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Abstract. This paper is concerned with the approximate and exact con-
trollability properties of the wave equation with interior point controls en-
tering via the concentrated force, the velocity of the displacement and the
moment. The emphasis is given to the moving point controls and their dual
observations whose advantages and disadvantages, versus the static ones, are
analyzed with respect to the space dimension, the duration of the control
time interval and the function spaces involved.

1. Introduction

We consider the following control problem for the wave equation:

(1.1) ytt = ∆y + L(x̂(·))v in Ω× (0, T ) = Q, v ∈ V,

y = 0 in ∂Ω× (0, T ),

y |t=0 = yt |t=0 = 0 in Ω,

where Ω is a bounded domain in Rn with boundary ∂Ω, v is a control
and V is a control space. The structure of the linear operator L(x̂(·)) is
associated with a spatial curve (0, T ) � t → x̂(t) ∈ Ω. In particular, when
x̂(·) ≡ x̄ one deals with the static point control. System (1.1) is said to be
exactly controllable at time T in the Hilbert space H if its reachable set
at time T , namely,

YT = { {y |t=T , yt |t=T } | y satisfies (1.1) with some v ∈ V }
coincides with H. If YT is dense in H, then (1.1) is said to be approxi-
mately controllable at time T in H.
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The aim of this paper is to study the exact and approximate controllability
properties of (1.1) with the following control operators:

(1.2) L(x̂(·))v = δx̂(·) ◦ v, δx̂(·) = δ(x− x̂(t)),

(1.3) L(x̂(·))v = ∇(δx̂(·) ◦ v), ∇ =
(

∂

∂x1
, . . . ,

∂

∂xn

)
,

and

(1.4) L(x̂(·))v =
∂

∂t
(δx̂(·) ◦ v),

where the symbol “◦” indicates the duality associated with V . Three
spaces are considered below for the controls (1.2), (1.4): V = L2(0, T ),
[L∞(0, T )]′ and [C((0, T )\{ti}∞

i=1)]
′, where {ti}∞

i=1 ⊂ (0, T ) are preas-
signed isolated points. (1.3) is associated with the n-dimensional versions
of these spaces.
The issues of regularity and controllability for the wave equation with

interior point control have received considerable attention in the literature
mostly in the context of the static control (1.2). A thorough account of the
regularity properties of (1.1), (1.2) when V = L2(0, T ), x̂(·) ≡ x̄ is given
for n = 3 by Y. Meyer [14] and J.-L. Lions [11], and for n = 1, 2, 3 by
R. Triggiani [18], [20]. Among early works on controllability in one space
dimension we mention A. Butkovski [1]. We refer to I.M. Lasiecka and R.
Triggiani [10] on the comprehensive account of the use of static point controls
in the framework of the optimal control theory with quadratic performance
index for different types of linear partial differential equations.
Recent studies exposed the lack of exact controllability of (1.1) with static

L2(0, T )-control (1.2) in the spaces where the solutions are continuous in
time. In particular, the Hilbert Uniqueness Method, introduced by J.-L.
Lions in [11, 12], pointed out at the space F ′ for exact controllability which
is defined as the dual of the completion in the norm (

∫ T
0 φ2(x̄, t)dt)1/2 of

the space of smooth initial conditions {φ0, φ1} with φ0 = 0 on ∂Ω and φ
being the corresponding solution of the wave equation. On the other hand, in
[20, 21] it was noticed that for n = 2, 3 in the spaces of optimal regularity,
exact controllability is not possible when using the aforementioned static
control. An analogous negative result for the boundary controls of finite
range was given in [19] for n ≥ 2.
The just-described situation is reflected in the set-up of this paper. Namely,

the emphasis below is given to the study of exact controllability in the spaces
where the solutions to (1.1) can be discontinuous in time and to the moving
point controls (1.2)-(1.4). In applications these can also describe temporal
activation over preassigned location-fixed actuators, or, in the dual setting,
scanning over location-fixed sensors. It is worth noticing that in the multi-
dimensional case the moving point controls can cope with the negative effect
of “poor” asymptotic properties of the corresponding eigenvalues as well
as with their unlimited (or, unknown) multiplicities. The latter makes the
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treatment of the controllability problem under static controls of any finite
range impossible.
In the recent paper [7] it was shown that for any given T > 0 there

exists a class of curves continuous on (0, T ) which, regardless of the space-
dimension, make (1.1) with the following controls:

(1.5) L(x̂(·)){v1, v2} = ∇(δx̂(·) ◦ v1) +
∂

∂t
(δx̂(·) ◦ v2),

where {v1, v2} ∈ [L∞(0, T ;Rn+1)]′, exactly controllable at time T in
L2(Ω) × H−1(Ω). This was achieved thanks to the combined structure of
controls (1.5), which allows the direct employment of the conservation law
in the derivation of the corresponding a priori estimate. The present paper
focuses on the case of “separate” controls such as (1.2)-(1.4), a radically
different case from (1.5).
The remainder of this paper is organized as follows. The next section dis-

cusses the main exact controllability results. Section 3 introduces the dual
observability problems and states the main exact observability results. The
case of the static observations is considered in Section 4. Section 5 discusses
the techniques applied to obtain necessary a priori (exact observability) es-
timates for the moving point observations (3.3)-(3.5) for n = 1. These
are then extended to the multidimensional case in Appendix A. Section 6
discusses the proofs of the main controllability results.

2. Main Controllability Results

Theorem 2.1. (The static case) Let Ω = (0, 1), V = L2(0, T ), x̂(·) ≡
x̄, x̄ ∈ (0, 1).

1. Let x̄ ∈ (0, 1) be an arbitrary algebraic number of degree 2 (see, e.g.,
[17], p. 18). Then (1.1) is exactly controllable at time T = 2, minimal
possible, in (H2(0, 1)

⋂
H1

0 (0, 1)) × H1
0 (0, 1) with the static control (1.2),

and in H1
0 (0, 1)× L2(0, 1) with the static controls (1.3)/(1.4).

