EXISTENCE OF A POSITIVE SOLUTION FOR AN NTH ORDER BOUNDARY VALUE PROBLEM FOR NONLINEAR DIFFERENCE EQUATIONS

JOHNNY HENDERSON AND SUSAN D. LAUER

ABSTRACT. The nth order eigenvalue problem:
\[\Delta^n x(t) = (-1)^{n-k} \lambda f(t, x(t)), \quad t \in [0, T], \]
\[x(0) = x(1) = \cdots = x(k - 1) = x(T + k + 1) = \cdots = x(T + n) = 0, \]
is considered, where \(n \geq 2 \) and \(k \in \{1, 2, \ldots, n - 1\} \) are given. Eigenvalues \(\lambda \) are determined for \(f \) continuous and the case where the limits \(f_0(t) = \lim_{n \to 0^+} f(t, u) \) and \(f_\infty(t) = \lim_{n \to \infty} f(t, u) \) exist for all \(t \in [0, T] \). Guo’s fixed point theorem is applied to operators defined on annular regions in a cone.

1. Introduction

Define the operator \(\Delta \) to be the forward difference
\[\Delta u(t) = u(t + 1) - u(t), \]
and then define
\[\Delta^i u(t) = \Delta(\Delta^{i-1} u(t)), \quad i \geq 1. \]

For \(a < b \) integers define the discrete interval \([a, b] = \{a, a+1, \ldots, b\} \). Let the integers \(n, T \geq 2 \) be given, and choose \(k \in \{1, 2, \ldots, n - 1\} \). Consider the nth order nonlinear difference equation
\[\Delta^n x(t) = (-1)^{n-k} \lambda f(t, x(t)), \quad t \in [0, T], \]
satisfying the boundary conditions
\[x(0) = x(1) = \cdots = x(k - 1) = x(T + k + 1) = \cdots = x(T + n) = 0. \]

1991 Mathematics Subject Classification. 39A10, 34B15.

Key words and phrases. Nth order difference equation, eigenvalue, boundary value problem, fixed point theorem, discrete, nonlinear, Green’s function.

Received: October 26, 1997.

We determine eigenvalues λ that yield a solution to (1) and (2), where
\[(A)f : [0, T] \times \mathbb{R}^+ \to \mathbb{R}^+ \]
is continuous, where \mathbb{R}^+ denotes the nonnegative reals,

(B) For all $t \in [0, T]$, $f_0(t) = \lim_{u \to 0^+} \frac{f(t, u)}{u}$ and $f_\infty(t) = \lim_{n \to \infty} \frac{f(t, u)}{u}$ both exist.

We apply Guo’s fixed point theorem using cone methods, Guo and Lakshmikantham [14], and Krasnosel’skiĭ [19], to accomplish this. This method was first applied to differential equations in the landmark paper by Erbe and Wang [12]. Our proof will follow along the lines of those in Henderson [16], Lauer [17], and Merdivenci [20], additionally utilizing techniques from Peterson [21], Hartman [15], Eloe and Kaufmann [11], Agarwal and Wong [6,7], Agarwal and Henderson [1], and Agarwal, Henderson and Wong [2]. A key to applying this fixed point theorem involves discrete concavity of solutions of the boundary value problem in conjunction with a lower bound on an appropriate Green’s function. Extensive use of the results by Eloe [8] concerning a lower bound for the Green’s function will be made. Related results for nth order differential equation may be found in Agarwal and Wong [3,4], Eloe and Henderson [9,10], and Fang [13].

2. Preliminaries

Let $G(t, s)$ be the Green’s function for the disconjugate boundary value problem
\[Lx(t) \equiv \Delta^n x(t) = 0, t \in [0, T], \]
and satisfying (2), where, as shown in Kelly and Peterson [18], $G(t, s)$ is the unique function satisfying:

(a) $G(t, s)$ is defined for all $t \in [0, T + n], s \in [0, T]$.
(b) $LG(t, s) = \delta_{ts}$ for all $t \in [0, T], s \in [0, T]$ where $\delta_{ts} = 1$ if $t = s$, $\delta_{ts} = 0$ if $t \neq s$.
(c) For all $s \in [0, T]$, $G(t, s)$ satisfies the boundary conditions (2) in t.

