

Gen. Math. Notes, Vol. 6, No. 1, September 2011, pp. 61-72 ISSN 2219-7184; Copyright © ICSRS Publication, 2011 www.i-csrs.org
Available free online at http://www.geman.in

The n- Dimensional Generalized Weyl Fractional Calculus Containing to n- Dimensional \overline{H} -Transforms

V.B.L. Chaurasia¹ and Ravi Shanker Dubey²

¹Department of mathematics, University of Rajasthan
Jaipur-302055, India
E-mail: chaurasiavbl82@gmail.com

²Department of mathematics, Yagyavalkya Institute of Technology,
Sitapura, Jaipur -302022, India
E-mail: ravishankerdubey@indiatimes.com

(Received: 24-5-11/Accepted: 8-8-11)

Abstract

The object of this paper is to establish a relation between the n-dimensional $\overline{\mathbf{H}}$ -transform involving the Weyl type n-dimensional Saigo operator of fractional integration.

Keywords: Fractional Integral, Riemann-Liouville Operator, Gauss Hypergeometric function, \overline{H} – function, Fox's H-function, G-function.

1 Introduction

Our purpose of this paper is to establish a theorem on n-dimensional $\overline{\mathbf{H}}$ -transforms involving with Weyl type n-dimensional Saigo operators.

Further, a few interesting and elegant results as special cases of our main results has also been recorded.

2 Fractional Integrals and Derivative

An interesting and useful generalization of both the Riemann-Liouville and Erdélyi-Kober fractional integration operators are introduced by Saigo [9], [10] in terms of Gauss's hypergeometric function as given below.

Let α , β and η are complex numbers and let $y \in R_+ = (0, \infty)$. Following [9], [10] the fractional integral (Re $(\alpha) > 0$) and derivative (Re $(\alpha) < 0$) of the first kind of a function f(y) on R_+ are defined respectively in the following forms

$$I_{0,y}^{\alpha,\beta,\eta}f = \frac{y^{-\alpha-\beta}}{\Gamma(\alpha)} \int_{0}^{y} (y-t)^{\alpha-1} {}_{2}F_{1}\left(\alpha+\beta,-\eta;\alpha;1-\frac{t}{y}\right) f(t)dt; \quad R(\alpha) > 0$$
 (1)

$$= \frac{d^{n}}{dy^{n}} I_{0,y}^{\alpha+n,\beta-n,\eta-n} f, \quad 0 < R(\alpha) + n \le 1, \quad (n = 1,2,...),$$
 (2)

where $_2F_1(\alpha, \beta; \gamma; .)$ is Gauss's hypergeometric function. The fractional integral (Re $(\alpha) > 0$) and derivative (Re $(\alpha) < 0$) of the second kind are given by

$$J_{y,\infty}^{\alpha,\beta,\eta}f = \frac{1}{\Gamma(\alpha)}\int_{y}^{\infty} (t-y)^{\alpha-1} t^{-\alpha-\beta} {}_{2}F_{1}\left(\alpha+\beta,-\eta;\alpha;1-\frac{y}{t}\right) f(t) dt, \ R(\alpha) > 0$$
 (3)

$$= (-1)^{n} \frac{d^{n}}{dv^{n}} I_{y,\infty}^{\alpha+n,\beta-n,\eta} f, \qquad 0 < R(\alpha) + n \le 1 \quad (n = 1,2,...).$$
 (4)

The Riemann-Liouville, Weyl and Erdélyi-Kober fractional calculus operators follow as special cases of the operators I and J as given below

$$R_{0,y}^{\alpha} f = I_{0,y}^{\alpha,-\alpha,\eta} f = \frac{1}{\Gamma(\alpha)} \int_{0}^{y} (y-t)^{\alpha-1} f(t) dt, \quad R(\alpha) > 0$$
 (5)

$$= \frac{d^{n}}{dy^{n}} R_{0,y}^{\alpha+n} f, \ 0 < R(\alpha) + n \le 1, \quad (n = 1,2,...)$$
 (6)

$$W_{y,\infty}^{\alpha} f = J_{y,\infty}^{\alpha,-\alpha,\eta} f = \frac{1}{\Gamma(\alpha)} \int_{y}^{\infty} (t-y)^{\alpha-1} f(t) dt, \quad R(\alpha) > 0$$
 (7)

$$= (-1)^{n} \frac{d^{n}}{dy^{n}} W_{y,\infty}^{\alpha+n} f, \quad 0 < R(\alpha) + n \le 1, \quad (n = 1,2,...)$$
 (8)

$$E_{0,y}^{\alpha,\eta}f = I_{0,y}^{\alpha,0,\eta}f = \frac{y^{-\alpha-\eta}}{\Gamma(\alpha)} \int_0^y (y-t)^{\alpha-1} t^{\eta} f(t) dt, R(\alpha) > 0,$$
 (9)

$$K_{y,\infty}^{\alpha,\eta}f = J_{y,\infty}^{\alpha,0,\eta}f = \frac{y^{\eta}}{\Gamma(\alpha)}\int_{y}^{\infty} (t-y)^{\alpha-1}t^{-\alpha-\eta}f(t) dt, \quad R(\alpha) > 0.$$
 (10)