2. System (1.1), (1.5), v1, v2 ∈ V = L2(0, T ) is exactly controllable at
time T = 2 × max{1 − x̄, x̄}, minimal possible, in L2(0, 1) × H−1(0, 1),
regardless of the choice of x̄ ∈ (0, 1).

Comments on the static case. (i) The static one dimensional case is a
“milestone” for further study of the moving point controls. To our knowl-
edge, though the former has often appeared in one context or another in
control studies, little was asserted concerning the spaces of exact controlla-
bility and of the corresponding controls. For example, the algebraic points
were pointed out in [1] in the context of static control (1.2), n = 1, but the
related function spaces were not explicitly specified.
(ii) Theorem 2.1 distinguishes the algebraic numbers of degree 2 which are
known as the “worst approximations” for the rational points. For the same
reason these points are well known in the context of observability of the
one-dimensional heat equation, see, e.g., Sz. Dolecki [2]. The assertion 1. in
Theorem 2.1 (as well as Corollaries 2.1, 3.1 below) admits straightforward
extensions to the algebraic points of any higher degree with respect to exact
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controllability in more regular spaces (see also Remark 4.1 below).
(iii) (1.5) is the only control among (1.2)-(1.5) which ensures the corre-
sponding exact controllability property in a stable way with respect to its
allocation.
The following results deal with the moving point controls. Their proofs,

given in Sections 5 and 6, focus on the one dimensional case, while Appen-
dix A outlines how they can be extended to any space dimension. To make
the formulation of Theorem 2.2 more compact, we will say further: “(1.1)
is exactly (approximately) controllable ..” meaning by that that “there ex-
ist (measurable, or piecewise continuous) curves for which (1.1) is exactly
(approximately) controllable.”

Theorem 2.2. (Moving point controls) Let T > 0 be given and ∂Ω be
of class C [n/2]+1 in the case of control (1.2) and of class C [n/2]+2 for
the controls (1.3)/(1.4). (Here and elsewhere [α] denotes for the largest
non-negative integer such that [α] ≤ α.)

1. Then (1.1), (1.2), with V = [L∞(0, T )]′ is exactly controllable at time
T in H

[n/2]+2
D (Ω) × H

[n/2]+1
D (Ω). If V = L2(0, T ), then (1.1), (1.2) is

approximately controllable at the same time in H
−[n/2]
D (Ω)×H

−[n/2]−1
D (Ω).

2. Both systems (1.1), (1.3), with V = [L∞(0, T )]′ and (1.1), (1.4), with
V = [L∞(0, T ;Rn)]′ are exactly controllable at time T in H

[n/2]+1
D (Ω) ×

H
[n/2]
D (Ω). Systems (1.1), (1.3), with V = L2(0, T ) and (1.1), (1.4),

with V = L2(0, T ;Rn) are approximately controllable at the same time in
H

−[n/2]−1
D (Ω)×H

−[n/2]−2
D (Ω).

Here, with s being a positive integer,

Hs
D(Ω) = D(As/2) (where Aϕ = −∆ϕ, D(A) = H2(Ω)

⋂
H1

0 (Ω)) =

= {φ | φ ∈ Hs(Ω), φ |∂Ω = . . . = ∆[(s−1)/2]φ |∂Ω= 0}, s ≥ 1,

H2(Ω)
⋂

H1
0 (Ω) = H2

D(Ω), [Hs
D(Ω)]

′ = H−s
D (Ω), [H1

0 (Ω)]
′ = H−1(Ω).

Everywhere in this paper L2(Ω) is identified with its dual space, whence
one can write Hs

D(Ω) ⊂ L2(Ω) ⊂ H−s
D (Ω).

Remark 2.1. For each of the controls (1.2)/(1.4) and (1.3) there exists a
class of curves x̂(·) continuous everywhere on (0, T ), except (maybe) for
a countable number of isolated points {ti}∞

i=1, for which the corresponding
system (1.1) with V = [C((0, T )\{ti}∞

i=1)]
′ or [C((0, T )\{ti}∞

i=1;R
n)]′ is

exactly controllable at time T in the spaces specified in Theorem 2.2.

The following assertion exposes the role of the algebraic numbers in the
context of the moving point controls.

Corollary 2.1. Let Ω = (0, 1). Given T > 0, for each of the controls (1.2)
or (1.3)/(1.4) there exists a class of curves x̂(·) continuous everywhere on
(0, T ), except (maybe) for the only point t∗ such that ta = T − t∗ is
an algebraic number of degree 2, for which the corresponding system (1.1),
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with V = [C((0, T )\{t∗})]′ is exactly controllable at time T accordingly in
H3

D(0, 1)×H2
D(0, 1) and in H2

D(0, 1)×H1
0 (0, 1).

Comments on moving point controls. (i) The techniques used in this paper
for the construction of control curves are new. They allow one to extend the
approach of [6], [7] to the case of the separate controls (1.2)-(1.4) of finite
range. In [6], [7] the invariance of the energy in time was employed - via the
dual observation (3.6) - to evaluate directly the energy norm of the solution to
the dual system. This resulted in a construction of control curves continuous
on (0, T ). In contrast to that, this paper considers “separate” controls.
We successively evaluate the Fourier coefficients of the solution to the dual
equation expanded along the eigenfunctions, while constructing the curves
which admit a countable number of discontinuities. These techniques are
aimed at the space variable and focus on the properties of the series along
the eigenfunctions rather than on time-dependent series usually involved
in analogous studies. Such a “permutation” of variables leads to “time-
compression,” and, consequently, to the introduction of non-Hilbert spaces
for controls/observations.
(ii) In the one dimensional case the moving point controls (from suitable
spaces) yield exact controllability in the same spaces as in the static case,
but at an arbitrary time, specified in advance.

Remark 2.2. Details about the spaces [L∞(0, T )]′, [C((0, T )\{ti}∞
i=1)]

′
can be found in [4]. There is an isometric isomorphism between the former
space and the space of bounded additive functions on measurable subsets of
(0, T ) which vanish on sets of zero-measure, see [4], p. 296. The latter
space can be regarded as the space of functions of bounded variation defined
on (0, T )\{ti}∞

i=1, see [4], p. 262.

