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Abstract

In this article, we study bitharmonic Reeb curves in 3-dimensional Ken-
motsu manifold. Moreover, we apply biharmonic Reeb curves in special 3-
dimensional Kenmotsu manifold K. Finally, we characterize Bertrand mate
of the biharmonic Reeb curves in terms of their curvature and torsion in special
3-dimensional Kenmotsu manifold K.
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1 Introduction

In the theory of space curves in differential geometry, the associated curves, the
curves for which at the corresponding points of them one of the Frenet vectors
of a curve coincides with the one of the Frenet vectors of the other curve
have an important role for the characterizations of space curves. The well-
known examples of such curves are Bertrand curves. These special curves are
very interesting and characterized as a kind of corresponding relation between
two curves such that the curves have the common principal normal i.e., the
Bertrand curve is a curve which shares the normal line with another curve.
These curves have an important role in the theory of curves.

Let (N, h) and (M, g) be Riemannian manifolds. A smooth map ¢ : N —
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M is said to be biharmonic if it is a critical point of the bienergy functional:

Ba() = [ 51T dun

where the section T (¢) := trV?d¢ is the tension field of ¢.
The Euler-Lagrange equation of the bienergy is given by 73(¢) = 0. Here
the section T5(¢) is defined by

T2(¢) = =AsT () + trR (T (¢), do) do, (1.1)

and called the bitension field of ¢. Obviously, every harmonic map is bihar-
monic. Non-harmonic biharmonic maps are called proper biharmonic maps.

In this article, we study biharmonic Reeb curves in 3-dimensional Ken-
motsu manifold. Moreover, we apply biharmonic Reeb curves in special 3-
dimensional Kenmotsu manifold K. Finally, we characterize Bertrand mate of
the biharmonic Reeb curves in terms of their curvature and torsion in special
3-dimensional Kenmotsu manifold K.

2 Preliminaries

Let M?"1 (4,€, 7, g) be an almost contact Riemannian manifold with 1-form 7,
the associated vector field &, (1, 1)-tensor field ¢ and the associated Riemannian
metric g. It is well known that [2]

¢ =0, n() =1, n(¢X)=0, (2.1)
¢* (X) = =X + n(X)¢, (2:2)
9(X.8) =n(X), (2.3)
9(¢X,9Y) =g(X,Y) —n(X)n(Y), (2.4)

for any vector fields X, Y on M. Moreover,
(Vx@)Y =-—n(Y)o(X)—g(X,0Y)E, X, Yex(M), (25)
Vx{=X—-n(X)E (2.6)

where V denotes the Riemannian connection of g, then (M, ¢,&, 1, g) is called
an Kenmotsu manifold [2].
In Kenmotsu manifolds the following relations hold [2]:

(Vxn)Y = g(¢X,0Y),2.7 (1)
n(R(X,)Y)Z) = n(Y)g(X,Z2)—n(X)g(Y,Z),2.8 (2)
R(X,)Y)¢ = n(X)Y —n(Y)X,29 (3)
REX)Y = n(Y)X -g(X,Y)E,2.10 (4)
R, X)E = X —n(X)¢ 211 (5)

where R is the Riemannian curvature tensor.
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3 Biharmonic Reeb Curves in the 3-Dimensional
Kenmotsu Manifold

Let v be a curve on the 3-dimensional Kenmotsu manifold parametrized by arc
length. Let {T, N, B} be the Frenet frame fields tangent to the 3-dimensional
Kenmotsu manifold along v defined as follows:

T is the unit vector field 4" tangent to ~, IN is the unit vector field in
the direction of V1T (normal to v), and B is chosen so that {T,N,B} is
a positively oriented orthonormal basis. Then, we have the following Frenet
formulas:

VTT = HN,
ViN = —kT+7B,3.1 (6)
VTB == —TN,

where k is the curvature of v and 7 its torsion and

g(T,T) = 1, g(N,N)=1, ¢(B,B)=1, 3.2 (7)

g(T,N) = ¢(T,B)=¢g(N,B)=0.
Lemma 3.1. (see [13]) If v is a biharmonic Reeb curve which are either
tangent or normal to the Reeb vector field 3-dimensional Kenmotsu manifold,

then v is a heliz.
We consider the special 3-dimensional manifold

K = {(x,y, 2) €R?: (z,y,2) # (0,0,0)},
where (z,vy, z) are the standard coordinates in R?. The vector fields

0 0 0

el =2 €y = 22— €3 = —Z—
’ oy’ 0z

- (3.3)

are linearly independent at each point of K. Let g be the Riemannian metric

defined by

(e3,e3) =1,3.4 (8)

(el, 63> = O

gler,e1) = glex,e) =g
glei,es) = glez,e3)=g
The characterising properties of x(K) are the following commutation rela-
tions:
le1,6,] =0, [er,e;] =€, [e2,e5] =es.

Let n be the 1-form defined by

1(Z) = g(Z, e3) for any Z € x(M)
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Let ¢ be the (1,1) tensor field defined by

¢(e1) = —eq, d(ex) = ey, ¢(e3) =0.

Then using the linearity of and g we have
77(63) =1,

¢*(Z2) = ~Z + n(Z)es,

9(9Z, W) = g(Z,W) —n(Z)n(W),

for any Z, W € x(K). Thus for e3 = &, (¢,£,n,9) defines an almost contact
metric structure on K.

Now, we consider biharmonicity of curves in the special three-dimensional
Kenmotsu manifold K.

Theorem 3.4. (see [13]) Let v : I — K be a unit speed biharmonic Reeb
curve which are either tangent or normal to the Reeb vector field 3-dimensional
Kenmotsu manifold K. Then, the parametric equations of v are

Cy sin® ¢ Ccosws, K K
r(s) = 3 € P (——5—cos(=—5—s+0)
K* + s1n” ¢ cos* ¢ s @ sin” @

+ cos p sin(— /Z s+0))+ Cy,
si

n- @
Cy sin® ‘
y(s) = — %Sin L e ‘% (—cospcos(—5—s+0)3.14 9)
K? + sin® p cos? @ sin® ¢
K . K
+———sin(——5—s+0)) + Cs,
sin¢  sin
z(s) = Che “®%%

where C, Cy, Cy, C3 are constants of integration.

4 Bertrand Mate of Biharmonic Reeb Curves
in the Special Three-Dimensional Kenmotsu
Manifold K

A curve v : I — K with k # 0 is called a Bertrand curve if there exist a
curve g : I — K such that the principal normal lines of v and ~g at s € I
are equal. In this case 7z is called a Bertrand mate of ~.
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On the other hand, let ~:I — K be a Bertrand curve parametrized by
arc length. A Bertrand mate of ~ is as follows:

Y8 (s) =7(s) + AN (s), Vsel, (4.1)
where )\ is constant.

Theorem 4.1. Let v : [ — K be a biharmonic curve parametrized by arc
length. If ~vg is a Bertrand mate of -, then the parametric equations of g
are

Asin g

xp(s) = /Z cos( Hz s+ o) + cos @sin( F; s+0)) (Cis+ Cy)
K sin® ¢ sin® ¢ sin” ¢

C; sin®
s @e—cosw(_ cos o cos( 'K; s) + sin o sin( HQ s)) + Cz,4.210)
K sin” @ S @

A si - -
ys (s) = G - ’Z sin(— ’Z s+ 0) + cos p cos(— F; s+0) ) (Cis+ Cs)
K sin¢  sin® sin® ¢

C S'n3 K . KR
1 si SOQ_COSSOS(SinO—COS( ——S+ 0) + cososin(—x—s + o)) + Cs,
— sin? o sin? ¢

A _
ZB (S) = E(ClS—i‘Cg) +016_COS¢S,

where o,C, Cy, C1, Ca, Cy are constants of integration.
Proof. Assume that T is
T :Tlel + TQEQ + T3e3, (43)

where 17, T5, T3 are differentiable functions on I.
From [13], we obtain

K
T = sin psin(———s + 0)e; + sin g cos(—
sin® @ sin® ¢

s+ o)ey+cospes.  (4.4)

Using (3.3) in (4.4), we obtain

T = (2 sin @ sin( Kz s+ o), zsin g cos( /2 s+ 0),—zcos). (4.5)
sin” sin”

Because, by making use of (3.3), we have
VTT = (Tll + Tng) e + (T2/ + T2T3) ey + Téeg. (46)

From (3.1) and (4.4), we get
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K

VT = sin@( — cos[ ,Z 8+0]+Cosgosin[ 2 3+a])e14.’€11)
sin® ¢ sin® ¢ sin® ¢

. k. K K
—i—smgp(— — sm[, 5 s—i—a} —l—coscpcos{ — s+C’])e2.
sin® ¢ sin® ¢ sin® ¢

Then, by using Frenet formulas (3.1), we get

1
N = —-VT
K

1
= —[siny < : /Z cos(— /z s+ o)+ cospsin(— '%2 s+ 0)) e14.812)
K sin® sin® ¢ sin® ¢

. K K
—— sin(———s 4 0) + cos p cos(—— s—l—a)) €.
sin“ sin“ @ sin® ¢

+sin ¢ (—
Finally, we substitute (3.5) and (4.8) into (4.1), we get (4.2). The proof is
completed.

Corollary 4.2. Let v : I — K be a biharmonic curve parametrized by arc
length. If ~g is a Bertrand mate of ~, then the parametric equations of v in
terms of T are

Asin V1—1712 V1—r712 V1—r712 - -
r5(s) = 14 < ——CoS(———s5+0 73+0)) (C’ls+C’2)
V1—r712 sin” sin” ¢ sin”
C sin® V1—12 V1—12
—l—ﬂe*mws(— COSO’COS(TTS) + sinasin(TTs)) + Oy,
Vv1—r712 sin“ ¢ sin“ ¢
Asin V1—72  \1-—712 V1—1712 _ _
ys(s) = \/17902 (— 5— sin(——5—s + 0) + cos p cos(———s5 + U)) (Cis+ )
-7

sin® ¢ sin” ¢ sin”

Ch si 3 /1 — 2 \/1— 2
1 S111 Soe_cos(ps<sino.cos(TTS + 0—) + COSO’Sin(%S + O')) + 03,
V1= 72 sin” ¢ s ¢
)\ _ _
w(s) = s (Cus+ C) + Cre ™™,

where o,Cy, Cy, C1, Cy, Cs are constants of integration.
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