Following Miller [8, p.82], we denote by u_1 the class of functions $f(x_1)$ on R_+ which are infinitely differentiable with partial derivatives of any order behaving as $0(|x_1|^{-\xi_1})$ when $x_1 \to \infty$ for all ξ_1 . Similarly by u_2 , we denote the class of functions $f(x_1, x_2)$ on $R_+ \times R_+$, which are infinitely differentiable with partial derivatives of any order behaving as $0(|x_1|^{-\xi_1}|x_2|^{-\xi_2})$ when $x_1 \to \infty, x_2 \to \infty$ for all $\xi_i(i=1,2)$.

On the same way, we denote the class of functions $f(x_1, x_2,...,x_n)$ on $R_+ \times ... \times R_+$, which are infinitely differentiable with partial derivatives of any order behaving as $0(|x_1|^{-\xi_1}|x_2|^{-\xi_2}...|x_n|^{\xi_n})$ when $x_i \to \infty$, where i=1,2,...,n for all $\xi_i(i=1,2,...,n)$ by u_n .

The n-dimensional operator of Weyl type fractional integration of orders Re $(\alpha_i) > 0$, where i = 1, 2, ..., n is defined in the class u_n by,

$$\prod_{i=1}^{n} \left[J_{p_{i},\infty}^{\alpha_{i},\beta_{i},\gamma_{i}} \right] [f(p_{1},p_{2},...,p_{n})] = \prod_{i=1}^{n} \left[\frac{p_{i}^{\beta_{i}}}{\Gamma(\alpha_{i})} \right]$$

$$\int_{p_{1}}^{\infty} \int_{p_{2}}^{\infty} ... \int_{p_{n}}^{\infty} \prod_{i=1}^{n} \left\{ (t_{i}-p_{i})^{\alpha_{i}-1} t_{i}^{-\alpha_{i}-\beta_{i}} {}_{2}F_{1} \left(\alpha_{i}+\beta_{i},-\gamma_{i};\alpha_{i};\frac{1-p_{i}}{t_{i}} \right) \right\} f(t_{1},t_{2},...,t_{n}) dt_{1}dt_{2}...dt_{n},$$
(11)

where β_i and γ_i , i = 1, 2, ..., n are real numbers.

More generally, the operator (11) of Weyl type fractional calculus in n-variables is defined by the differ-integral expression as,

$$\prod_{i=1}^{n} \left[J_{p_{i},\infty}^{\alpha_{i},\beta_{i},\gamma_{i}} \right] [f(p_{1},p_{2},...,p_{n})] = \prod_{i=1}^{n} \left[\frac{p_{i}^{\beta_{i}}}{\Gamma(\alpha_{i}+r_{i})} \right] (-1)^{\sum_{i=1}^{n} r_{n}} \frac{\partial^{r_{1}+r_{2}+...+r_{n}}}{\partial p_{1}^{r_{1}} \partial p_{2}^{r_{2}}...\partial p_{n}^{r_{n}}} \\
\int_{p_{1}}^{\infty} \int_{p_{2}}^{\infty} ... \int_{p_{n}}^{\infty} \prod_{i=1}^{n} \left\{ (t_{i}-p_{i})^{\alpha_{i}-1} t_{i}^{-\alpha_{i}-\beta_{i}} {}_{2}F_{1}(\alpha_{i}+\beta_{i},-\gamma_{i};\alpha_{i};1-\frac{p_{i}}{t_{i}}) \right\} f(t_{1},t_{2},...,t_{n}) dt_{1}dt_{2}...dt_{n}, \tag{12}$$

for arbitrary real (complex) α_i and $r_1, r_2, \dots, r_n = 0, 1, 2, \dots$

In particular, if $R(\alpha_i) < 0$ and r_i are positive integers such that $R(\alpha_i) + r_i > 0$, where i = 1, 2, ..., n, then (12) yields the partial fractional derivative of $f(p_1, p_2, ..., p_n)$.

