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Abstract

The optimal distributed control problem for age-dependent population dif-
fusion system governed by integral partial differential equations is investigated
in this paper. As new results, the existence and uniqueness of the optimal
distributed control are proposed and proved, a necessary and sufficient con-
ditions for the control to be optimal are obtained, and the optimality system
consisting of integro-partial differential equations and variational inequalities
are constructed in which the optimal controls can be determined. The applica-
tions of penalty shifting method for infinite dimensional systems to approximate
solutions of control problems for the population system are researched. An ap-
proximation program is structured, and the convergence of the approximating
sequences in appropriate Hilbert spaces is derived. The results in this paper
may significantly provide theoretical reference for the practical research of the
control problem in population systems.

Keywords:population diffusion system, optimaldistributed control, neces-
sary and sufficient condition, optimality system, penalty shifting method.
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1 Introduction

We consider the foollowing age-dependent population diffusion system(P)Ref.1-
2; 10-11 ):

Lp ≡ pr + pt − k4xp+ µ(r, t, x)p = v(r, t, x), in Q = Θ× Ω, (1)

p(0, t, x) =
∫ A

0
β(r, t, x)p(r, t, x)dr, in ΩT = (0, T )× Ω, (2)

p(r, 0, x) = p0(r, x), in ΩA = (0, A)× Ω, (3)
p(r, t, x) = 0, on Σ = Θ× ∂Ω, (4)

where p = p(r, t, x) is the population density of age r > 0 at time t > 0 and
at spatial position x ∈ Ω, Ω being a bounded domain in RN(1 ≤ N ≤ 3), µ is
the death rate and β is the fertility rate, 0 < r < A, A is the highest age
ever attained by individual of the population and then

p(r, t, x) = 0 if r ≥ A. (5)

k > 0 is the dispersal modulus. θ = (0, A)×(0, T ). p0 is an initial density. (4)
denotes that boundary ∂Ω of domain Ω is supposed to be extremely in-
hospitable. In (1) v is the distributed control. The reference [3] proved
the controllability for the system (1)- (4) under the hypothesis p(r, t, x) = 0
and β(r, t, x)=β(r) without researches of the optimal control problem for the
system (1)-(4). In the present paper, the optimal control problem for the sys-
tem (1)-(4) with µ=µ(r, t, x) and β=β(r, t, x) is investigated. The existence
and uniqueness of the optimal control are proved. The necessary and suffi-
cient conditions for a control to be optimal are obtained. By means of the
penalty shifting principle, the approximate solution of the optimal control is
researched, an approximation program is structured, and the convergence of
the approximating sequence on appropriate Hilbert Space is derived.

The following assumptions are made throughout the paper:
(A1) µ(r, t, x) is a measurable and µ(r, t, x) ≥ 0, µ(·, t, x) ∈ Lloc[0, A),∫ A

0
µ(r, t, x)dr = +∞;

(A2) β is a measurable and β ∈ L∞(Q), 0 ≤ β(r, t, x) ≤ β̄ <
+∞, a.e. on Q̄;

(A3) p0 ∈ L2(ΩA), p0(r, x) ≥ 0,
∫ A

0
p0(r, x)dr ≤M0 < +∞;

(A4) k > 0, ∂Ω is smooth.
Let

U = closed, convex subset of L2(Q). (6)

Clearly p depends on v and hence we write p(r, t, x; v) or p(v).
With every control v ∈ U , we associate the cost:

I(v) = ‖p(·, T, · ; v)− zd(·, ·)‖2
ΩA

+ α‖v‖2
Q, α > 0, (7)
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where zd is a given element in ΩA. Let

‖ · ‖ΩA
= ‖ · ‖L2(ΩA), ‖ · ‖Q = ‖ · ‖L2(Q).

The control problem then is:

Find u ∈ U satisfying I(u) = inf
v∈U

I(v). (8)

The problem (1)−(4), the cost function (7) and the minimization problem (8)
constitute the mathematical model of the optimal distributed control for age-
dependent population diffusion system. In (8) , elment u ∈ U is termed the
optimal distributed control of the system (1)−(4).

2 Optimality Conditions and Optimality Sys-

tems

We state first the following existence and uniqueness theorem for the sys-
tem (1)−(4).
From Refs.3-5 we mat obtain the folloming Theorem 2.1.

Theorem 2.1. Assume that (A1)−(A4) hold. Then the system (1)−(4) ad-
mits a unique solution p ∈ V = L2(Θ; H1

0 (Ω)), and bilinear mapping (v, p0)→
p is a continuous mapping of L2(Q)× L2(ΩA)→ V.

From Theorem 2.1 and trace theorem (cf.Ref.3), we obtain:

Corollary 2.1. The mapping v → p (·, T, · ; v) is a continuous affine
map of L2(Q)→ L2(ΩA).

Theorem 2.2. Assume that (A1)−(A4) hold. Let v ∈ U , and p(v) ∈ V be
the solution of (1)−(4). Then there exists a unique element u ∈ U such that

I(u) = inf
v∈U

I(v)

and u is characterized by

(p(T ; v)− p(T ;u), p(T ;u)− zd)ΩA
+ ρ(u, v − u)Q ≥ 0, ∀v ∈ U , (9)

where
(ϕ, ψ)ΩA

=
∫

ΩA

ϕψdrdx, (ϕ, ψ)Q =
∫
Q
ϕψdrdtdx.

In other words, a necessary and sufficient condition for u to be optimal control
is that u satisfies (9).
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Proof. We set

p(r, T, x; v) = p(T ; v).

According to definitions of I(v) and definition (cf. Ref. 6) of Gâteaue differen-
tiate I ′(u, v − u) an easy calculation shows that

1

2
I ′(u, v − u) = ( p (T ; v)− p (T ;u), p (T, u)− zd))ΩA

+ ρ (v − u, u)Q. (10)

From Definition (7) and Corollary 2.1, we deduce that the functional v →
I(v) is continuous from L2(Q) to R and it is actually a functional which is
strictly convex. From the definition (7) of I(v), we have I(v) ≥ ρ‖v‖2

Q, so that
I(v) → +∞ if ‖v‖Q → +∞. Consequently, according to Ref. 7 there exists
a unique element u ∈ U such that I(u) = inf

u∈U
I(v) and u is characterized by

u ∈ U , 1

2
I ′(u, v − u) ≥ 0 ∀v ∈ U . (11)

Form (11) and (10) we deduce (9). Thus, Theorem is proved.

We shall now transfrom (9) by utilizing the adjoint state. We define the
adjoint state q(u) by

L∗q ≡ −∂q
∂r
− ∂q

∂t
− k4q + µq − β(r, t, x)q(0, t, x) = 0, in Q, (12)

q(A, t, x) = 0, in ΩT , (13)
q(r, T, x) = p(T ;u)− zd, in ΩA, (14)
q(r, t, x) = 0, on Σ. (15)

Let

t = T − t′, r = A− r′, g(r′, t′, x) = q(A− r, T − t′, x) (16)

Then the problem (12)−(15) becomes down to a problem (1)−(4). From
Theorem 2.1 and (16) we deduce that the problem (12)−(15) admits a unique
solution q ∈ V .

Multiplying (12) by (p(v) − p(u)), applying Green′s Formula and (1)-
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(4) and (13)-(15), and setting p(A; v) = p(A, t, x; v), we have:

0 = (p(v)− p(u), L∗q)Q

= (L(p(v)− p(u)), q)Q −
∫

ΩT

[(p(A; v)− p(A;u))q(A, t, x)− (p(0, t, x; v)

− p(0, t, x;u))q(0, t, x;u)]dtdx−
∫

ΩA

[(p(T ; v)− p(T ;u))q(r, T, x)− (p(r, 0, x; v)

− p(r, 0, x;u))q(r, 0, x)]drdx+
∫

Σ
(p(v)− p(u))

∂q

∂ν∗
dΣ−

∫
Σ
q
∂

∂ν
(p(v)− p(u))dΣ

− (
∫ A

0
β(r, t, x)(p(r, t, x; v)− p(r, t, x;u))dr, q(0, t, x))ΩT

= (v − u, q)Q − 0 + ((
∫ A

0
(p(r, t, x; v)− p(r, t, x;u))β(r, t, x)dr, q(0, t, x;u))ΩT

− (p(T ; v)− p(T ;u), p(T ;u)− zd)ΩA
+ 0 + 0− (

∫ A

0
β(p(v)− p(u))dr, q(0, t, x))ΩT

= (v − u, q)Q − (p(T ; v)− p(T ;u), p(T ;u)− zd)ΩA
+ 0,

that is

(p(T ; v)− p(T ;u), p(T ;u)− zd)ΩA
= (v − u, q)Q. (17)

Thus, it follows from (17) that (9) becomes∫
Q

(q(u) + ρu)(v − u)dQ ≥ 0, ∀v ∈ U . (18)

Then we obtained:

Theorem 2.3. Assume that the state of the system (P) is defined by (1)−(4). Then
the optimal control u to corresponding to cost functional (7) is determined
by the optimality system consisting of the equation (1)−(4) (where v = u)
and the adjoint equation (12)−(15) with the variation inequality (18).

3 Penalty Shifting Method for Numerical Ap-

proximation

The optimal control problem (8) can be written as the minimization problem
(P1):

with respect to (p(v), v) under constraints (1)− (4) and
v ∈ U , find u ∈ U satisfying the equality
inf
v∈U

I(p(v), v) = I(p(u), u), where I(p(v), v) = I(v) in (7).
(19)

We research the application of penalty shifting method that Di Pillo state-
mented for infinte dimensional systems (cf. Refs. 8, 9) to the approximate
solution of the problem (P1). We shall approximate the solution (p(u), u) of
the constrained minimization problem (P1) by a family {(pk, uk)} of solution
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of the non-constrained minimization problem in which p and v become the
independent variables.

We introduce the set

Y = {p | p ∈ V, p ≥ 0, Lp ∈ L2(Q), (Bp)(· , ·) ∈ L2(ΩT )}, (20)

where

(Bp)(t, x) ≡ p(0, t, x)−
∫ A

0
β(r, t, x)p(r, t, x)dr.

Endowed with the norm

‖p‖Y = (‖p‖2
V + ‖Lp‖2

Q + ‖Bp‖2
ΩT

)1/2, (21)

Y is a closed convex subset in a Hilbert space,where ‖ · ‖E = ‖ · ‖L2(E), E =
Q,ΩT ,ΩA,Σ.

Now let c ≥ 0, ξ = (λ, η, ζ) with λ ∈ L2(Q), η ∈ L2(ΩT ), ζ ∈ L2(ΩA), and
define augmented Lagrangian:

J(p, v, c, ξ) = I(p, v) + c [‖ Lp− v‖2
Q + ‖Bp‖2

ΩT
+ ‖p(· , 0, ·)− p0‖2

ΩA
] + (λ, Lp− v)Q

+ (η, Bp)ΩT
+ (ζ, p(·, 0, ·)− p0)ΩA

(22)
on the set Y × U , where ( ·, ·)E denotes the scalar product in L2(E). In
J(p, v, c, ξ),
p and v are independent variables.

We state first the following result:

Theorem 3.1 For ang given ξ and c ≥ 0, the minimization problem(P2)

inf
p∈Y, v∈U

J(p, v, c, ξ) (23)

admits a unique solution (p̂, v̂) ∈ Y × U .

proof. Set
w = (p, v), w ∈ W = Y × U . (24)

Then we have J(w, c, ξ) = J(p, v, c, ξ). Thus,the minimization problem (3.5) comes
down to a problem

inf
w∈W

J(w, c, ξ). (25)

Clearly, W is a closed convex subset of a Hilbert space. We prove first that
J(w, c, ξ) is radially unbounded on W . We proceed by contradiction. Assume
that there exists a sequence {(pm, vm, c, ξ)} such that (‖pm‖2

Y + ‖vm‖2
Q)1/2 →

+∞ and J(pm, vm, c, ξ)→ l < +∞. It can be easily verified that this implies:

‖vm‖Q ≤ C1, ‖pm(·, 0, ·)‖ΩA
≤ C2, ‖Lpm − vm‖Q ≤ C3, ‖Bpm‖ΩT

≤ C4.
(26)
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Hence, in particular, by(3.8)1, (3.8)3, we have:

‖Lpm‖Q ≤ C5. (27)

Taking into account the continuity of the map (v, Bp, p0) → p defined by
Theorem 2.1, we have by (26) and (27):

‖pm‖V ≤ C6. (28)

Then, from (28), (27), (26)4 we get a contradiction with the original assump-
tion. This proves that J(w, c, ξ) is radially unbounded on W . Moreover, from
the definition (22), (24) of J , it can be easily verified that J is also strictly
convex and continuous; then from Ref. 7 (Remark 1.2, Chapter 1, p.8), we
deduce that there exists a unique element ŵ = (p̂, v̂) in Y × U = W such
that J(ŵ, c, ξ) = inf

w∈W
J(w, c, ξ) i.e. J(p̂, v̂, c, ξ) = inf

p∈Y, v∈U
J(p, v, c, ξ). Thus

, the theorem 3.1 is proved.

Lemma 3.1. Let arbitrary point (p̄, v̄) be given in Y × U . Then for any
given ξ and c > 0, we have

J(p, v, c, ξ) = J(p̄, v̄, c, ξ) + ‖p(·, T, ·)− p̄(·, T, ·)‖2
ΩA

+ ρ‖v − v̄‖2
Q

+ c[ ‖L(p− p̄)− (v − v̄)‖2
Q + ‖B(p− p̄)‖2

ΩT
+ ‖p(·, 0, ·)− p̄(·, 0, ·)‖2

ΩA
]

+ J ′(p̄, v̄, c, ξ, p− p̄, v − v̄), ∀p ∈ Y, ∀v ∈ U . (29)

Proof. According to definitions (22) and (7) of J and I and by noting
that

‖y‖2
E − ‖ȳ‖2

E = ‖y − ȳ‖2
E + 2(y − ȳ, ȳ)E, (30)

we have:

J(p, v, c, ξ)− J(p̄, v̄, c, ξ)
= ‖p− p̄‖2

ΩA
+ ρ‖v − v̄‖2

Q + c[ ‖L(p− p̄)− (v − v̄)‖2
Q + ‖B(p− p̄)‖2

ΩT

+ ‖p(·, 0, ·)− p̄(·, 0, ·)‖2
ΩA

] + {2(p− p̄, p̄− zd)ΩA
+ 2ρ(v − v̄, v̄)Q

+ 2c[(L(p− p̄)− (v − v̄), Lp̄− v̄)Q + (B(p− p̄), Bp̄)ΩT

+ (p(·, 0, ·)− p̄(·, 0, ·), p̄(·, 0, ·)− p0)ΩA
] + (λ, L(p− p̄)− (v − v̄))Q

+ (η,B(p− p̄))ΩT
+ (ζ, p(·, 0, ·)− p̄(·, 0, ·))ΩA

}.
(31)

In order to prove (29), it suffices to prove that the part {. . .} in (31) is equal
to J ′(p̄, v̄, c, ξ, p− p̄, v− v̄). From the definition of Gâteaue differentiation and
(30), we have:

J ′(p̄, v̄, c, ξ, p− p̄, v − v̄) = lim
θ→0+

1

θ
[J(p̄+ θ(p̄− p), v̄ + θ(v − v̄), c, ξ)− J(p̄, v̄, c, ξ)]

= lim
θ→0+

1

θ
{‖p̄+ θ(p− p̄)− zd‖2

ΩT
+ ρ‖v̄ + θ(v − v̄)‖2

Q + c[ ‖L(p̄+ θ(p− p̄))
− (v̄ + θ(v − v̄))‖2

Q + ‖B(p̄+ θ(p− p̄))‖2
ΩT

+ ‖(p̄+ θ(p− p̄))(·, 0, ·)− p0‖2
ΩA

]
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+ (λ, L(p̄+ θ(p− p̄))− (v̄ + θ(v − v̄)))Q + (η,B(p̄+ θ(p− p̄)))ΩT

+ (ζ, (p̄+ θ(p− p̄))(·, 0, ·)− p0)ΩA
− ‖p̄− zd‖2

ΩT
− ρ‖v̄‖2

Q − c[ ‖Lp̄− v̄‖2
Q

+ ‖Bp̄‖2
ΩT

+ ‖p̄(·, 0, ·)− p0‖2
ΩA

]− (λ, Lp̄− v̄)Q − (η,Bp̄)ΩT
− (ζ, p̄(·, 0, ·)− p0)ΩA

}
= {0 + 2(p− p̄, p̄− zd)ΩA

+ 0 + 2ρ(v − v̄, v̄)Q + c[ 0 + 2(L(p− p̄)− (v − v̄),
Lp̄− v̄)Q + 0 + 2(B(p− p̄), Bp̄)ΩT

+ 0 + 2((p− p̄)(·, 0, ·), p̄(·, 0, ·)− p0)ΩA
]

+ (λ, L(p− p̄)− (v − v̄))Q + (η,B(p− p̄))ΩT
+ (ζ, p− p̄)ΩA

}
= {. . .} in (31).
Lemma 3.1 is now proved.

Lemma 3.2. Let w̄ = (p̄, ū) be the minimizing point of J(w, c, ξ) =
J(p, v, c, ξ) in
W = Y × U . Then, for any given ξ and c > 0, we have

J(p, v, c, ξ) ≥ J(p̄, ū, c, ξ) + ‖p(·, T, ·)− p̄(·, T, ·)‖2
ΩA

+ ρ‖v − ū‖2
Q + c[‖L(p− p̄)

− (v − v̄)‖2
Q + ‖B(p− p̄)‖2

ΩT
+ ‖p(·, 0, ·)− p̄(·, 0, ·)‖2

ΩA
] ∀p ∈ Y, ∀v ∈ U .

(32)

Proof. By setting p̄ = p̄ and v̄ = ū in (31), It follows from the necessary
optimality condition in Ref. 7 (Theorem 1.3, Chapter 1, p.10) that

J ′(w̄, c, ξ, w− w̄) = J ′(p̄, ū, c, ξ, p− p̄, v− ū) ≥ 0 ∀w = (p, v) ∈ Y ×U = W.
(33)

From (31) and (33), we arrive at (32). Lemma 3.2 is proved.

Lemma 3.3. Let (p̃, u) be the optimal solution of the problem (P1), where p̃ =
p(r, t, x;u). Then there exists ξ̃ = (λ̃, η̃, ζ̃) such that

J(p, v, 0, ξ̃) ≥ I(p̃, u)+‖p(·, T, ·)− p̃(·, T, ·)‖2
ΩA

+ρ‖v−u‖2
Q ∀(p, v) ∈ Y ×U .

(34)

Proof. Let q(u) be the adjoint state given equations (22)−(25) (where p(u) =
p̃(u)) and assume:

λ̃ = −2q in Q, η̃ = −2q(0, t, x) on ΩT , ζ̃ = −2q(r, 0, x) on ΩA. (35)

Making use of the integration by parts and the Green′s formula in Ref. 7 yields:

∫
Q
qLpdQ =

∫
Q
pL∗qdQ+

∫
ΩT

[pq(A, t, x)− (pq)(0, t, x)]dtdx

+
∫

ΩA

[(pq)(r, T, x)− (pq)(q, 0, x)]drdx

+ k
∫

Σ
(p
∂q

∂ν∗
− q ∂p

∂ν
)dΣ +

∫
Q

(βp)(r, t, x)q(0, t, x)dQ

(36)

By applying (36) and noting that q(u) satisfies (22)−(25) and p̃(u) satisfies
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(1)−(4), we have:

(q, L(p− p̃))Q = (L∗q, p− p̃)Q + (q(A, ·, ·), (p− p̃)(A, ·, ·))ΩT

− (q(0, ·, ·), (p− p̃)(0, ·, ·))ΩT
+ (q(·, T, ·), (p− p̃)(·, T, ·))ΩA

− (q(·, 0, ·), (p− p̃)(·, 0, ·))ΩA
+ (q(0, t, x), (β(p− p̃))(r, t, x))Q

= (p̃(·, T, ·)− zd, (p− p̃)(·, T, ·))ΩA
− (q(·, 0, ·), (p− p̃)(·, 0, ·))ΩA

− (q(0, ·, ·), (Bp)(0, ·, ·)− (Bp̃)(0, ·, ·))ΩA
. (37)

From (36) ( set p̄ = p̃, v̄ = u), (22)( set c = 0), (35), (18) (30) and (37),
we have:

J ′(p̃, u, 0, ξ̃, p− p̃, v − u)

= J(p, v, 0, ξ̃)− J(p̃, u, 0, ξ̃)− ‖p(·, T, ·)− p̃(·, T, ·)‖2
ΩA
− ρ‖v − u‖2

Q

= I(p, v) + (λ̃, Lp− v)Q + (η̃, Bp)ΩT
+ (ζ̃ , p(·, 0, ·)− p0)ΩA

− I(p̃, u) + (λ̃, Lp̃− u)Q
− (η̃, Bp̃)ΩT

− (ζ̃ , p̃(·, 0, ·)− p0)ΩA
− ‖p(·, T, ·)− p̃(·, T, ·)‖2

ΩA
− ρ‖v − u‖2

Q

= 2(p(·, T, ·)− p̃(·, T, ·), p̃(·, T, ·)− zd)ΩA
− 2(p(·, T, ·)− zd, p(·, T, ·)− p̃(·, T, ·))ΩA

+ 2(q(·, 0, ·), p(·, 0, ·)− p̃(·, 0, ·))ΩA
− 2(q, v〉Q + 2ρ(v − u, u)Q − 2(q(·, 0, ·), p(·, 0, ·)

− p̃(·, 0, ·))ΩA
+ (2q, u)Q − 2(q, B(p− p̃))ΩT

+ 2(q, B(p− p̃))ΩA

= 2(q + ρu, v − u)Q ≥ 0, ∀ ∈ U ,

that is
J ′(p̃, u, 0, ξ̃, p− p̃, v − u) ≥ 0 ∀v ∈ U . (38)

On the other hand, since (p̃, u) is a solution of the problem (1)−(4), the
following equality holds:

J(p̃, u, 0, ξ̃) = I(p̃, u). (39)

From (29) ( where c = 0, p̄ = p̃, ṽ = u), and (39), we have

J(p, v, 0, ξ̃) = I(p̃, u) + ‖p(·, T, ·)− p̃(·, T, ·)‖2
ΩA

+ ρ‖v − u‖2
Q

+ J ′(p̃, u, 0, ξ̃, p− p̃, v − u). ∀p ∈ Y, ∀v ∈ U . (40)

Thus, (34) follows from (38), (40). Lemma 3.3 is proved.
Let now (pm, um) be the minimizing point of J(p, v, c, ξ) and consider the

sequence {(pm, um)} obtained by employing the following multiplier adjust-
ment rule: 

λm+1 = λm + αc(Lpm − um) in Q,
ηm+1 = ηm + αcBpm on ΩT ,
ζm+1 = ζm + αc(pm(·, 0, ·)− p0) on Ω,

(41)

where 0 < α ≤ 2 and ξ0 = (λ0, η0, ζ0) is any given initial value in L2(Q) ×
L2(ΩT )× L2(Ω).

Then we can prove the following result:
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Theorem 3.2. The sequence {(pm, um)} converges strongly in Y ×
L2(Q) to the optimal solution (p, u) of the problem (P1), where p = p(u).

Proof. Let ξ̃ ≡ (λ̃, η̃, ζ̃) be the multiplier introduced in the proof of
Lemma 3.3,
i.e. (35), in order to write in pithy style, ξ̃ be still denoted by ξ ≡ (λ, η, ζ). we
have from (41) that


‖λm − λ‖2

Q = ‖λm+1 − λ‖2
Q − α2c2‖Lpm − um‖2

Q − 2αc(λm − λ, Lpm − um)Q,
‖ηm − η‖2

ΩT
= ‖ηm+1 − η‖2

ΩT
− α2c2‖Bpm‖2

ΩT
− 2αc(ηm − η,Bpm)ΩT

, (42)
‖ζm − ζ‖2

ΩA
= ‖ζm+1 − ζ‖2

ΩA
− α2c2‖pm(·, 0, ·)− p0‖2

ΩA

− 2αc(ζm − ζ, pm(·, 0, ·)− p0)ΩA
.

From Lemma 3.2 and (39), let p = p(u), v = u, p̄ = p, ū = um, ζ =
ζm in (32), we get:

I(p, u) ≥ J(pm, um, c, ξm) + ‖p− pm‖2
ΩA

+ ρ‖u− um‖2
Q + c[ ‖L(p− pm)− (u− um)‖2

Q

+ ‖B(p− pm)‖2
ΩT

+ ‖p(·, 0, ·)− pm(·, 0, ·)‖2
ΩA

]. (43)

From Lemma 3.3 and let p = pm, v = um, p̃ = p(u), u = u in (34), we get:

J(pm, um, 0, ξ) ≥ I(p, u) + ‖p(·, T, ·)− pm(·, T, ·)‖2
ΩA

+ ρ‖u− um‖2
Q. (44)

Adding (43) to (44) and noting Lp = u, Bp|ΩT
= 0, we obtain:

J(pm, um, 0, ξ) ≥ J(pm, um, c, ξm) + 2‖p(·, T, ·)− pm(·, T, ·)‖2
ΩA

+ 2ρ‖u− um‖2
Q

+ c[ ‖Lpm − um‖2
Q + ‖Bpm‖2

ΩT
+ ‖p(·, 0, ·)− pm(·, 0, ·)‖2

ΩA
].
(45)

Noting the definition (22) of J , we obtain from (45) that

I(pm, um) + (λ, Lpm − um)Q + (η,Bpm)ΩT
+ (ζ, pm(·, 0, ·)− p0)ΩA

≥ I(pm, um) + c[‖Lpm − um‖2
Q + ‖Bpm‖2

ΩT
+ ‖pm(·, 0, ·)− p0‖2

ΩA
] + (λm, Lpm − um)Q

+(ηm, Bpm)ΩT
+ (ζm, pm(·, 0, ·)− p0)ΩA

+ 2‖p(·, T, ·)− pm(·, T, ·)‖2
ΩA

+2ρ‖u− um‖2
Q + c[ ‖Lpm − um‖2

Q + ‖Bp−Bpm‖2
ΩT

+ ‖p(·, 0, ·)− pm(·, 0, ·)‖2
ΩA

]. (46)

Rearranging terms and noting that ‖p(·, T, ·)− pm(·, T, ·)‖ΩA
≥ 0 in (46) we

obtain:

(λ, Lpm − um)Q + (η,Bpm)ΩT
+ (ζ, pm(·, 0, ·)− p0)ΩA

≥ (λm, Lpm − um)Q + (ηm, Bpm)ΩT
+ (ζ, pm(·, 0, ·)− p0)ΩA

+ 2c[ ‖Lpm − um‖2
Q

+‖Bpm‖2
ΩT

] + c[ ‖p(·, 0, ·)− pm(·, 0, ·)‖2
ΩA

+ ‖pm(·, 0, ·)− p0‖2
ΩA

] + 2ρ‖u− um‖2
Q.

(47)
Recalling that 0 < α ≤ 2, and hence −2αc2 ≤ −α2c2.
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Thus, we have from (41) that

‖λm − λ‖2
Q ≥ ‖λm+1 − λ‖2

Q − 2αc2‖Lpm − um‖2
Q − 2αc(λm, Lpm − um)Q

+ 2αc(λ, Lpm − um)Q,
‖ηm − η‖2

ΩT
≥ ‖ηm+1 − η‖2

ΩT
− 2αc2‖Bpm‖2

ΩT
− 2αc(ηm, Bpm)ΩT

+ 2αc(η,Bpm)ΩT
,

‖ζm − ζ‖2
ΩA
≥ ‖ζm+1 − ζ‖2

ΩA
− 2αc2‖pm(·, 0, ·)− p0‖2

ΩA
− 2αc(ζm, pm(·, 0, ·)− p0)ΩA

+ 2αc(ζ, pm(·, 0, ·)− p0)ΩA
.

(48)
From (48), (47), we obtain:

‖λm − λ‖2
Q + ‖ηm − η‖2

ΩT
+ ‖ζm − ζ‖2

ΩA

≥ ‖λm+1 − λ‖2
Q + ‖ηm+1 − η‖2

ΩT
+ ‖ζm+1 − ζ‖2

ΩA
− 2αc2‖Lpm − um‖2

Q

− 2αc(λm, Lpm − um)Q + 2αc(λ, Lpm − um)Q − 2αc2‖Bpm‖2
ΩT

− 2αc(ηm, Bpm)ΩT
+ 2αc(η,Bpm)T − 2αc2‖pm(·, 0, ·)− p0‖2

ΩA

− 2αc(ζm, pm(·, 0, ·)− p0)ΩA
+ 2αc(ζ, pm(·, 0, ·)− p0)ΩA

≥ 2αc[(λm, Lpm − um)Q + (ηm, Bpm)ΩT
+ (ζm, pm(·, 0, ·)− p0)ΩA

]
+ 4αc2[ ‖Lpm − um‖2

Q + ‖Bpm‖2
ΩT

] + 2αc2[‖p(·, 0, ·)− pm(·, 0, ·)‖2
ΩA

+ ‖pm(·, 0, ·)− p0‖2
ΩA

] + 4ραc‖u− um‖2
Q + ‖λm+1 − λ‖2

Q + ‖ηm+1 − η‖2
ΩT

+ ‖ζm+1 − ζ‖2
ΩA
− 2αc2‖Lpm − um‖2

Q − 2αc(λm, Lpm − um)Q − 2αc2‖Bpm‖2
ΩT

− 2αc(ηm, Bpm)ΩT
− 2αc2‖pm(·, 0, ·)− p0‖2

ΩA
− 2αc(ζm, pm(·, 0, ·)− p0)ΩA

= ‖λm+1 − λ‖2
Q + ‖ηm+1 − η‖2

ΩT
+ ‖ζm+1 − ζ‖2

ΩA
+ 2αc2‖Lpm − um‖2

Q

+ 2αc2‖Bpm‖2
ΩT

+ 2αc2‖pm(·, 0, ·)− p(·, 0, ·)‖2
ΩA

+ 4ραc‖u− um‖2
Q.

that is

‖λm − λ‖2
Q + ‖ηm − η‖2

ΩT
+ ‖ζm − ζ‖2

ΩA

≥ ‖λm+1 − λ‖2
Q + ‖ηm+1 − η‖2

ΩT
+ ‖ζm+1 − ζ‖2

ΩA
+ 2αc2‖Lpm − um‖2

Q

+ 2αc2‖Bpm‖2
ΩT

+ 2αc2‖pm(·, 0, ·)− p(·, 0, ·)‖2
ΩA

+ 4ραc‖u− um‖2
Q.

(49)
From it follows that the sequence {‖λm − λ‖2

Q + ‖ηm − η‖2
ΩT

+ ‖ζm − ζ‖2
ΩA
} is

nonincreasing and therefore it admits a limit. This implies: as m→ +∞,

‖um−u‖Q → 0, ‖Lpm−um‖2
Q → 0, ‖Bpm‖2

ΩT
→ 0, ‖pm(·, 0, ·)−p(·, 0, ·)‖ΩA

→ 0.
(50)

Since Lp = u and ‖L (pm−p)‖Q ≤ ‖Lpm−um‖Q+‖um−u‖Q, from (50)1, (50)2 we
deduce: as m → +∞,

‖L (pm − p)‖Q → 0. (51)

According to (Bp)(t, x) = 0, it follows from (50)3 that as m→ +∞,

‖B (pm − p)‖ΩT
= ‖Bpm‖ΩT

→ 0. (52)

Taking into account the continuity of the solution of equations (1) − (4) with
respect to (v,Bp, p0) in Theorem 2.1, from (50) and (52) it can be easily deduce
that {(pm, um)} converges strongly in Y × U to (p, u) as m → +∞. Theo-
rem 3.2 is proved.
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4 Conclusions

In this paper, we investigate the optimal distributed control problem for age-
dependent population diffusion system. For the cost as a quadratic functional,
the existence and uniqueness of the optimal control for the system is proved,
and the necessary and sufficient condition for a control to be optimal is ob-
tained. The optimality system determining the optimal control is deduced.
The application of penalty shifting method to the approximate solution of the
control problem for the population system is researched, and the convergence
of method in appropriate Hilbert spaces is derived. These results may signif-
icantly provide theoretical reference for the practical research of the control
problem in population systems.
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