ \varphi^{m}((d((fx_{0}\,,\;gx_{1})\,))<<\epsilon\;\text{--}\;\varphi(\epsilon)\;\text{for all}\;m\geq N. \end{array}$$

Consequently, $d(hx_m, hx_{m+1}) \ll \epsilon - \varphi(\epsilon)$ for all $m \ge N$.

Fix $m \ge N$ and we prove

$$d((hx_m, hx_{n+1}))) << \varepsilon \text{ for all } n \ge m.$$
 (7)

We note that (7) holds when n = m. We assume that (7) holds for $n \ge m$. Now we prove for n+1, then, we have, by the triangle inequality

$$\begin{split} d(hx_m \,,\; hx_{n+2})) &\leq d(hx_m,\; hx_{m+1}) + d(hx_{m+1},\; hx_{n+2}) \\ &<\!\!< \epsilon - \varphi(\epsilon) + \varphi\; (d\; (fx_m \,,\; gx_{n+1})) \\ &<\!\!< \epsilon - \varphi(\epsilon) + \varphi(d(hx_m \,,\; hx_{n+1})) \\ &<\!\!< \epsilon - \varphi(\epsilon) + \varphi(\epsilon) = \epsilon \qquad \text{(by induction)} \\ d(hx_m \,,\; hx_{n+2}) &<\!\!< \epsilon \,. \text{Therefore (7) holds when, } n = n+1. \end{split}$$

By induction we deduce (7) holds for all $n \ge m$.

Hence, $\{fx_n\}$ is a Cauchy sequence. Similarly we can prove $\{rx_n\}$ is a Cauchy sequence.

We shall show that

$$hu = fu = gu$$
 and $tv = rv = sv$.

Firstly, let us estimate that

$$d(hu, fu) = d(z, fu).$$

We have that by the triangle inequality

$$\begin{array}{ll} d(\ hu,\ fu) &\leq d(hu,\ hx_{2n+1}) + d(\ hx_{2n+1}\,,\ fu) \\ &= d(z,\ hx_{2n+1}) + d(fu,\ gx_{2n+1}\,) \end{array}$$

By the contraction condition $d(fu, gx_{2n+1})$ may be negligible as $n \rightarrow \infty$.

Therefore.

$$d(hu, fu) \le d(z, hx_{2n+1}) + d(fu, gx_{2n+1}) \le d(z, z) = \theta.$$

Which leads to
$$d(hu, fu) \le \theta$$
 and $hu = fu$. (8)

Similarly, we can find
$$hu = gu$$
. (9)

Since,
$$z = fu = gu = hu$$
, (10)

Now we estimate that d(tv, rv) = d(z,fz).

We have that by the triangle inequality

38 K. Prudhvi

$$d(tv, rv) \le d(tv, tx_{2n+3}) + d(tx_{2n+3}, tv)$$

$$= d(z, tx_{2n+3}) + d(tv, sx_{2n+3})$$

By the contraction condition

 $d(tv, sx_{2n+3})$ may be negligible as $n \rightarrow \infty$.

Therefore, $d(tv, rv) \le d(z, tx_{2n+3}) \le d(z, z) = \theta$.

Which leads to
$$d(tv, rv) = \theta$$
 and $tv = rv$. (12)

Similarly we can find
$$tv = sv$$
. (13)

Since,
$$z = tv = rv = sv$$
, (14)

z is a coincidence point of
$$r$$
, s , t . (15)

In view of (11) and (15), we conclude that f, g, h and r, s, t have a coincidence point in X.

In view of (10) and (14), it follows that

$$fu = gu = hu = tv = rv = sv = z$$
.

Since, (f,h), (g,h), (r,t), and (s,t), are (IT)-Commuting

 $d(ffu, fu) = d(ffu, gu) \le \varphi(d(hfu, hu))$

$$< d(hfu, hu) = d(ffu,fu)$$
.

 \Rightarrow ffu = fu = hfu = z.

Therefore, fu(=z) is a common fixed point of f and h. (16)

Similarly, ggu = gu = hgu = z.

Therefore, gu(=z) is a common fixed point of g and h. (17)

Since, fu = gu = (z).

Therefore, from (16) and (17), it follows that f, g, h have a common fixed point

$$d(rrv, rv) = d(rrv, sv) \le \varphi(d(trv, tv))$$

$$< d(trv, tv) = d(rrv, rv)$$
(18)

 \Rightarrow rrv = rv = trv (= z).

Therefore, rv(=z) is a common fixed point of r and t. (19)

Similarly, ssv = sv = tsv(=z).

Therefore, sv(=z) is a common fixed point of s and t. (20)

Since, rv = sv = (z).

Therefore, from (19) and (20), it follows that r, s,t have a common fixed point.

(21)

From (18) and (21), it follows that f, g, h, and r, s, t have a common fixed point.

Uniqueness, let w be another common fixed point of f, g, h, and r, s, t.

Consider, $d(z, w) = d(fz, gw) \le \varphi(d(hz, hw)) < d(hz, hw) = d(z, w)$. $\Rightarrow z = w$.

Therefore, f, g, h, and r, s, t have a unique common fixed point.

Acknowledgements

The author is grateful to the referees for careful reading of my research article.

References

- [1] M. Abbas and G. Jungck, Common fixed point results for non commuting mappings without continuity in cone metric spaces, *J. Math. Anal. Appl.*, 341(2008), 416-420.
- [2] M. Abbas and B.E. Rhoades, Fixed and periodic point results in cone metric spaces, *Appl. Math. Lett.*, 22(2009), 511-515.
- [3] C. Di Bari and P. Vetro , φ-pairs and common fixed points in cone metric spaces, *Rendiconti del Circolo Mathematico di Palermo*, 57(2) (2008), 279-285.
- [4] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, *J. Math. Anal. Appl.*, 332(2) (2007), 1468-1476.
- [5] R.P. Pant, R. Mohan and P.K. Mishra, Some common fixed point theorems in cone metric spaces, *IJSTM*, 2(2) (2011), 8-56.
- [6] S. Rezapour and Halbarani, Some notes on the paper cone metric spaces and fixed point theorem of contractive mappings, *J. Math. Anal. Appl.*, 345(2008), 719-724.
- [7] S.L. Singh, A. Hematulin and R.P. Pant, New coincidence and common fixed point theorem, *Applied General Topology*, 10(1) (2009), 121-130.
- [8] P. Vetro, Common fixed points in cone metric spaces, *Rendiconti del Circolo Mathematico di Palermo*, 56(3) (2007), 464-468.