On the other hand if we set $\beta_i = 0$, (12) yields the Weyl type Erdélyi-Kober operators in n-dimensions

$$\prod_{i=1}^{n} \left[K_{p_{i},\infty}^{\alpha_{i},\gamma_{i}} \right] [f(p_{1},p_{2},...,p_{n})] = \prod_{i=1}^{n} \left[J_{p_{i},\infty}^{\alpha_{i},0,\gamma_{i}} \right] [f(p_{1},p_{2},...,p_{n})]$$

$$= \prod_{i=1}^{n} \left[\frac{\mathbf{p}_{i}^{\beta_{i}}}{\Gamma(\boldsymbol{\alpha}_{i} + \mathbf{r}_{i})} \right] (-1)^{\sum_{i=1}^{n} \mathbf{r}_{i}} \frac{\partial^{\mathbf{r}_{1} + \mathbf{r}_{2} + \dots + \mathbf{r}_{n}}}{\partial \mathbf{p}_{1}^{\mathbf{r}_{1}} \partial \mathbf{p}_{2}^{\mathbf{r}_{2}} \dots \partial \mathbf{p}_{n}^{\mathbf{r}_{n}}}$$

$$\left\{ \int_{\mathbf{p}_{1}}^{\infty} \int_{\mathbf{p}_{2}}^{\infty} ... \int_{\mathbf{p}_{n}}^{\infty} \prod_{i=1}^{n} \left[(t_{i} - \mathbf{p}_{i})^{\alpha_{i} + r_{i} - 1} t_{i}^{-\alpha_{i} - \gamma_{i}} \right] f(t_{1}, t_{2}, ..., t_{n}) dt_{1} dt_{2} ... dt_{n} \right\}.$$
(13)

3 n-Dimensional Laplace and \overline{H} -Transactions

The Laplace transform $\zeta(p_i)$ of a function $f(x_i) \in u_n$ is defined as

$$\zeta(p_{1},p_{2},...,p_{n}) = L[f(x_{1},x_{2},...,x_{n}); p_{1},p_{2},...,p_{n}]$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} ... \int_{0}^{\infty} e^{-\sum_{i=1}^{n} p_{i}x_{i}} f(x_{1},x_{2},...,x_{n}) dx_{1}dx_{2}...dx_{n}$$
(14)

where $R(p_i) > 0$, where i = 1, 2, ..., n. Similarly, the Laplace transform of

f [
$$u_1 \sqrt{x_1^2 - \lambda_1^2} H(x_1 - \lambda_1), u_2 \sqrt{x_2^2 - \lambda_2^2} H(x_2 - \lambda_2), ..., u_n \sqrt{x_n^2 - \lambda_n^2} H(x_n - \lambda_n)$$
],

is defined by the Laplace transform of $F(x_1, x_2, ..., x_n)$ where

$$F(x_{1},x_{2},...,x_{n}) = f[u_{1}\sqrt{x_{1}^{2}-\lambda_{1}^{2}}H(x_{1}-\lambda_{1}),u_{2}\sqrt{x_{2}^{2}-\lambda_{2}^{2}}H(x_{2}-\lambda_{2}),...,u_{n}\sqrt{x_{n}^{2}-\lambda_{n}^{2}}H(x_{n}-\lambda_{n})],$$

$$x_{i} > \lambda_{i} > 0, \text{ where } i = 1,2,...,n;$$
(15)

and H (t) denotes Heaviside's unit step function.

Definition: By n-dimensional \bar{H} -transform $\varphi(p_1, p_2,..., p_n)$ of a function $F(x_1, x_2,...,x_n)$, we mean the following repeated integral involving n-different \bar{H} -functions

$$\varphi(p_{1},p_{2,...,}p_{n}) = \varphi_{P_{1},Q_{1};P_{2},Q_{2};...;P_{n},Q_{n}}^{M_{1},N_{1};M_{2},N_{2};...;M_{n},N_{n}} [F(x_{1},x_{2},...,x_{n});a_{1},a_{2},...,a_{n};p_{1},p_{2,...,}p_{n}]$$

$$= \int_{A_{1}}^{\infty} \int_{A_{2}}^{\infty} ... \int_{A_{n}}^{\infty} \prod_{i=1}^{n} . \left[(p_{i}x_{i})^{a_{i}-1} ... \prod_{i=1}^{M_{1},N_{1}} \left[(p_{i}x_{i})^{k_{1}} \left[(p_{i}x_{i})^{k_{1}} \left[(p_{i}x_{i})^{k_{1}} \right] (b_{ij},\beta_{ij})_{1,N_{1}}, (b_{ij},\beta_{ij})_{N_{1}+1,P_{1}} \right] \right] \\ .F(x_{1},x_{2},...,x_{n}) dx_{1} dx_{2}...dx_{n},$$

$$(16)$$

here we suppose that $\lambda_i > 0$, $k_i > 0$, where i = 1, 2, ..., n; $\varphi(p_1, p_2, ..., p_n)$, exists and belongs to u_n . Further suppose that,

$$|\arg p^{k_i}| < \frac{1}{2} T_i \pi, \tag{17}$$

where,

$$T_{i} = \sum_{j=1}^{M_{i}} |\beta_{ij}| + \sum_{j=1}^{N_{i}} A_{ij} a_{ij} - \sum_{j=M_{i}+1}^{Q_{i}} |B_{ij}\beta_{ij}| - \sum_{j=N_{i}+1}^{P_{i}} \alpha_{ij} > 0,$$
(18)

where i=1,2,...,n.