3. Dual Observability Problems

It is well-understood now that the issue of controllability is strictly con-
nected with the observability properties of an associated dual system. Ac-
cordingly, we shall further approach the problem (1.1) by studying the fol-
lowing system:

(3.1) ϕtt = ∆ϕ in Q,

ϕ = 0 in ∂Ω× (0, T ),
ϕ |t=T = ϕ0, ϕt |t=T = ϕ1 in Ω,

(3.2) z(t) = G(x̂(t))ϕ, t ∈ (0, T )
with the observation operators G(x̂(·)) dual of the control operators (1.2)-
(1.5), namely:

(3.3) G(x̂(·))ϕ = ϕ(x̂(·), ·),
(3.4) G(x̂(·))ϕ = ∇ϕ(x̂(·), ·),
(3.5) G(x̂(·))ϕ = ϕt(x̂(·), ·),
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(3.6) G(x̂(·))ϕ = {∇ϕ(x̂(·), ·), ϕt(x̂(·), ·)}.
Given a normed space H, (3.1), (3.2) is said to be observable at time T on
H if for any solution ϕ of the system (1.1) such that {ϕ(·, T ), ϕt(·, T )} ∈ H,
the pair {ϕ(·, T ), ϕt(·, T )} can be uniquely determined from the observation
z(·) in (3.2) over the time interval (0, T ). Given normed spaces B, H1 ⊆
H2 we shall say that (3.1), (3.2) is B- exactly observable at time T on
H1 with respect the H2-norm if

∃ν > 0 such that ‖G(x̂(·))ϕ‖B ≥ ν‖{ϕ(·, T ), ϕt(·, T )}‖H2

for any solution ϕ of the system (1.1) such that {ϕ(·, T ), ϕt(·, T )} ∈ H1.
This definition takes into account the situation typically arising in the con-
text of infinite dimensional studies, namely: the domain of the observation
operator may not match the desired regularity of the solutions of the system
considered (while being, e.g., densely defined).
The main observability results of this paper are as follows.

Theorem 3.1. (The static case) Let Ω = (0, 1), x̂(·) ≡ x̄, x̄ ∈ (0, 1).
1. For the algebraic points x̄ ∈ (0, 1) of degree 2 system (3.1), (3.2)

is L2(0, T )-exactly observable at T = 2, minimal possible, on the space
H1

0 (0, 1)× L2(0, 1) with respect to the H−1(0, 1)× H−2
D (0, 1)-norm for the

static observation (3.3), and on H2
D(0, 1) × H1

0 (0, 1) with respect to the
L2(0, 1)×H−1(0, 1)-norm for the static observations (3.4) or (3.5).

2. Regardless of the choice of x̄ ∈ (0, 1), system (3.1), (3.2), (3.6) is
L2(0, T ;R2)-exactly observable at T = 2×max{x̄, (1−x̄)}, minimal possible,
on H2

D(0, 1)×H1
0 (0, 1) with respect to the H1

0 (0, 1)× L2(0, 1)-norm.

Theorem 3.2. (Moving observations when n = 1) Let Ω = (0, 1) and
T > 0 be given.

1. Then (3.1), (3.2) is L∞(0, T )-exactly observable at time T (in the
sense that there exists a suitable class of measurable curves) for the moving
observation (3.3) on H1

0 (0, 1) × L2(0, 1) with respect to the H−1(0, 1) ×
H−2

D (0, 1)-norm, and for the moving observations (3.4) or (3.5) on H2
D(0, 1)×

H1
0 (0, 1) with respect to the L2(0, 1)×H−1(0, 1)-norm.
2. The observation curves satisfying the above requirements can be selected

to be continuous everywhere on (0, T ) except, maybe, for a countable number
of isolated points {ti}∞

i=1. For these curves the assertions of 1. in the above
hold true with respect to C((0, T )\{ti}∞

i=1)-exact observability property.

The following assertion is dual of Corollary 2.1.

Corollary 3.1. Let Ω = (0, 1). Given T > 0, for each of the observations
(3.3)-(3.5) there exists a class of curves x̂(·) continuous everywhere on
(0, T ), except (maybe) for the only instant t∗ such that ta = T − t∗ is
an algebraic number of degree 2, for which the corresponding system (3.1),
(3.2) is C((0, T )\t∗)-exactly observable at time T for the observation (3.3)
on H1

0 (0, 1)×L2(0, 1) with respect to the H−2
D (0, 1)×H−3

D (0, 1)-norm, and
for the observation (3.4) or (3.5) on H2

D(0, 1) × H1
0 (0, 1) with respect to

the H−1(0, 1)×H−2
D (0, 1)-norm.
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Theorem 3.3. (The general case) Let T > 0 be given and ∂Ω be of
class C [n/2]+1 in the case of observations (3.3) and of class C [n/2]+1 in
the case of observations (3.4)/(3.5). Then all the assertions of Theorem 3.2
hold true (recall only that (3.4) is an n-dimensional vector) accordingly on
H

[n/2]+1
D (Ω) × H

[n/2]
D (Ω) with respect to the H

−[n/2]−1
D (Ω) × H

[−n/2]−2
D (Ω)-

norm for the observation (3.3) and on H
[n/2]+2
D (Ω)× H

[n/2]+1
D (Ω) with re-

spect to the H
−[n/2]
D (Ω)×H−[n/2]−1

D (Ω)-norm for the observations (3.4)/(3.5).

Remark 3.1. (i) The arguments of Theorems 3.1-3.3 (except for the as-
sertion 3.1.2) make use of the Fourier expansion of the solution to (3.1)
along the corresponding eigenfunctions and of the asymptotic behavior of
the (multiple) eigenvalues. Corollary 3.1 also employs the explicit formula
for the latter in one space dimension.
(ii) Exact observability of (3.1), (3.2), (3.6), stated as a part of assertion
3.1.2, was shown by L.F. Ho [5] for T > 2 × max{x̄, 1 − x̄} by using
the multipliers techniques. Our argument is based on d’Alembert’s formula
(4.8), which is due to the wave reflection principle. It allows one to calculate
precisely the energy of the solution to (3.1) via its output (3.6), see (4.12)
below.
(iii) An application of the assertion 2. in Theorem 3.1 to the issue of point-
wise stabilization is discussed in [8].