We will use $G(t, s)$ as the kernel of an integral operator preserving a cone in a Banach space. This is the setting for our fixed point theorem.

Let \mathcal{B} be a Banach space and let $\mathcal{P} \subset \mathcal{B}$ be such that \mathcal{P} is closed and non-empty. Then \mathcal{P} is a cone provided (i) $au + bv \in \mathcal{P}$ for all $u, v \in \mathcal{P}$ and for all $a, b \geq 0$, and (ii) $u, -u \in \mathcal{P}$ implies $u = 0$.

Applying the following fixed point theorem from Guo, Guo and Lakshmikantham [14], will yield solutions of (1), (2) for certain λ.

Theorem 1. Let \mathcal{B} be a Banach space, and let $\mathcal{P} \subset \mathcal{B}$ be a cone. Let Ω_1 and Ω_2 be two bounded open sets in \mathcal{B} such that $0 \in \Omega_1 \subset \overline{\Omega}_1 \subset \Omega_2$, and let
\[
H : \mathcal{P} \cap (\overline{\Omega}_2 \setminus \Omega_1) \to \mathcal{P}
\]
be a completely continuous operator such that, either
(i) \(\| Hx \| \leq \| x \| , x \in \mathcal{P} \cap \partial \Omega_1 \), and \(\| Hx \| \geq \| x \| , x \in \mathcal{P} \cap \partial \Omega_2 \), or

(ii) \(\| Hx \| \geq \| x \| , x \in \mathcal{P} \cap \partial \Omega_1 \), and \(\| Hx \| \leq \| x \| , x \in \mathcal{P} \cap \partial \Omega_2 \).

Then \(H \) has a fixed point in \(\mathcal{P} \cap (\Omega_2 \setminus \Omega_1) \).

We now apply Theorem 1 to the eigenvalue problem (1), (2), following along the lines of methods incorporated by Henderson [16]. Note that \(x(t) \) is a solution of (1), (2) if, and only if,

\[
x(t) = (-1)^{n-k} \lambda \sum_{s=0}^{T} G(t, s)f(s, x(s)), \quad t \in [0, T].
\]

Hartman [15] extensively studied the boundary value problem (1), (2), with \((-1)^{n-k} \lambda f(t, u) \geq 0 \). We begin by stating three lemmas from Hartman.

Lemma 1. Let \(G(t, s) \) denote the Green’s function of (3), (2). Then

\[
(-1)^{n-k} G(t, s) \geq 0, \quad (t, s) \in [k, T+k] \times [0, T].
\]

Lemma 2. Assume that \(u \) satisfies the difference inequality

\[
(-1)^{n-k} \Delta^n u(t) \geq 0, \quad t \in [0, T],
\]

and the homogeneous boundary conditions, (2). Then \(u(t) \geq 0, \ t \in [0, T+k] \).

Lemma 3. Suppose that the finite sequence \(u(0), \ldots, u(j) \) has \(N_j \) nodes and the sequence \(\Delta u(0), \ldots, \Delta u(j-1) \) has \(M_j \) nodes. Then \(M_j \geq N_j - 1 \).

Eloe [8] employed these three lemmas to arrive at the following theorem that gives a lower bound for the solution to the class of boundary value problems studied by Hartman.

Theorem 2. Assume that \(u \) satisfies the difference inequality

\[
(-1)^{n-k} \Delta^n u(t) \geq 0, \quad t \in [0, T],
\]

and the homogeneous boundary conditions, (2). Then for \(t \in [k, T+k] \),

\[
(-1)^{n-k} u(t) \geq \frac{\nu!}{[(T+1)\cdots(T+\nu)]} \| u \| ,
\]

where \(\| u \| = \max_{t \in [k, T+k]} |u(t)| \) and \(u = \max\{k, n-k\} \).

We remark that Agarwal and Wong [5] have recently sharpened the inequality of Theorem 2. However, this sharper inequality is of little consequence for this work.

Eloe also contributed the following corollary.