The \overline{H} -function appearing in (16), introduced by Inayat-Hussain ([1], see also [14]) in terms of Mellin-Barnes type contour integral, is defined by,

$$\overline{H}_{P,Q}^{M,N} \left[z \mid_{(b_{j},\beta_{j})_{l,M},(b_{j},\beta_{j};B_{j})_{M+1},Q}^{(a_{j},\alpha_{j};A_{j})_{l,N},(a_{j},\alpha_{j})_{N+1},P} \right] = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \psi(\xi) z^{\xi} d\xi,$$
(19)

where

$$\psi(\xi) = \frac{\prod_{j=1}^{M} \Gamma(b_{j} - \beta_{j}\xi) \prod_{j=1}^{N} \left\{ \Gamma(1 - a_{j} + \alpha_{j}\xi) \right\}^{A_{j}}}{\prod_{j=M+1}^{Q} \left\{ \Gamma(1 - b_{j} + \beta_{j}\xi)^{B_{j}} \right\} \prod_{j=N+1}^{P} \Gamma(a_{j} - \alpha_{j}\xi)},$$
(20)

which contains fractional powers of some of the Γ -functions. Here and throughout the paper $a_j(j=1,...,P)$ and $b_j(j=1,...,Q)$ are complex parameters. $\alpha_j \geq 0$ $(j=1,...,P), \beta_j \geq 0$ (j=1,...,Q), (not all zero simultaneously) and the exponents $A_j(j=1,...,N)$ and $B_j(j=M+1,...,Q)$ can take on non-integer values. The contour in (19) is imaginary axis $R(\xi)=0$. It is suitably indented in order to avoid the singularities of the Γ -functions and to keep these singularities on appropriate sides. Again, for $A_j(j=1,...,N)$ not an integer, the poles of the Γ -functions of the numerator in (16) are converted to branch points. However, as long as there is no coincidence of poles from any

 $\Gamma(b_j - \beta_j \xi)$, (j = 1,...,M) and $\Gamma(1 - a_j + \alpha_j \xi)$, (j = 1,...,N) pair the branch cuts can be chosen so that the path of integration can be distorted in the usual manner.

For the sake of brevity

$$T = \sum_{j=1}^{M} |\beta_{j}| + \sum_{j=1}^{N} A_{j}\alpha_{j} - \sum_{j=M+1}^{Q} |B_{j}\beta_{j}| - \sum_{j=N+1}^{P} \alpha_{j} > 0.$$
 (21)

4 Relationship between n-Dimensional \bar{H} -Transforms in Terms of n-Dimensional Saigo Operator of Weyl Type

To prove the theorem in this section, we need the following n-dimensional \overline{H} -transform $\phi_1(p_1, p_2, p_n)$ of $F(x_1, x_2, x_n)$ defined by,

$$\begin{split} \phi(p_{1},p_{2,...}p_{n}) &= \overset{M_{1}+1,N_{1}}{H}; \overset{M_{2}+1,N_{2}}{H}; \ldots; \overset{M_{n}+1,N_{n}}{H}; F(x_{1},x_{2,...,}x_{n}); a_{1},a_{2},...,a_{n}; p_{1},p_{2,...,}p_{n}] \\ &= \int_{\lambda_{1}}^{\infty} \int_{\lambda_{2}}^{\infty} \ldots \int_{\lambda_{n}}^{\infty} \prod_{i=1}^{n} \left\{ (p_{i}x_{i})^{\alpha_{i}-1} \right. \\ &\cdot \overset{M_{1}+2,N_{1}}{H} \underbrace{\left. \overset{M_{1}+2,N_{1}}{h} \right. \left[(p_{i}x_{i})^{k_{1}} \right]_{1,N_{1}}^{(a_{1j},\delta_{1j})} \underbrace{\left. \overset{M_{1}}{h}, \overset{M_{1}}{h$$

where it is assumed that $\phi_1(p_1, p_2, p_n)$ exists and belongs to u_n as well as $k_i > 0$, where i = 1, 2, ..., n and other conditions on the parameters, in which additional parameters $\alpha_i, \beta_i, \gamma_i$ where i = 1, 2, ..., n included correspond to those in (11).

Theorem 1 Let $\phi_1(p_1, p_{2,...,}p_n)$ be given by definition (14) then for $R(\alpha_i) > 0, \lambda_i > 0, k_i > 0$, where i = 1, 2, ..., n there holds the formula

$$\prod_{i=1}^{n} \left\{ J_{p_{i},\infty}^{\alpha_{i},\beta_{i},\gamma_{i}} \right\} \left[\phi(p_{1},p_{2},...,p_{n}) \right] = \phi_{1}(p_{1},p_{2},...,p_{n})$$
(23)

provided that ϕ_1 $(p_1,p_2,...,p_n)$ exists and belong to u_n .