Given T > 0, let a sequence {xk, tk}∞
k=1 ⊂ Ω× (0, T ) be given. Consider

the following discrete-time observations:

(3.7) Gkϕ = ϕ(xk, tk), k = 1 . . . ,

(3.8) Gkϕ = ∇ϕ(xk, tk), k = 1 . . . ,

(3.9) Gkϕ = ϕt(xk, tk), k = 1 . . . .

The arguments of Theorems 3.2, 3.3 and Corollary 3.1 are linked below to
the existence of skeletons {xk, tk}∞

k=1 such that any curve passing through
them provides a desirable exact observability estimate. This yields the fol-
lowing reformulation of the aforementioned exact observability results.

Theorem 3.4. (Discrete time observations) The results of Theorems 3.2,
3.3 and Corollary 3.1 remain true for the observations (3.7)-(3.9) with the
replacement of the space L∞(0, T ) for observations by its sequential analogue
l∞. Suitable sequences for observations are described in Steps 2-4 in Section
5 and in Appendix A, and in the proof of Corollary 3.1.

Remark 3.2. If one has more than one sensor, i.e., if the observation be-
comes vector-valued, the measurement instants tk, k = 1, . . . in (3.7)-(3.9)
can be selected to coincide. In particular, for a countable set of sensors in
the case of assertions of Theorem 3.4 corresponding to Theorems 3.2, 3.3
one can take only the instants {tik}2∞i=1,k=1 pointed out in (5.3) and in Step 2
of Appendix A. In the case of Corollary 3.1 it is sufficient to have only two
observation instants T and t∗.
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4. Observability With Static Observations: the Case Ω = (0, 1).

It is well known that the general solution of (3.1) for n = 1 admits the
following representation:

(4.1) ϕ(x, t) =
√
2

∞∑
k=1

(ϕ0k cosπk(t− T ) +
ϕ1k

πk
sinπk(t− T )) sinπkx,

where

ϕ0k =
√
2
∫ 1

0
ϕ0(x) sinπkx dx, ϕ1k =

√
2
∫ 1

0
ϕ1(x) sinπkx dx.

The series in (4.1) with {ϕ0, ϕ1} satisfying

(4.2) {ϕ0, ϕ1} ∈ H1
0 (0, 1)× L2(0, 1)

converges in C[0, 1] uniformly over t ∈ [0, T ] which ensures well-posedness
of (3.3), and the following estimate holds ([13], [15], pp. 155, 307):

max
t∈[0,T ]

‖ϕ(·, t)‖C[0,1] ≤ const (‖ϕ0‖2H1(0,1) + ‖ϕ1‖2L2(0,1))
1/2.

The observations (3.4), (3.5) in their turn are well-defined if

(4.3) {ϕ0, ϕ1} ∈ H2
D(0, 1)×H1

0 (0, 1)

and the series in (4.1) converges then with its first derivatives with respect
to x and t in C[0, 1] uniformly over t ∈ [0, T ]. The following estimate
is verified (e.g., [15, pp. 155, 307]):

max
t∈[0,T ]

{‖ϕ(·, t), ϕx(·, t), ϕt(·, t)‖C[0,1])}

≤ const (‖ϕ0‖2H2(0,1) + ‖ϕ1‖2H1(0,1))
1/2.

Proof of Theorem 3.1. 1. Note first that, by standard results from
harmonic analysis, see, e.g., [16], the observation time T = 2 cannot be
improved. Furthermore, if x̄ is an algebraic number of degree l, then by
Liouville’s theorem [17], p. 21:

(4.4) | kx̄−m | ≥ const
kl−1

for any integers m and k, k > 0. When l = 2, this yields

(4.5) | sinπkx̄ | ≥ const
k

, k = 1, . . . .

We proceed with the proof of exact observability at T = 2 by the analysis
of the system (3.1)-(3.3). Since the system {sinπk(t− 2), cosπk(t− 2)}∞

k=1
is orthonormalized in L2(0, 2), from (4.1), (3.2), (3.3) it follows:

(4.6) | ϕ0k | = z0k√
2 sinπkx̄

, | ϕ1k | = πk z1k√
2 sinπkx̄

, k = 1, . . . ,

where

z0k =
∫ 2

0
z(t) sinπk(t− 2) dt, z1k =

∫ 2

0
z(t) cosπk(t− 2) dt.
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Recall now that, if ∂Ω is of class Cs (where s is a positive integer),
then the usual norm of Hs

D(Ω) is equivalent to the following one ([15], p.
230):

(4.7) ‖ϕ‖ =


 ∞∑

k=1

(λk)s

∫

Ω

ϕ(x) ωk(x) dx




2



1/2

.

Here {λk}∞
k=1 (λk+1 ≥ λk; λk → +∞), {ωk}∞

k=1 are the eigenvalues
and respective eigenfunctions (orthonormalized in L2(Ω)) of the spectral
problem: ∆ω = −λω, ω ∈ Hs

D(Ω).
Take any pair {ψ0, ψ1} ∈ H2

D(0, 1) × H1
0 (0, 1). Then (4.7) along with

Parseval’s formula yield
∞∑

k=1

ϕ0kψ1k ≤ const ‖z‖L2(0,2)‖ψ1‖H1(0,1)

and ∞∑
k=1

ϕ1kψ0k ≤ const ‖z‖L2(0,2)‖ψ1‖H2(0,1),

where

ψ0k =
√
2
∫ 1

0
ψ0(x) sinπkx dx, ψ1k =

√
2
∫ 1

0
ψ1(x) sinπkx dx.

From the latter the first assertion of Theorem 3.1 follows immediately. The
second assertion can be established analogously.