Corollary 1. Let \(G(t, s) \) denote the Green’s function for the boundary value problem, (3), (2). Then for all \(s \in [0, T], t \in [k, T+k] \),

\[
(-1)^{n-k} G(t, s) \geq \frac{\nu!}{[(T+1)\cdots(T+\nu)]} \| G(\cdot, s) \| ,
\]

where \(\| G(\cdot, s) \| = \max_{t \in [k, T+k]} |G(t, s)| \) and \(\nu = \max\{k, n-k\} \).
To fulfill the hypotheses of Theorem 1, let
\[\mathcal{B} = \{ u : [0, T+n] \to \mathbb{R} \mid u(0) = u(1) = \cdots = u(k-1) = u(T+k+1) = \cdots = u(T+n) = 0 \}, \]
with \(\|u\| = \max_{t \in [t,T+k]} |u(t)| \). Now, \((\mathcal{B}, \|\cdot\|)\) is a Banach space.

Let \(\sigma = \nu! / ((T+1) \cdots (T+\nu)) \),
and define a cone
\[\mathcal{P} = \{ u \in \mathcal{B} \mid u(t) \geq 0 \text{ on } [0, T+n] \text{ and } \min_{t \in [k,T+k]} u(t) \geq \sigma \|u\| \}. \]

Also choose \(\tau, \eta \in [k, T+k] \) such that
\[(-1)^{n-k} \sum_{s=k}^{T} G(\tau, s)f_\infty(s) = \max_{t \in [k,T+k]} \sum_{s=k}^{T} G(t, s)f_\infty(s), \]
\[(-1)^{n-k} \sum_{s=k}^{T} G(\eta, s)f_0(s) = \max_{t \in [k,T+k]} (-1)^{n-k} \sum_{s=k}^{T} G(t, s)f_0(s). \]

3. Main Results

Theorem 3. Assume conditions (A) and (B) are satisfied. Then, for each \(\lambda \) satisfying
\[\frac{1}{\sigma(-1)^{n-k} \sum_{s=k}^{T} G(\tau, s)f_\infty(s)} < \lambda < \frac{1}{\sum_{s=k}^{T} \|G(:, s)\|f_0(s)} \]
there exists at least one solution of (1), (2) in \(\mathcal{P} \).

Proof. Let \(\lambda \) be given as in Theorem 3. Let \(\epsilon > 0 \) be such that
\[\frac{1}{\sigma(-1)^{n-k} \sum_{s=k}^{T} G(\tau, s)(f_\infty(s) - \epsilon)} \geq \lambda \geq \frac{1}{\sum_{s=0}^{T} \|G(:, s)\|(f_0(s) + \epsilon)}. \]

Define a summation operator \(H : \mathcal{P} \to \mathcal{B} \) by
\[Hx(t) = (-1)^{n-k} \lambda \sum_{s=0}^{T} G(t, s)f(s, x(s)), \quad x \in \mathcal{P}. \]

We seek a fixed point of \(H \) in the cone \(\mathcal{P} \). By the nonnegativity of \(f \) and \((-1)^{n-k}G, Hx(t) \geq 0 \) on \([0, T+n] \), and from the properties of \(G, Hx \)
satisfies the boundary conditions. Now if we choose \(x \in \mathcal{P} \), we have

\[
Hx(t) = (-1)^{n-k} \lambda \sum_{s=0}^{T} G(t, s) f(s, x(s)) \\
\leq \lambda \sum_{s=0}^{T} \|G(\cdot, s)\| f(s, x(s)), t \in [k, T + k].
\]

So

\[
\|Hx\| = \max_{t \in [k, T + k]} |Hx(t)| \leq \lambda \sum_{s=0}^{T} \|G(\cdot, s)\| f(s, x(s)).
\]

Hence, if \(x \in \mathcal{P} \), \((-1)^{n-k} G(t, s) \geq \sigma \|G(\cdot, s)\|\), for \(t \in [k, T + k] \) and \(s \in [0, T] \), and thus,

\[
\min_{t \in [k, T + k]} Hx(t) = \min_{k, T + k} (-1)^{n-k} \lambda \sum_{s=0}^{T} G(t, s) f(s, x(s)) \\
\geq \sigma \lambda \sum_{s=0}^{T} \|G(\cdot, s)\| f(s, x(s)) \\
\geq \sigma \|Hx\|.
\]

Thus \(H : \mathcal{P} \rightarrow \mathcal{P} \). Additionally, \(H \) is completely continuous.