Proof: Let $R(\alpha_i) > 0$, where i = 1, 2, ..., n then in view of (11) and (18), we find that

$$\prod_{i=1}^{n} \left[J_{p_{i},\infty}^{\alpha_{i},\beta_{i},\gamma_{i}} \right] [\phi(p_{1},p_{2},...,p_{n})] = \prod_{i=1}^{n} \left[\frac{p_{i}^{\beta_{i}}}{\Gamma(\alpha_{i})} \right]$$

$$\int_{p_{i}}^{\infty} \int_{p_{2}}^{\infty} ... \int_{p_{n}}^{\infty} \prod_{i=1}^{n} \left[(t_{i} - p_{i})^{\alpha_{i}-1} t_{i}^{-\alpha_{i}-\beta_{i}} {}_{2} F_{1} \left(\alpha_{i} + \beta_{i}, -\gamma_{i} ; \alpha_{i} ; 1 - \frac{p_{i}}{t_{i}} \right) \right] \phi \left(t_{1}, t_{2}, ..., t_{n} \right) dt_{1} dt_{2} ... dt_{n},$$

or

$$= \prod_{i=1}^{n} \left[\frac{p_{i}^{\beta_{i}}}{\Gamma(\alpha_{i})} \right] \cdot \int_{p_{1}}^{\infty} \int_{p_{2}}^{\infty} ... \int_{p_{n}}^{\infty} \prod_{i=1}^{n} \left[(t_{i} - p_{i})^{\alpha_{i} - 1} t_{i}^{-\alpha_{i} - \beta_{i}} {}_{2} F_{1} \left(\alpha_{i} + \beta_{i}, -\gamma_{i} ; \alpha_{i} ; 1 - \frac{p_{i}}{t_{i}} \right) \right]$$

$$\cdot \left\{ \int_{\lambda_{1}}^{\infty} \int_{\lambda_{2}}^{\infty} ... \int_{\lambda_{n}}^{\infty} \prod_{i=1}^{n} \left[(x_{i}t_{i})^{a_{i}^{-1}} . \overline{H}_{1}^{M_{1}, N_{1}^{i}} \left[(t_{i}x_{i})^{k_{1}^{i}} \right] (t_{i}x_{i})^{k_{1}^{i}} \left((t_{i}x_{i})^{k_{1}^{i}} \right) \left[(t_{i}x_{i})^{k_{1}^{i}} \right] \left((t_{i}x_{i})^{k_{1}^{i}} \right] \left((t_{i}x_{i})^{k_{1}^{i}} \right) \left((t_{i}x_{i})^$$

On interchanging the order of integration which is permissible and on evaluating the t_i where i = 1, 2, ..., n integrals through the integral formula

$$\int_{X}^{\infty} u^{-\mu-\nu} (u-x)^{\nu-1} {}_{2}F_{1}\left(\tau,\omega,\nu;1-\frac{x}{u}\right).\overline{H}_{P,Q}^{M,N}\left[(au)^{k} \begin{vmatrix} (a_{j},\alpha_{j};A_{j})_{1,N},(a_{j},\alpha_{j})_{N+1,P} \\ (b_{j},\beta_{j})_{1,M},(b_{j},\beta_{j})_{M+1,Q} \end{vmatrix} du$$

$$= \frac{\Gamma(\nu)}{x^{\mu}}\overline{H}_{P+2,Q+2}^{M+2,N}\left[(ax)^{k} \begin{vmatrix} (a_{j},\alpha_{j};A_{j})_{1,N},(a_{j},\alpha_{j})_{N+1,P},(\mu+\nu-\tau,k),(\mu+\nu-\omega,k) \\ (\mu,k),(\mu+\nu-\tau-\omega,k),(b_{j},\beta_{j})_{1,M},(b_{j},\beta_{j})_{M+1,Q} \end{vmatrix}, (25)$$

where, R (
$$\nu$$
)>0, R $\left(\mu+\nu+\frac{k(1-a_j)}{\alpha_j}\right)$ >0

$$R\left(\mu+\nu-\tau-\omega+\frac{k(1-a_j)}{\alpha_j}\right) > 0, |\arg z| < \frac{1}{2}T \pi \text{ (T is given in (21))}$$

(23) can be established by means of the following formula [2, p.399].

$$\int_{0}^{1} x^{\gamma - 1} (1 - x)^{\rho - 1} {}_{2}F_{1}(\alpha, \beta; \gamma; x) dx = \frac{\Gamma(\gamma)\Gamma(\rho)\Gamma(\gamma + \rho - \alpha - \beta)}{\Gamma(\gamma + \rho - \alpha)\Gamma(\gamma + \rho - \beta)}$$
(26)

for
$$R(\gamma) > 0$$
, $R(\rho) > 0$, $R(\gamma + \rho - \alpha - \beta) > 0$.

by using the formula, left hand side of (24) becomes

$$= \int_{\lambda_{1}}^{\infty} \int_{\lambda_{2}}^{\infty} ... \int_{\lambda_{n}}^{\infty} \prod_{i=1}^{n} \left[(t_{i}x_{i})^{a_{i}-1} \right]$$

$$= \int_{\lambda_{1}}^{\infty} \int_{\lambda_{2}}^{\infty} ... \int_{\lambda_{n}}^{\infty} \prod_{i=1}^{n} \left[(t_{i}x_{i})^{a_{i}-1} \right]$$

$$= \int_{\lambda_{1}}^{\infty} \int_{\lambda_{2}}^{\infty} ... \int_{\lambda_{n}}^{\infty} \prod_{i=1}^{n} \left[(t_{i}x_{i})^{b_{i}} + (t_{i}x_{i})^{b_{i}} +$$

 $.F(x_1,x_2,...,x_n) dx_1 dx_2...dx_n$.

$$\begin{split} &= \overset{-}{H}_{P_1 + 2, N_1}^{M_1 + 2, N_1}; M_2 + 2, N_2; \dots; M_n + 2, N_n \\ &= \overset{-}{H}_{P_1 + 2, Q_1 + 2; P_2 + 2, Q_2 + 2; \dots; P_n + 2, Q_n + 2}^{M_1 + 2, N_n} [F\left(x_1, x_{2, \dots, x_n}\right); \, \alpha_1, \alpha_2, \dots, \alpha_n; p_1, p_{2, \dots, p_n}] \\ &= \varphi_1(p_1, p_2, \dots, p_n). \end{split}$$

As far as the n- dimensional Weyl type operators $\prod_{i=1}^n \left[J_{p_i,\infty}^{\alpha_i,\beta_i,\gamma_i} \right]$ preserves the class u_n , it follows that $\varphi_1(p_1,p_2,...,p_n)$ also belongs to u_n .

It is interesting to note that the statement of Theorem 1 can easily be extended for arbitrary real α_i where i = 1, 2, ..., n by using the definition (12) for the generalized Weyl type fractional calculus operators and differentiating under the signs of the integrals.

5 Interesting Special Cases

Putting $\gamma_i = 0$ where i = 1, 2, ..., n in theorem 1, we can easily prove Theorem 1(a).

Theorem 1(a). For $R(\alpha_i) > 0$, $\beta_i > 0$, $r_i > 0$; where i = 1, 2, ..., n and also let $\varphi(p_1, p_2, ..., p_n)$ be given by (14) then there holds the following formula,

$$\prod_{i=1}^{n} \left[J_{p_{i},\infty}^{\alpha_{i},\beta_{i},0} \right] [\varphi(p_{1},p_{2},...,p_{n})] = \varphi_{2}(p_{1},p_{2},...,p_{n})$$
(27)

provided that $\varphi_2(p_1,p_2,...,p_n)$ exists and belongs to u_n where φ_2 is represented by the repeated integral,

$$\varphi_2(p_1,p_2,...,p_n) = \int_{\lambda_1}^{\infty} \int_{\lambda_2}^{\infty} ... \int_{\lambda_n}^{\infty} \prod_{i=1}^{n} \left[(p_i x_i)^{a_i - 1} \right]_{i=1}^{n}$$

$$\begin{split} & . \bar{H}_{l}^{M+l,N_{l}} \begin{bmatrix} (p_{l}x_{i})^{1} \\ P_{l}+l,Q_{l}+l \end{bmatrix} & (a_{ij},\delta_{ij};A_{ij})_{l,N_{l}}, (a_{ij},\delta_{ij})_{N_{l}+l,P_{l}}, (\alpha_{l}+\beta_{l}-a_{l}+l,k_{l}) \\ (\beta_{l}-a_{l}+l,k_{l}), (b_{ij},\beta_{ij})_{l,M_{l}}, (b_{ij},\beta_{ij},B_{ij})_{M_{l}+l,Q_{l}} \end{bmatrix} & [p_{l}x_{i},x_{2},...,x_{n}] dx_{i}dx_{2}...dx_{n}. \end{split}$$

For $A_{ij}=1$, the \bar{H} -function reduces to Fox's H-function [5], [6] and then Theorem 1 (a) reduces to,

$$\prod_{i=1}^{n} \left[J_{p_{i},\infty}^{\alpha_{i},\beta_{i},0} \right] [\varphi(p_{1},p_{2},...,p_{n})] = \varphi_{3}(p_{1},p_{2},...,p_{n}), \tag{29}$$

provided that $\varphi_3(p_1,p_2,...,p_n)$ exists and belongs to u_n , where φ_3 is represented by the repeated integral,

$$\varphi_{3}(p_{1},p_{2},...,p_{n}) = \int_{\lambda_{1}}^{\infty} \int_{\lambda_{2}}^{\infty} ... \int_{\lambda_{n}}^{\infty} \prod_{i=1}^{n} \left\{ (p_{i}x_{i})^{a_{i}-1} ... \prod_{i=1}^{M+1}, N_{i} \\ P_{i}+1, Q_{i}+1 \right[(p_{i}x_{i})^{a_{i}} \prod_{i=1}^{k} (a_{i}P_{i}, \delta_{i}P_{i}), (\alpha+\beta-\alpha+1, k) \\ (\beta-\alpha+1, k), (b_{i}Q, \beta_{i}Q) \right] \right\}$$

$$.F(x_{1}, x_{2},..., x_{n}) dx_{1}dx_{2}...dx_{n}.$$
(30)

On employing the identity

$$H_{P,Q}^{M,N} \left[x \middle| \begin{matrix} (a_P,l) \\ (b_Q,l) \end{matrix} \right] = G_{P,Q}^{M,N} \left[x \middle| \begin{matrix} a_1,...,a_P \\ b_1,...,b_Q \end{matrix} \right], \tag{31}$$

we see that the n- dimensional H-transform reduces to the corresponding n- dimensional G-transform $\theta(p_1, p_2, ..., p_n)$ defined by

$$\theta(p_{1},p_{2},...,p_{n}) = G_{P_{1},Q_{1};P_{2},Q_{2};...;P_{n},Q_{n}}^{M_{1},N_{1};M_{2},N_{2};...;M_{n},N_{n}} [F(x_{1},x_{2,...,}x_{n});\alpha_{1},\alpha_{2},...,\alpha_{n};p_{1},p_{2,...,}p_{n}]$$

$$= \int_{A_{1}}^{\infty} \int_{A_{2}}^{\infty} ... \int_{A_{n}}^{\infty} (p_{i}x_{i})^{\alpha_{i}-1} G_{P_{i}Q_{i}}^{M_{1},N_{1}} \left[(p_{i}x_{i})^{1} \middle| b_{1i},...,b_{Q_{i}}^{N_{i}} \right] F(x_{1},x_{2},...,x_{n}) dx_{1}dx_{2}...dx_{n},$$
(32)

provided that $\theta(p_1, p_2, ..., p_n)$ exists and belongs to class u_n , where k_i , are positive integers, $\lambda_i > 0$, $P_i \leq Q_i$,

$$|\arg p^{k_{i}}| < \frac{1}{2}T_{i}^{*}\pi,$$
 (33)

with

$$T_{i}^{*} = 2N_{i} + 2M_{i} - P_{i} - Q_{i},$$
(34)

where i=1,2,...,n, $G_{P,Q}^{M,N}[.]$, appealing in (31) and (32) represents Meijer's G-function whose detailed account is available from the monograph of Mathai and Saxena [4].

Thus, we obtain the following Theorem 1 (b).

Theorem 1(b). For $R(\alpha_i) > 0$, $\beta_i > 0$, $k_i > 0$; where i = 1, 2, ..., n being positive integers and also let $\theta(p_1, p_2, ..., p_n)$ be given by (31) then the following formula

$$\prod_{i=1}^{n} \left[J_{p_{i},\infty}^{\alpha_{i},\beta_{i},0} \right] [\theta(p_{1},p_{2},...,p_{n})] = \theta_{1}(p_{1},p_{2},...,p_{n})$$
(35)

holds, provided that $\theta_1(p_1,p_2,...,p_n)$ exists and belongs to class u_n for other conditions on the parameters, in which additional parameters α_i , β_i and γ_i where i=1,2,...,n included correspond to those in (32). Here

$$\theta_{1}(p_{1},p_{2},...,p_{n}) = \prod_{i=1}^{n} \left[k_{i}^{-\alpha_{i}} \right] \int_{\lambda_{1}}^{\infty} \int_{\lambda_{2}}^{\infty} ... \int_{\lambda_{n}}^{\infty} \prod_{i=1}^{n} \left\{ (p_{i}x_{i})^{a_{i}^{-1}} \right\}$$

$$.G_{P_{i}+2,N_{i}}^{M_{i}+2,N_{i}}\left[\left(px\right)^{k_{i}}\left|\begin{array}{l}a_{l_{i}},...,a_{P_{i}},\Delta(k_{i},1-a_{i}),\Delta(k_{i},\alpha_{i}+\beta_{i}+\gamma_{i}-a_{i}+1)\\ \Delta(k_{i},\beta_{i}-a_{i}+1),\Delta(k_{i},\gamma_{i}-a_{i}+1),b_{Q_{i}},...,b_{Q_{i}}\end{array}\right]\right\}$$

$$.F(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n, (36)$$

and the symbol Δ (n, α) represents the sequence of parameters

$$\frac{\alpha}{n}$$
, $\frac{\alpha+1}{n}$,..., $\frac{\alpha+n-1}{n}$

On taking $\gamma_i = 0$, where i = 1, 2, ..., n, (36) becomes

$$\prod_{i=1}^{n} \left[J_{p_{i},\infty}^{\alpha_{i},\beta_{i},0} \right] [\theta(p_{1},p_{2},...,p_{n})] = \theta_{2}(p_{1},p_{2},...,p_{n})$$
(37)

provided $\theta_2(p_1,p_2,...,p_n)$ exists and belongs to class u_n , where θ_2 is represented by the integral

$$\theta_{2}(\mathbf{p}_{1},\mathbf{p}_{2},...,\mathbf{p}_{n}) = \prod_{i=1}^{n} \left[\mathbf{k}_{i}^{-\alpha_{i}} \right] \int_{\lambda_{1}}^{\infty} \int_{\lambda_{2}}^{\infty} ... \int_{\lambda_{n}}^{\infty} \prod_{i=1}^{n} \left\{ (\mathbf{p}_{i}\mathbf{x}_{i})^{a_{i}-1} \right] d\mathbf{p}_{i}^{-1} d\mathbf{p}_{i}^{-1}$$

$$F(x_1,x_2,...,x_n) dx_1 dx_2 ... dx_n.$$
(38)

6 Special Case

- (i) Converting our Theorem 1, 1(a) and 1(b) for i=1,2,3; we find the known result defined by Chaurasia and jain [19]
- (ii) Converting our Theorem 1, 1(a) and 1(b) for i=1,2; we find the known result defined by Chaurasia and Shrivastava [18], if we tack N = N' = 0.
- (iii) Taking $A_j = B_j = 1$, then Theorem 1, 1(a) and 1(b) for i=1,2; we find the known result defined by Saigo, Saxena and Ram [13].

References

- [1] A.A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals: II, A generalization of the H-function, *J. Phys. A: Math. Gen.*, 20(1987), 4119-4128.
- [2] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, *Tables of Integral Transforms*, (Vol.2), McGraw-Hill, New York-Toronto-London, (1954).
- [3] A.K. Arora, R.K. Raina and C.L. Koul, On the two-dimensional Weyl fractional calculus associated with the Laplace transforms, *C.R. Acad. Bulg. Sci.*, 38(1985), 179-182.
- [4] A.M. Mathai and R.K. Saxena, Generalized hypergeometric functions with applications in statistics and physical sciences, *Lecture Notes in Mathematics*, Springer, Berlin-Heidelberg-New York, (1973).
- [5] A.M. Mathai and R.K. Saxena, *The H-function with Applications in Statistics and Other Disciplines*, Halsted Press, New York-London-Sydney-Toronto, (1978).
- [6] C. Fox, The G and H-functions as symmetrical Fourier kernels, *Trans. Amer. Math. Soc.*, 98(1961), 395-429.
- [7] H.M. Srivastava, A contour integral involving Fox's H-function, *Indian J. Math.*, 14(1972), 1-6.

[8] K.S. Miller, The Weyl fractional calculus, fractional calculus and its applications, *Lecture Notes in Math.*, Springer, Berlin-Heidelberg- New York, 457(1875), 80-89.

- [9] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, *Math. Rep. College General Ed. Kyushu Univ.*, 11(1978), 135-143.
- [10] M. Saigo, Certain boundary value problem for the Euler-Darboux equation, *Math. Japan*, 24(1979), 377-385.
- [11] M. Saigo and R.K. Raina, Fractional calculus operators associated with a general class of polynomials, *Fukuoka Univ. Sci. Rep.*, 18(1988), 15-22.
- [12] M. Saigo, R.K. Raina and J. Ram, On the fractional calculus operator associated with the H-functions, *Ganita Sandesh*, 6(1992), 36-47.
- [13] M. Saigo, R.K. Saxena and J. Ram, On the two-dimensional generalized Weyl fractional calculus associated with two dimensional H-transforms, *Journal of Fractional Calculus*, (ISSN 0918-5402), Descartes Press, 8 (1995), 63-73.
- [14] R.G. Buschman and H.M. Srivastava, J. Phys. A.: Math. Gen., 23(1990), 4707-4710.
- [15] R.K. Saxena and J. Ram, On the two-dimensional Whittaker transform, *SERDICA Bulg. Math. Publ.* 16(1990), 27-30.
- [16] R.K. Saxena, O.P. Gupta and R.K. Kumbhat, On the two-dimensional Weyl fractional calculus, *C.R. Acad. Bulg. Sci.*, 42(1989), 11-14.
- [17] R.K. Saxena and V.S. Kiryakova, On the two-dimensional H-transforms in terms of Erdélyi-Kober operators, *Math. Balkanica*, 6(1992), 133-140.
- [18] V.B.L. Chaurasia and Amber Srivastava, *Tamkang. J. Math.* 37(3) (2006).
- [19] V.B.L. Chaurasia and Monika Jain, Three dimensional generalized Weyl fractional calculus pertaining to three-dimensional $\overline{\mathbf{H}}$ transforms, *Chile, SCIENTIA Series A: Mathematical Sciences*, 20(2009), 37–43.