2. The general solution of the system (3.1), (4.3) can also be represented
by d’Alembert’s formula:

(4.8) ϕ(x, t) =
1
2
(ϕ0(x+ T − t) + ϕ0(x− T + t)) − 1

2

x+T−t∫
x−T+t

ϕ1(τ) dτ,

where the domains of the functions ϕ0(x) and ϕ1(x) are extended to R
as follows:

(4.9a) ϕi(x) = −ϕi(−x), ϕi(x) = −ϕi(2−x), x ∈ (−∞,+∞), i = 0, 1.

In particular,

(4.9b) ϕ′
0(x) = + ϕ′

0(−x), x ∈ (−∞,+∞).

Observe now that for the observations (3.6) we have

ϕx(x̄, t) =
1
2
(ϕ′

0(x̄+T −t)+ϕ′
0(x̄−T+t)) − 1

2
(ϕ1(x̄+T −t)−ϕ1(x̄−T+t)),

ϕt(x̄, t) =
1
2
(−ϕ′

0(x̄+T−t)+ϕ′
0(x̄−T+t)) − 1

2
(−ϕ1(x̄+T−t)−ϕ1(x̄−T+t)).

Hence,

(4.10a) ϕx(x̄, t) + ϕt(x̄, t) = ϕ′
0(x̄− T + t) + ϕ1(x̄− T + t).
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(4.10b) ϕx(x̄, t)− ϕt(x̄, t) = ϕ′
0(x̄+ T − t) − ϕ1(x̄+ T − t).

The relations (4.10) yield

(4.11a)

T∫
0

(ϕx(x̄, t) + ϕt(x̄, t))2dt =
x̄∫

x̄−T

(ϕ′2
0 (x) + ϕ2

1(x))dx

+ 2
x̄∫

x̄−T

ϕ′
0(x)ϕ1(x)dx,

(4.11b)

T∫
0

(ϕx(x̄, t)− ϕt(x̄, t))2dt =
x̄+T∫

x̄

(ϕ′2
0 (x) + ϕ2

1(x))dx

− 2
x̄+T∫

x̄

ϕ′
0(x)ϕ1(x)dx.

The relations (4.9) ensure the cancellation of the last term in the right-hand
side of (4.11a) for T = 2x̄ and for T = 2(1− x̄) in (4.11b). This provides
the following exact formula for the energy:

(4.12)

1∫
0

(ϕ′2
0 (x) + ϕ2

1(x))dx =
1
2

2x̄∫
0

(ϕx(x̄, t) + ϕt(x̄, t))2dt

+
1
2

2(1−x̄)∫
0

(ϕx(x̄, t)− ϕt(x̄, t))2dt,

which gives us the time for observability as required by Theorem 3.1. Finally,
(4.11) allows us to construct an example of a sequence {ϕi

0, ϕ
i
1}∞

i=1 which
can prove the minimality of time T = 2 × max{1 − x̄, x̄}. Indeed, if, say,
x̄ < 1/2, such a sequence can be taken to satisfy: ϕi′

0i ≡ ϕi
1 and distinct

from zero only on the sequence of intervals (x̄, x̄ + δi), i = 1, . . . δi →
0+, i → ∞. This completes the proof of Theorem 3.1.

Remark 4.1. The algebraic numbers are countable [17] p. 19. Along the
lines (4.4)-(4.7) Theorem 3.1 can immediately be extended to all of them. On
the other hand, the transcendental Liouville’s numbers give us an opposite
example. Indeed, as it was noticed in [1], these numbers are associated
with the “worst” locations of the static point control (1.2). For example,
if x̄ =

∑∞
j=1 10

−j!, then the series
∑∞

k=1
1

(πk)2s sin2 πkx̄
diverges for any

positive integer s. The latter does not allow one to extend the argument of
Theorem 3.1 to all the irrational numbers.

5. Observability With Moving Observations: the Case Ω = (0, 1)

Proof of Theorem 3.2. We deal below with the observation (3.3). The
cases (3.4) and (3.5) can be treated analogously.
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Step 1: Basic auxiliary estimate. Fix T. Due to Parseval’s formula, (4.1)
implies (if one excludes the trivial case):

(5.1)
‖ϕ(·, t)‖2L2(0,1) ≥ (ϕ2

0k +
ϕ2
1k

(πk)2
) sin2(πk(t− T ) + αk),

∀t ∈ [0, T ], k = 1, . . . ,
where αk ∈ [−π

2 ,+
π
2 ] and

| sinαk | = | ϕ0k |
(ϕ2

0k +
ϕ2

1k
(πk)2 )

1/2
, | cosαk | = | ϕ1k

πk |
(ϕ2

0k +
ϕ2

1k
(πk)2 )

1/2
.

Since Ω = (0, 1), this gives us the following basic estimate:

(5.2)
sin2(πk(t− T ) + αk)(ϕ2

0k +
ϕ2
1k

(πk)2
) ≤ ‖ϕ(·, t)‖2C[0,1],

∀t ∈ [0, T ], k = 1, . . . .
Step 2: Selection of observation instants. Given ε ∈ (0, π/4), put

(5.3) t1k = − 1
2k
+ T, t2k = −1 + 2ε/π

2k
+ T, k = 1, . . . .

It is readily seen that

sin(πk(t1k −T )+αk) = − cosαk, sin(πk(t2k −T )+αk) = − cos(−ε+αk).

Hence, ∃γ∗ = γ∗(ε) > 0 such that

(5.4) max
i=1,2

| sin(πk(tik − T ) + αk) | ≥ γ∗ ∀ αk ∈ [−π

2
,
π

2
], k = 1, . . . .

Without loss of generality, we can assume further that all t1k, t
2
k ∈ (0, T ), k

= 1, . . . .
For any positive integers k,m select in an arbitrary way two distinct (as

well as with respect to different k,m, which is due to our aim to employ
a single-point sensor) monotone sequences {sl(k,m)}∞

l=1, {τl(k,m)}∞
l=1 ⊂

(0, T ) such that:
(i)

(5.5a) lim
l→∞

sl(k,m) = t1k, lim
l→∞

τl(k,m) = t2k, k,m = 1, . . . ;

(ii) the sequences {s1(k,m)}∞
m=1 and {τ1(k,m)}∞

m=1, k = 1, . . . are
monotone;

(iii)

(5.5b) lim
m→∞ s1(k,m) = t1k, lim

m→∞ τ1(k,m) = t2k k = 1, . . . ;

(iv) T, {tik}∞
k=1, i = 1, 2 are the only possible limit points of the set

{sl(k,m), τl(k,m) | l, k,m = 1, . . . }.
Step 3: Net. Denote by S[0, 1] the closed linear manifold in C[0, 1] spanned
by {sinπkx}∞

k=1, S[0, 1] = {p(x) | p(x) =
∑∞

k=1 pk sinπkx} ⊂ C[0, 1]. In
particular, all the solutions of (3.1), (4.2) lie in S[0, 1] ∀t ∈ [0, T ].
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Fix an arbitrary δ > 0. By making use of separability of C[0, 1] (or of
Lemma 5 in [4], p. 50), select in its topological subset S[0, 1] a countable
δ-net {pl}∞

l=1 ⊂ S[0, 1] (this can be done in infinitely many ways). In
other words, for any element p ∈ S[0, 1] there exists an element pl∗ such
that ‖p− pl∗‖C[0,1] ≤ δ.

Step 4: Selection of an observation curve. Consider any function x̂(t), t ∈
(0, T ), which satisfies the following requirements: (i) it is continuous every-
where in (0, T ) except, maybe, for t = tik, i = 1, 2, k = 1, . . . ; (ii)
x̂(t) ∈ (0, 1), t ∈ (0, T )\{tik}2,∞i=1,k=1; (iii):

(5.6) x̂(sl(m, k)) = x̂(τl(m, k)) = xl, l, k,m = 1, . . . ,

where

(5.7) xl = arg max
x∈[0,1]

| pl(x) |, l = 1, . . . .

The last optimization problem may have several solutions. If so, we take
any of them. Clearly, if pl �= 0, then xl �= 0, 1 either.

Step 5: Verification. We show now that any curve satisfying the require-
ments of Step 4 satisfies the assertion 1. in Theorem 3.2. Fix any positive
integer k. Take an arbitrary solution ϕ of the system (3.1), (4.2). It is
readily seen that there exists γ (= γ(ϕ, k)) > 0 such that

(5.8) ‖ϕ(·, t)− ϕ(·, tik)‖C[0,1] ≤ δ ∀ t ∈ (tik − γ, tik), i = 1, 2.

Assume that for our particular solution the maximum in the left-hand side
of (5.4) is achieved for i = 1. Find next an element pl∗ in the δ-net
constructed in Step 3 such that

(5.9) ‖pl∗(·)− ϕ(·, t1k)‖C[0,1] ≤ δ.

Take any instant sl∗(k,m∗) ∈ (t1k − γ, t1k). Due to (5.5b), such an instant
always exists for m∗ big enough. Combining (5.2), (5.4), (5.6)-(5.9) yields
the following chain of estimates:

(5.10)

γ∗

(
ϕ2
0k +

ϕ2
1k

(πk)2

)1/2

≤ ‖ϕ(·, t1k)‖C[0,1]

≤ ‖pl∗(·)‖C[0,1] + δ

=| pl∗(xl∗) | + δ

=| pl∗(x̂(sl∗(k,m∗)) | +δ
≤| ϕ(x̂(sl∗(k,m∗), t1k) | +2δ
≤| ϕ(x̂(sl∗(k,m∗), sl∗(k,m∗)) | + 3δ.

Thus, we arrive at:

(5.11)

(
ϕ2
0k +

ϕ2
1k

(πk)2

)1/2

≤ 1
γ∗
(‖ϕ(x̂(·), ·)‖L∞(0,T ) + 3δ).
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Recall now that (5.11) was derived uniformly with respect to the choice of
ϕ. Hence, replacing ϕ by αϕ, α ∈ R yields with α → ∞:

(5.12)

(
ϕ2
0k +

ϕ2
1k

(πk)2

)1/2

≤ 1
γ∗

‖ϕ(x̂(·), ·)‖L∞(0,T ), k = 1, . . . .

The last estimate implies the assertion 1. in Theorem 3.2. The proof of the
assertion 2. is analogous. In particular, instead of (5.12) one can obtain for
the observation (3.4):

(5.13) ((πkϕ0k)2 + ϕ2
1k)

1/2 ≤ 1
γ∗

‖ϕx(x̂(·), ·)‖L∞(0,T ), k = 1, . . . .

L∞(0, T )-norm in (5.12) and (5.13) can equally be replaced by the space
C((0, T )\{tik}2,∞i=1,k=1)-one. This completes the proof of Theorem 3.2.

Remark 5.1. The straightforward extension of the above scheme to the
case of the observation (3.4) admits the situation when a part of the skeleton
for an observation curve lies on the boundary of Ω = (0, 1). This is due to
the fact that cosπkx, k = 1, . . . do not vanish at x = 0, 1. However, it
is readily seen that all such points (if they exist) can be replaced by strictly
internal ones close enough to preserve (5.13) (with, maybe, different γ∗).
The same comment can be made in the multidimensional case (see Appendix
A, Remark A.1).

Proof of Corollary 3.1. Set t1k = T, t2k = t∗ ∈ (0, T ), k = 1, . . . , where
t∗ is such that ta = T − t∗ is an algebraic number of degree 2. Observe
that (4.4) yields the existence of εk, k = 1, . . . such that

| sin(πkta + αk) | = | sin(εk + αk) |, const
k

≤ | εk | ≤ π

2
,

εk = π ×min{kta − [kta], kta + 1− [kta]}.
Instead of (5.4), we obtain,

max
i=1,2

{| sin(πk(T−tik)+αk) |} = max{| sinαk |, | sin(πkta+αk) |} ≥ const
k

,

∀ αk ∈ [−π

2
,
π

2
], k = 1, . . . .

The rest of the proof follows Steps 1-5 in the above.

6. Proofs of Theorems 2.1 and 2.2

We begin by studying the regularity properties of (1.1). Denote (see [15],
p. 230)

Hs−1
D (Q) = {f | f ∈ Hs−1(Q), f |∂Ω×[0,T ] = . . . = ∆[s/2]−1f |∂Ω×[0,T ]= 0},

s > 1, H0
D(Q) = L2(Q), H−s

D (Q) = [Hs
D(Q)]

′.
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Theorem 6.1. Let ∂Ω be of class C [n/2]+1 in the case of point control
(1.2) and of class C [n/2]+2 in the case of point controls (1.3)/(1.4). Let
x̂(·) be an arbitrary measurable function such that x̂(t) ∈ Ω a.e. on
(0, T ). Then with V = L2(0, T ) or [L∞(0, T )]′ for (1.2), (1.4) and
V = L2(0, T ;Rn) or [L∞(0, T ;Rn)]′ for (1.3):
(i) the problem (1.1), (1.2) admits a unique solution in the space

H
−[n/2]
D (Q) and the mapping

v → {y, y |t=T , yt |t=T }
is linear continuous from V into H

−[n/2]
D (Q) ×H

−[n/2]
D (Ω)

×H−[n/2]−1
D (Ω).

(ii) [7]: the problems (1.1), (1.3) or (1.4) admit unique solutions from
H

−[n/2]−1
D (Q) and the mapping

v → {y, y |t=T , yt |t=T }
is linear continuous from V into H

−[n/2]−1
D (Q)×H

−[n/2]−1
D (Ω)

×H−[n/2]−2
D (Ω).

(iii) All the above mappings y → {y |t=T , yt |t=T } are injective.

Corollary 6.1. Let x̂(·) be continuous everywhere on (0, T ) except a
countable number of isolated points {ti}∞

i=1. Then the results of Theorem
6.1 hold accordingly for V = [C((0, T )\{ti}∞

i=1)]
′, [C((0, T )\{ti}∞

i=1;R
n)]′.

The assertion 6.1(ii) was proven by transposition in [7]. The assertion
6.1(i) and Corollary 6.1 can be established in a similar way. The terminal
conditions in Theorem 6.1 and Corollary 6.1 satisfy the following identity:

(6.1) < ϕ1, y |t=T>Φ0 − < ϕ0, yt |t=T>Φ1 = < −v,G(x̂(·))ϕ} >V , v ∈ V,

which is verified for any solution ϕ to (3.1) with

(6.2) {ϕ0, ϕ1} ∈ H
[n/2]+1
D (Ω)×H

[n/2]
D (Ω)

for the system (1.1), (1.2) and with

(6.3) {ϕ0, ϕ1} ∈ H
[n/2]+2
D (Ω)×H

[n/2]+1
D (Ω)

for the systems (1.1), (1.3)/(1.4). In the above < ·, · >B indicates the
duality associated with the Banach space B; Φ0, Φ1 are the Hilbert
spaces for the terminal pair {y |t=T , yt |t=T }, as they are specified in
Theorem 6.1.

Remark 6.1. The injectivity between the solution of (1.1) and its terminal
pair, defined by (6.1), is treated in Theorem 6.1 in the following sense: the
solution of equation (1.1) evolving in backward time from this terminal pair
coincides (as an element of H

−[n/2]
D (Q) or H

−[n/2]−1
D (Q)) with the solution

of the direct problem (1.1). In particular, the latter can be continuous in
time in some other functional space. A detailed study of the regularity of
(1.1) requires a separate investigation. The following lemma and Example
6.1 expose the problem arising here.
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Lemma 6.1. Let Ω = (0, 1), V = L2(0, T ) and T > 0 be given. Then
the solution of (1.1), (1.2) lies in C([0, T ];L2(0, 1)×H−1(0, 1)).

Proof. The solution of (1.1), (1.2) can be represented as follows:

(6.4) y(x, t) =
∞∑

k=1

2
πk

t∫
0

v(τ) sinπk(t− τ) sinπkx̂(τ) dτ sinπkx,

yt(x, t) = 2
∞∑

k=1

t∫
0

v(τ) cosπk(t− τ) sinπkx̂(τ) dτ sinπkx.

It is readily seen that the first series converges in C([0, T ];L2(0, 1)), and
the second (see (4.7)) in C([0, T ];H−1(0, 1)).

As it was shown in [18], [20], the solution of (1.1), (1.2), with Ω = (0, 1), V =
L2(0, T ), x̂(·) ≡ x̄ lies in C([0, T ];H1

0 (0, 1) × L2(0, 1)). However, the
following example shows that Lemma 6.1 cannot be embedded in this result.

Example 6.1. Let Ω = (0, 1), T = 1, x̂(t) = (1− t), v(t) = 1, t ∈ (0, 1).
Then,

y(x, 1) = 2
∞∑

k=1

1
πk

1∫
0

sin2 πk(1− τ) dτ sinπkx =
∞∑

k=1

1
πk

sinπkx.

Hence, y(·, 1) �∈ H1
0 (0, 1).

Proofs of Theorems 2.1, 2.2. Those assertions of Theorems 2.1, 2.2, and
Corollary 2.1 dealing with approximate controllability follow straightforward
from (6.1), Theorems 3.1-3.3, and Corollary 3.1 by applying the standard
Hilbert space duality argument, and those dealing with exact controllability
follow by a direct duality method - see, e.g., [3], pp. 194-195, [19] - applied
in the form discussed in detail in [7]. This method is related to establish-
ing a bound from below for the norm of the operator dual to the solution
one which, in turn, is equivalent to exact controllability. The scheme of our
proofs employs a suitable L∞(0, T )- or C(((0, T )\{ti}∞

i=1)-exact observabil-
ity estimate for the corresponding dual system (3.1), (3.2) with respect to
the norm dual of the norm in question (see Theorems 2.1, 2.2) on a narrower
space consistent with the well-posedness of the observations (see Theorems
3.1-3.3) which, in turn, is dense in the space dual of the controllability space
of interest. To complete the proof, we show then, by making use of the regu-
larity results discussed in the above, that the operator dual (via (6.1)) of the
final state→output mapping (via (3.2)) coincides with the solution operator
of system (1.1).

7. Appendix A: Proof of Theorem 3.3

The sketch of the proof below is given for the observation (3.3) and follows
Step 1-5 of Section 5, while emphasizing the difference between the one
dimensional and the multidimensional cases.
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Recall that the problem (3.1), (6.2) admits a unique solution from the
space H [n/2]+1(Q) and the following estimate holds (see, e.g., [15], pp.
307-308 for details):

(A.1)

[n/2]+1∑
p=0

∥∥∥∥∂pϕ

∂tp

∥∥∥∥
2

H[n/2]+1−p(Ω)
≤ const(‖ϕ0‖2H[n/2]+1(Ω) + ‖ϕ1‖2H[n/2](Ω)

+ ‖f‖2H[n/2](Q)), ∀t ∈ [0, T ].
The mixed problem (3.1), (6.3) in its turn admits a unique solution from
the space H [n/2]+2(Q) and the following estimate holds (see, e.g., [15], pp.
307-308 for details):

[n/2]+2∑
p=0

∥∥∥∥∂pϕ

∂tp

∥∥∥∥
2

H[n/2]+2−p(Ω)
≤ const(‖ϕ0‖2H[n/2]+2(Ω) + ‖ϕ1‖2H[n/2]+1(Ω)

+ ‖f‖2H[n/2]+1(Q)), ∀t ∈ [0, T ].
The principal difference between the one-dimensional and the general cases
is that that the latter admits multiple eigenvalues. Let {βk}∞

k=1 denote the
sequence of all the distinct eigenvalues. Denote their multiplicities and the
respective eigenfunctions accordingly by Jk and {ωkj}Jk,∞

j=1,k=1.

Step 1. Fix T > 0. The general solution of (3.1) admits the following
representation:

(A.2) ϕ(x, t) =
∞∑

k=1

Jk∑
j=1

(ϕ0kj cos
√
βk(t−T ) +

ϕ1kj√
βk
sin
√
βk(t−T )) ωkj(x),

where

ϕ0kj =
∫
Ω

ϕ0(x) ωkj(x) dx, ϕ1kj =
∫
Ω

ϕ1(x) ωkj(x) dx.

With {ϕ0, ϕ1} ∈ H
[n/2]+1
D (Ω)×H

[n/2]
D (Ω), due to (A.1) and the correspond-

ing embedding theorem, the series in (A.2) converges in C(Ω̄× [0, T ]). From
(A.2) it follows (instead of (5.2)):

(A.3)

meas{Ω}‖ϕ(·, t)‖2C(Ω̄) ≥ ‖ϕ(·, t)‖2L2(Ω)

≥
(
ϕ2
0kj +

ϕ2
1kj

(
√
βk)2

)
sin2

(√
βk(t− T ) + αkj

)
,

∀t ∈ [0, T ], ∀ k = 1, . . . , j = 1, . . . , Jk,

where, similar to (5.1),

αkj ∈ [−π

2
, +

π

2
], | sinαkj | = | ϕ0kj |

(ϕ2
0kj +

ϕ2
1kj

βk
)1/2

,

| cosαk | =
|ϕ1kj |√

βk

(ϕ2
0kj +

ϕ2
1kj

βk
)1/2

.
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Step 2. Given ε ∈ (0, π/4), set

t1k = − 1
2
√
βk
+ T, t2k = −1 + 2ε

2
√
βk

+ T, k = 1, . . . .

Without loss of generality, as in Section 5, one can assume further that
t1k, t

2
k ∈ (0, T ), k = 1, . . . . It is readily seen that

sin(
√
βk(t1k −T )+αkj) = − cosαkj , sin(βk(t2k −T )+αkj) = − cos(−ε+αkj).

Hence, as in (5.4), we obtain

max
i=1,2

{| sin(βk(T − tik) + αkj) |} ≥ (some) γ∗ > 0, k = 1, . . . , j = 1, . . . , jk,

∀ αjk ∈ [−π

2
,
π

2
].

As in Step 2 of Section 5, for any positive integers k,m select two arbitrary
distinct monotone sequences {sk(l,m)}∞

l=1 and {τl(k,m)}∞
l=1.

Step 3. Denote by S(Ω̄) the closed linear manifold in C(Ω̄) spanned
by {ωkj}∞,Jk

k=1,j=1. In particular, all the solutions of (3.1), (6.2) belong to
S(Ω̄), ∀t ∈ [0, T ]. Fix an arbitrary δ > 0. Select in its topological subset
S(Ω̄) a countable δ-net {pl}∞

l=1 ⊂ S(Ω̄).
By taking into account the well known asymptotic properties of the (mul-

tiple) eigenvalues λk (namely: ∃C1, C2 > 0 and a positive integer k0
such that (see, e.g., [15]): C1k

2/n ≤ λk ≤ C2k
2/n, k ≥ k0) and formula

(4.7), Steps 4-5 in the multidimensional case are as much the same as in
Section 5 (though, see Remark A.1 below). The presence of multiple eigen-
values does not create any difficulties in the general case. In fact, we can use
the same pair of instants {t1k, t2k} for the evaluation of all the coefficients
{ϕ0kj , ϕ1kj} associated with the multiple eigenvalue βk. This completes
the proof of Theorem 3.3.

Remark A.1. In the general case the observation (3.4) has dimension n.
Instead of (A.2) we have

(A.4)

∇ϕ(x, t)

=
∞∑

k=1

Jk∑
j=1

(ϕ0kj cos
√
βk(t− T ) +

ϕ1kj√
βk
sin
√
βk(t− T )) ∇ωkj(x).

Noticing that

< ∇ωk(·),∇ωm(·) >L2(Ω) = λkδkm, δkm =
{
1, k = m,
0, k �= m,

we obtain instead of (A.3):

meas{Ω} ‖∇ϕ(·, t)‖2C(Ω̄) ≥ ‖∇ϕ(·, t)‖2L2(Ω)

≥ βk

(
ϕ2
0kj +

ϕ2
1kj

(
√
βk)2

)
sin2

(√
βk(t− T ) + αkj

)
.

The rest of the proof of Theorem 3.3 follows the lines of the above argument.
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