Now consider \(f_0(t) \). For each \(t \in [0, T] \), there exists \(k_t > 0 \) such that \(f(t, u) \leq (f_0(t) + \epsilon)u \) for \(0 < u \leq k_t \). Let \(K_1 = \min_{t \in [0, T]} k_t \). So, for \(x \in \mathcal{P} \) with \(\|x\| = K_1 \), we have

\[
Hx(t) = (-1)^{n-k} \lambda \sum_{s=0}^{T} G(t, s) f(s, x(s)) \\
\leq \lambda \sum_{s=0}^{T} \|G(\cdot, s)\| (f_0(s) + \epsilon) x(s) \\
\leq \lambda \sum_{s=0}^{T} \|G(\cdot, s)\| (f_0(s) + \epsilon) \|x\| \\
\leq \|x\|, \quad t \in [k, T + k].
\]

Therefore, \(\|H(x)\| \leq \|x\| \). Hence, if we set

\[
\Omega_1 = \{u \in \mathcal{B} \|u\| < K_1\}
\]

then

(8) \[
\|Hx\| \leq \|x\| \text{ for all } x \in \mathcal{P} \cap \partial \Omega_1.
\]

Next consider \(f_\infty(t) \). For each \(t \in [0, T] \), there exists \(k_t \) such that \(f(t, u) \geq (f_\infty(t) - \epsilon)u \) for all \(u \geq k_t \). Let \(K_2 = \max_{t \in [0, T]} k_t \) and \(K_2 = \).
max \{2K_1, \frac{1}{\sigma} \hat{K}_2\}. Define
\[\Omega_2 = \{ u \in \mathcal{B} \| u \| < K_2 \} \]

If \(x \in \mathcal{P} \) with \(\| x \| = K_2 \), then \(\min_{t \in [k,T+k]} x(t) \geq \sigma \| x \| \geq \hat{K}_2 \), and
\[
H \tau = (-1)^{n-k} \lambda \sum_{s=0}^{T} G(\tau,s)f(s,x(s)) \\
\leq (-1)^{n-k} \lambda \sum_{s=0}^{T} G(\tau,s)f(s,x(s)) \\
\geq (-1)^{n-k} \lambda \sum_{s=0}^{T} G(\tau,s)f_\infty(s) - \epsilon) \| x(s) \| \\
\geq \sigma(-1)^{n-k} \lambda \sum_{s=k}^{T} G(\tau,s)(f_\infty(s) - \epsilon) \| x \| \\
\geq \| x \|.
\]

Thus, \(\| Hx \| \geq \| x \| \), and so
\[
\| Hx \| \geq \| x \| \quad \text{for all } x \in \mathcal{P} \cap \partial \Omega_2
\]

So with (8) and (9) we have shown that \(H \) satisfies the first condition of Theorem 1. Thus we can conclude that \(H \) has a fixed point \(u(t) \in \mathcal{P} \cap (\Omega_2 \setminus \Omega_1) \). This fixed point, \(u(t) \), is a solution of (1), (2) corresponding to the given value of \(\lambda \). \(\blacksquare \)

Theorem 4. Assume conditions (A) and (B) are satisfied. Then, for each \(\lambda \) satisfying
\[
\frac{1}{\sigma(-1)^{n-k} \sum_{s=k}^{T} G(\eta,s)f_0(s)} < \lambda < \frac{1}{\sum_{s=0}^{T} \| G(\cdot,s) \| f_\infty(s)}
\]

there exists at least solution of (1), (2) in \(\mathcal{P} \).

Proof. Let \(\lambda \) be given as stated above. Let \(\epsilon > 0 \) be such that
\[
\frac{1}{\sigma(-1)^{n-k} \sum_{s=k}^{T} G(\eta,s)(f_0(s) - \epsilon)} \leq \lambda \leq \frac{1}{\sum_{s=0}^{T} \| G(\cdot,s) \| (f_\infty(s) + \epsilon)}
\]

Let \(H \) be the cone preserving, completely continuous operator defined in (7).

Consider \(f_0(t) \). For each \(t \in [0,T] \) there exists \(k_t > 0 \) such that \(f(t,u) \geq (f_0(t) - \epsilon)u \) for \(0 < u \leq k_t \). Let \(K_1 = \min_{t \in [0,T]} k_t \). So, for \(x \in \mathcal{P} \) with \(\| x \| = K_1 \),
we have
\[Hx(\eta) = (-1)^{n-k} \lambda \sum_{s=0}^{T} G(\eta, s) f(s, x(s)) \]
\[\geq (-1)^{n-k} \lambda \sum_{s=k}^{T} G(n, x) f(x, x(s)) \]
\[\geq (-1)^{n-k} \lambda \sum_{s=0}^{T} G(\eta, s) (f_0(s) - \epsilon) x(s) \]
\[\geq \sigma (-1)^{n-k} \lambda \sum_{s=k}^{T} G(\eta, s) (f_0(s) - \epsilon) \|x\| \]
\[\geq \|x\|. \]

Therefore, \(\|Hx\| \geq \|x\|\). Hence, if we set
\[\Omega_1 = \{ u \in \mathcal{B} | \|u\| < K_1 \}, \]
\[(10) \quad \|Hx\| \geq \|x\|, \text{ for all } x \in \mathcal{P} \cap \partial \Omega_1. \]

Next consider \(f_{\infty}(t)\). For each \(t \in [0, T]\) there exists \(k_t > 2K_1\) such that \(f(t, u) \leq (f_{\infty}(t) + \epsilon) u\) for all \(u \geq k_t\). There exists sets \(I, J \subset [0, T]\), with \(I \cup J = [0, T]\), such that for all \(t \in I, f(t, u)\) is bounded as a function of \(u\), and for all \(t \in J, f(t, u)\) is unbounded as a function of \(u\).

Choose \(M > 0\) such that for all positive \(u\) and for all \(t \in I, f(t, u) \leq M\). Let
\[\kappa_t = \max \left\{ k_t, \frac{M}{f_{\infty}(t) + \epsilon} \right\} \]

For each \(t \in J\) choose \(\kappa_t \geq k_t\) such that \(f(t, u) \leq f(t, \kappa_t)\), for \(0 < u \leq \kappa_t\). Let \(K_2 = \max_{t \in [0, T]} \kappa_t\). By the continuity of \(f\), for all \(t \in J\) there exists \(\mu_t\), where \(\kappa_t \leq \mu_t \leq K_2\), such that \(f(t, u) \leq f(t, \mu_t)\) for all \(0 < u \leq K_2\). Now
\[Hx(t) = (-1)^{n-k} \lambda \sum_{s=0}^{T} G(t, s) f(s, x(s)) \]
\[\leq \lambda \sum_{s \in J} \|G(\cdot, s)\| M + \lambda \sum_{s \in I} \|G(\cdot, s)\| f(s, \mu_s) \]
\[\leq \lambda \sum_{s \in I} \|G(\cdot, s)\| (f_{\infty}(s) + \epsilon) \kappa_s + \lambda \sum_{s \in J} \|G(\cdot, s)\| (f_{\infty}(s) + \epsilon) \mu_s \]
\[\leq \lambda \sum_{s=0}^{T} \|G(\cdot, s)\| (f_{\infty}(s) + \epsilon) K_2 \]
\[= \lambda \sum_{s=0}^{T} \|G(\cdot, s)\| (f_{\infty}(s) + \epsilon) \|x\| \]
\[\leq \|x\| \quad t \in [k, T + k], \]
for \(x \in \mathcal{P} \) with \(\|x\| = K_2 \). Now if we take
\[
\Omega_2 = \{ u \in \mathcal{B} | \|u\| < K_2 \},
\]
then
\[
\|Hx\| \leq \|x\| \text{ for all } x \in \mathcal{P} \cup \partial \Omega_2.
\] (11)

Thus, with (10) and (11), we have shown that \(H \) satisfies the hypotheses to Theorem 1(ii), which yields a fixed point of \(H \) belonging to \(\mathcal{P} \cap (\overline{\Omega_2 \setminus \Omega_1}) \). This fixed point is a solution of (1), (2) corresponding to the given \(\lambda \).\(\blacksquare \)

REFERENCES

[21] A. C. Peterson, Boundary value problems for an nth order linear difference equation,

Johnny Henderson
Department of Mathematics
Auburn University
Auburn, Alabama 38649, USA
E-mail address: hendej2@mail.auburn.edu

Susan D. Lauer
Department of Mathematics
Tuskegee University
Tuskegee, Alabama 36088, USA
E-mail address: lauersd@auburn.campus.mci.net
Special Issue on
Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk