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Abstract. In this work we study a deformation of the minimal interface of
two fluids in a vertical tube under the presence of gravitation. We show that
a symmetry of the base of tube let us to apply a method developed earlier by
the first author and based on the Crandall-Rabinowitz bifurcation theorem.
Using the natural symmetry of the corresponding variational problem defined
by a symmetry of region and restricting the functional to spaces of invariant
functions we show the existence of bifurcation, and describe its local picture,
for interfaces parametrized by the square and disc.

0. Introduction

In this work we study a problem of hydromechanics connected with the
Plateau problem. Our aim is to describe a bifurcation of interfaces between
two fluids under a change a real parameter of a natural mechanical nature.
Main difficulties in studying this bifurcation problem are:
1. The fact that the differential operator Plateau is not a selfmap of the
Hilbert space H2(Ω) =W 2

2 (Ω);
2. The fact that the operator Plateau is not of the form ”linear Fredholm +
completely continuous” and the degree theory is not applicable.

In works [B1], [B2] the first author introduced a nonlinear operator of
Plateau type assigned to the discussed problem, which is Fredholm of index
0. It is defined on the Sobolev spaces W 2

p (Ω) for p > 2 and its construction
is based on results of [KN]. The standard necessary condition led to simple
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and doubled (one, or two-dimensional kernel correspondingly) critical values
of the bifurcation parameter.

In [B1], [B2] the existence of branching of solutions from single degeneracy
point is shown. To prove this a finite-dimensional reduction of Liapunov-
Schmidt is used and the statement follows from the Crandall-Rabinowitz
theorem on bifurcation from simple eigenvalue ([CR]). Unfortunately the
mentioned technics could be applied only in the case if the kernel and cok-
ernel of the Fréchet differential are one-dimensional.

In this paper we discuss the same problem at doubled critical points.
An assumption on symmetry of region parametrized given interface implies
that the operator associated with problem is equivariant with respect to a
linear symmetry induced on the functional spaces. This allows to restrict
the operator to invariant subspaces of this symmetry and check that the
restricted operator has simple degeneracy then which implies the existence
and the same local behaviour of the bifurcation of minimal interfaces as that
described in [B1] and [B2].

Describing the matter in more details, let us suppose that in a cylinder
with a vertical section Ω ⊂ R

2 are two fluids with density ρ1 and ρ2 corre-
spondingly, and set ρ = ρ2 − ρ1 > 0. Suppose next that separating them
elastic interface w = w(x, y), (x, y) ∈ Ω is steady fixed on the boundary
surface of cylinder w|∂Ω = 0.

The history of equation of interface separating two fluids comes back to
works of Laplace, Monge, Poisson and Young who already observed that the
average curvature of it is proportional to the difference between pressures
acting from the opposite sides. The average curvature H(w)(x, y) is given
by the formula

(1) H(w) = −divT (w), T (w) = (1 +∇w2)−1/2∇w,

and the capillary interface w(x, y) is given by the equation

(2) −divT (w) = k∆p

where ∆p = p2 −p1 is the difference of pressures acting from opposite sides,
and the coefficient k = 1/σ is the inverse of σ > 0 the membrane tension
coefficient.

If additionally a gravitation g acts on the fluids the quantity λ = ρg
σ ,

called the Bond parameter, is equal to 0.
In the presented work we study transformations of the minimal

interfaces of two fluids with the presence of gravitation g > 0.
In this case to a functional of membrane stress Eσ(w) one have to add
the functional Eg(w) of potential energy of two substances contained in the
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cylinder. We have considered the potential energy functional of the following
form

(3) Eg(w) = E0 − 1
2
ρg

∫∫
Ω
w2dxdy.

Then an interface w(x, y) is minimal if it is a critical point of the total
functional Ecomplete(w) = Eσ(w) + Eg(w) (cf. [B2]).

Complete surveys of various boundary problems of hydromechanics are
included in books [DF], [FM], [DS], [DD], and [FN] (see also [BK1], [BK2],
[RV1], [RV2], [PS], [BT], [FT], [TZ], and [BU] for an information on related
problems).

We wish to emphasize that the discussed here scheme could be used as a
mathematical model for many other problems of hydromechanics and theory
of spring membrane (cf. [B2]).

1. General bifurcation problem

We shall study bifurcation of the capillary minimal interface in the case
of the quadratic perturbation of the area functional

A(w) =
∫∫

Ω
(1 +∇w2)1/2dxdy.

Let us take the functional

(4) E(w, λ) = σA(w) + gρQ(w) = σ
∫∫

Ω

(
(1 +∇w2)1/2 − λ

2
w2

)
dxdy,

with real parameter λ = gρ/σ, and consider the following boundary-value
problem

(5) (BP)

{
−divT (w)− λw = 0, (x, y) ∈ Ω,

w = 0, (x, y) ∈ ∂Ω.
Let F (w) = −divT (w) be the Euler - Lagrange operator for the area func-
tional A(w)

(6)
F (w) = −div

(
(1 +∇w2)−1/2∇w

)
= −(1 +∇w2)−3/2 (

∆w + w2
ywxx − 2wxwywxy + w2

xwyy

)
.

In next we shall use the Jacobi operator of the area functional A(w)

(7)

J(w)h = −div
(
(1 +∇w2)−3/2

[
1 + w2

y wxwy

wxwy 1 + w2
x

]
×

[
hx

hy

])
= − (1 +∇w2)−

3
2

(
(1 + w2

y)hxx − 2wxwyhxy + (1 + w2
x)hyy

+ 2(wxwyy − wywxy)hx + 2(wywxx − wxwxy)hy

)
.
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Note that the minimal interface w0(x, y) = 0 is a solution of the Problem
(BP), called the trivial solution, for all λ ∈ R. We shall study the necessary
and sufficient conditions for bifurcation of a family of nontrivial solutions
from a point (0, λ0) and the local behaviour of these branches of solutions
with respect to the parameter λ.

We shall study Bifurcation Problem (BP) under the following assump-
tions:

(A1) The domain Ω is convex.
(A2) The boundary ∂Ω is a piecewise smooth C2 - submanifold of R

2

homeomorphic to the circle S1.
(A3) The boundary has k corner points and the interior angle αj at each

corner point satisfies inequality 0<αj<π
2 for all j = 1, . . . , k.

Under assumptions (A1) − (A3) the Bifurcation Problem (BP) is equiv-
alent to the problem of branching of solutions for the following operator
equation (see [B2])

(8) P (w, λ) = (0, 0)

where a nonlinear operator P is defined by the formula

(9) P (w, λ) = (F (w)− λw,w|∂Ω).

By W 2
p (Ω) we denote the Sobolev spaces and by B2−1/p

p (∂Ω) the Besov
traces spaces. In next we shall use the following facts shown in [B1] and
[B2].

Theorem 1. (see [B1, B2]) The nonlinear operator P as a map between
the following spaces

(10) P :W 2
p (Ω)× R → Lp(Ω)×B2−1/p

p (∂Ω) , p > 2,

is of the class CaΦ(w)
0 , i.e. analytic operator with respect to all variables

and its Frechét derivative P ′
w(w, λ)h =

(
J(w)h − λh , h|∂Ω) with respect

to main variable w

(11) P ′
w(w, λ) :W

2
p (Ω) → Lp(Ω)×B2−1/p

p (∂Ω) , p > 2,

is a Fredholm linear map of index zero at each point (w, λ) ∈W 2
p (Ω)× R.

Let N(λ) = KerP ′
w(0, λ) be a finite-dimensional subspace of the Sobolev

space W 2
p (Ω), p > 2, consisting of solutions h(x, y) of the following linear

problem

(12) P ′
w(0, λ) = (−∆h− λh, h|∂Ω

)
= (0, 0

)
.
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Theorem 2. For the bifurcation of solutions of the equation P (w, λ) =
(0, 0) at the point (0, λ0) it is necessary that

dimN(λ0) �= 0.

In the case of the one-dimensional degeneracy, i.e. when dimN(λ0) = 1,
bifurcation of problem (BP), under the assumptions (A1)−(A3) was studied
in the ([B1, B2]), where bifurcation theorems were shown.

2. Bifurcation for multi-dimensional degeneracy
in the presence of symmetry

In this part we shall study the Bifurcation Problem (BP) and the operator
equation P (w, λ) = (0, 0) in the case where domain Ω ⊂ R

2 has a symmetry
with respect to a closed subgroup H ⊂ O(2).
Assumption A4. Assume, that there exists a group H of orthogonal linear
transformations h : R

2 → R
2 such that Ω ⊂ R

2 is an invariant set with
respect to H, i.e.,

(x, y) ∈ Ω h ∈ H =⇒ h(x, y) ∈ Ω.

A symmetry of domain Ω defines a structure of linear representation of the
group H in the group of linear isomorphisms of the Banach space Lp(Ω) by
a shift of argument. If w(x, y) ∈ Lp(Ω) and h ∈ H then the correspondence
isomorphism h : Lp(Ω) → Lp(Ω) is defined by formula

(13) h
(
w(x, y)) = w(h(x, y)).

The map H × Lp(Ω) → Lp(Ω) defines a representation H → GL(Lp(Ω))
which is continuous in the strong topology and continuous in operator topol-
ogy if H is a finite group.

It is clear, that all Sobolev spaces Wm
p (Ω), imbedded into Lp(Ω), are

invariant subspaces with respect to the action of the group H. For every
h ∈ H by the same letter h we denote its representation map

(14) h :Wm
p (Ω) →Wm

p (Ω).

We will use the symbol Lp(Ω)H , or Wm
p (Ω)H , for the subspace of the

H-invariant functions of the corresponding functional space, i.e. satisfy-
ing h(w) = w for every h ∈ H. In the same way we define a repre-
sentation of H in the group of linear isomorphisms of the Besov traces
space Bm−1/p

p (∂Ω), since ∂Ω is also invariant with respect to H. We write
h

∗
: Bm−1/p

p (∂Ω) → B
m−1/p
p (∂Ω) for the linear isomorphism defined by

h ∈ H in this case.
Note that the defined above representation are orthogonal, since H ⊂

O(2) (linear orthogonal substitution of variables does not change the value
of integral). We consider the trivial representation ofH in the group GL(R).
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Theorem 3. Suppose that bifurcation problem (BP) satisfying the assump-
tions (A1) − (A3) additionally satisfies assumption (A4) of symmetry with
respect a group H. Then the Plateau operator P (10) is H-equivariant
and consequently P maps the spaces of H-invariant functions into spaces of
H-invariant functions

(15) P :W 2
p (Ω)

H × R → Lp(Ω)H ×B2−1/p
p (∂Ω)H , p > 2,

and the restriction PH is an analytic operator with respect to the all vari-
ables.

Proof. First note that the following equalities hold

1◦h(f ◦ w) = f ◦ hw,
2◦h(uv) = (hu)(hv),

3◦h(∇w) = ∇(hw)×Mh,

4◦h(∇u∇v) = ∇(hu)∇(hv),

5◦h(∆w) = ∆(hw),

for every orthogonal linear map h ∈ H ⊂ O(2) and its matrix Mh in (x, y)
- coordinates, every functions w, u, v ∈W 2

p (Ω) and f : R → R. We left it to
the reader.

Let h ∈ H be an element and (g, ϕ) = P (w, λ). By 1◦ − 5◦, we have

h(g) = h(F (w)− λw)
= −h(div(1 +∇w2)1/2∇w) − h(λw) =

= −h
(
∇(1 +∇w∇w)1/2∇w + (1 +∇w∇w)1/2∆w

)
− h(λw) =

= F (hw)− λ(hw) = F (hw)− h′
(λ)(hw),

Also h
∗
(ϕ) = h

∗
(w|∂Ω) = (hw)|∂Ω.

This shows that (hg, h
∗
ϕ) = P (hw, hλ) for every h ∈ H, which means

that the nonlinear operator P is H-equivariant.
On the other hand the spaces of invariant functions are closed linear sub-

spaces mapped into spaces of invariant functions by any equivariant map,
which yields the second part of statement. The proof of Theorem 3 is com-
plete.

The next theorem says that the derivative of Plateau map, at a point
(0, λ), restricted to the space of invariant functions is a Fredholm operator
of index zero.

Theorem 4. With notation and assumptions of Theorem 3, for every point
(0, λ) the Frechét derivative P ′

w(0, λ)u = (−∆u − λu, u|∂Ω) of the Plateau
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operator with respect to main variable w restricted to the subspace of invari-
ant functions

(16) P ′
w(0, λ) :W

2
p (Ω)

H → Lp(Ω)H ×B2−1/p
p (∂Ω)H , p > 2,

is a linear Fredholm map of index zero.

We begin with a lemma which states that the restriction of Laplacian to
spaces of invariant functions is a linear isomorphism.

Lemma 4.1. The restricted Laplace operator

(17) ∆ :W 2
p,0(Ω)

H → Lp(Ω)H , p > 2,

is a linear isomorphism.

Proof. The statement follows from the main theorem of [KN] on the linear
isomorphism of Sobolev spaces given by the Laplacian

(18) ∆ :W 2
p,0(Ω) → Lp(Ω), p > 2,

and the fact that ∆ is H-equivariant. It is known that every linear, equivari-
ant isomorphism maps the all linear invariant subspaces corresponding to
distinct irreducible representations of H into themselves and is an isomor-
phism between any such factors. In particular it is an isomorphism between
the factors corresponding to the trivial representation.

In this special case one can show it by a direct argument. Indeed, since ∆
is H - equivariant, it maps W 2

p,0(Ω)
H into Lp(Ω)H and is a monomorphism

by the mentioned Kondrat’ev theorem [KN]. We have to show that ∆H =
∆|W 2

p,0(Ω)H is onto Lp(Ω)H . Let v ∈ Lp(Ω)H and u ∈W 2
p,0(Ω) be an element

such that ∆u = v. It is enough to show that u ∈ W 2
p,0(Ω)

H . Using once
more the mentioned theorem, for every h ∈ H we have

(19) ∆u = h(∆u) = ∆(hu) =⇒ hu = u.

This proves the Lemma.

Proof of Theorem 4. Since P (w, λ) is equivariant and (0, λ) ∈ W 2
p,0(Ω)

H ×
R, the Frechét derivative P ′

w(0, λ) is also equivariant and consequently its
restriction P ′

w(0, λ)
H may be written in the form

(20) P ′
w(0, λ)

Hu = (−∆u, u|∂Ω) + (−λu, 0).

It is known that the boundary operator

B(w) = w|∂Ω, B :W 2
p (Ω)

H → B2−1/p
p (∂Ω)H ,
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is onto by the same argument as in Lemma 4.1. From this and Lemma 4.1 it
follows that the first operator of decomposition (20) is an isomorphism, thus
the Fredholm operator of index zero. The second operator of decomposition
(20) is compact, as follows from the corresponding theorem on embeddings of
the Sobolev spaces. Consequently the total operator is a Fredholm operator
of index zero as a compact perturbation of such a map.

In the Sobolev space W 2
p (Ω)

H , p > 2, consider the finite-dimensional
subspace N(λ)H = KerP ′

w(0, λ)
H of the H-invariant solutions u(x, y) of the

following linear problem in an H-invariant domain Ω

(21)
(
−∆u− λu, u|∂Ω

)
=

(
0, 0

)
By its definition, this subspace is the intersection

(22) N(λ0)H = N(λ0) ∩W 2
p (Ω)

H ,

where N(λ0) = KerP ′
w(0, λ0) is the subspace in W

2
p (Ω).

Assumption A5. Suppose that

dimN(λ0)H = 1

and denote by es(x, y) an invariant versor generating subspace N(λ0)H , such
that ‖es‖ = 1 in the Hilbert space L2(Ω).

Suppose that the bifurcation problem (BP) satisfies assumptions (A1)−
(A5). Assumption A5, together with remaining, ensures us that after re-
stricting the problem to spaces of H-invariant functions we get a bifurcation
problem with one-dimensional degeneracy at a critical point (0, λ0), and the
problem in question reduces to the situation discussed in [B1] and [B2].
Consequently (cf. [B2]) our bifurcation problem (BP) at (0, λ0) reduces to
the problem of branching of critical points of a ”key” function Φ(ξ, λ)

(23) ∇ξΦ(ξ, λ) = 0,

which is a function of one real variable ξ ∈ R and the parameter λ, and is
defined locally in some neighborhood of (0, λ0). This is a kind of Liapunov-
Schmidt finite-dimensional reduction for the variational problems. As in [B2]
we use a scheme of constructing a key function introduced by Yu. I. Sapronov
[SP]. Following it the key function is given by the formula

(24) Φ(ξ, λ) = E(w(ξ, λ), λ) +
1
2

(∫∫
Ω
w(ξ, λ)esdxdy − ξ

)2

.

Here. a map w(ξ, λ) is given in an implicit form by the equation P̂ (w, λ, ξ) =
(0, 0), where a nonlinear operator P̂ is given as

(25) P̂ (w, λ, ξ) ≡
(
F (w, λ)−

(∫∫
Ω
wesdxdy − ξ

)
es, w|∂Ω

)
.
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In such a situation (cf. [SP]) the problem of investigation of bifurcation of
solutions of problem (BP) is equivalent to a description of transformation of
the set of critical points of the function Φ0(ξ) = Φ(ξ, λ0) under deformation
Φ0(ξ) + δΦ(ξ, λ) with one-dimensional parameter λ, where

(26) δΦ(ξ, λ) = Φ(ξ, λ)− Φ(ξ, λ0), δΦ(ξ, λ0) = 0.

It is also important to describe the stable (being in the generic position)
transformations of the set of critical points of Φ0(ξ) under all possible
smooth deformations. For an answer it is necessary to derive the type of
singularity of critical point ξ0 = 0 of function Φ0(ξ), the codimension of
singularity µ (the Milnor number), and a form of miniversal deformation
(see [AGV]) .

We are in position to formulate the main result of this work.

Theorem 5. Suppose that the bifurcation problem (BP) satisfies Assump-
tions (A1) − (A3), the symmetry assumption (A4) and Assumption (A5) of
the one-dimensional H-invariant degeneracy at the point (0, λ0). Then
1. The point (0, λ0) is a bifurcation point of the equation P (w, λ) = (0, 0) in
the space of H-invariant functionsW 2

p (Ω)
H ×R and in some neighborhood of

this point the set of solutions consists of two smooth curves which intersect
at the point (0, λ0) only.
2. These curves may be written in the following parametric form

Γ1 = {(0, λ) : λ ∈ R},
Γ2 = {(w±

2 (λ), λ) : λ ∈ [λ0, λ0 + ε)},
where

w±
2 (λ) = ± es√

λ∗
0
(λ− λ0)1/2 + o(λ− λ0)1/2,

λ∗
0 =

1
2
σ

∫∫
Ω

|∇es(x, y)|4dxdy > 0.

3. At the critical point (0, λ0) the key function Φ(ξ, λ0) has a singularity of
the type A3 (”cusp”),

Φ(0, λ0) = σπ,

Φ′
ξ(0, λ0) = Φ′′

ξ (0, λ0) = Φ′′′
ξ (0, λ0) = 0,

Φ(4)
ξ (0, λ0) = −3!λ∗

0 �= 0,

the Milnor number µ = 2, while the miniversal deformation of the key func-
tion Φ(0, λ0) has the form 1

4ξ
4 − 1

2ξ
2(λ− λ0) + ηξ.

Proof. It is enough to check that all the arguments of proof of main the-
orem of [B2] (see also [B1]) hold in this case. This proof is based on the
Crandall-Rabinowitz bifurcation theorem from simple eigenvalue and con-
sists of technical computations checking the assumptions of that theorem.
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3. Applications. Bifurcations for fluid interfaces
parametrized on the disc and the square.

At first we study the bifurcation problem (BP) of the equation P (w, λ) =
(0, 0) assuming that the region Ω is the two-dimensional disc.

(26) Ω = {(x, y) : x2 + y2 < 1}.

In this case the domain has a symmetry with respect to any axis lθ defined by
it’s angle θ ∈ [0, π) and given by the equation cos θy = sin θx. Let H ⊂ O(2)
be two-elements group consisting of identity map and the reflection hθ with
respect to the axis lθ. If the point (xs, ys) is a symmetric point to (x, y)
with respect to axis lθ, then it’s coordinates are given by the formula

(27) (xs ys ) = (x y )×
(
cos 2θ sin2θ
sin 2θ − cos 2θ

)
,

or shortly (xs, ys) = (x, y)×Mθ. Remark that M−1
θ =M�

θ =Mθ.
On the other hand the subspace N(λ) in W 2

p (Ω), p > 2, is defined by
boundary problem (12). As follows from Theorem 2, a bifurcation can be
only at these points λ of parameter space which are the eigenvalues of the
operator −∆ on the space W 2

p0(Ω) of functions vanishing on the boundary.
The eigenvalues of−∆ on two-dimensional disc are given as a double-indexed
sequence {λkj : k = 0, 1, 2, . . . , j = 1, 2, . . . }, where λkj the j-th zero of the
k-th Bessel function

(28) Jk(λ) =
1
π

∫ π

0
cos (λ sin t− kt)dt.

If k = 0 then for each j = 1, 2, . . . the eigenspace N(λ0j) is spanned by the
function

(29) e(x, y) = CJ0(λ0jr),

where r the radius of point (x, y) and C a norming constants. Consequently
f or k = 0 we have dimN(λ0j) = 1, and the existence and local description
of bifurcation follows from the main theorem of [B2].

If k, j ∈ {1, 2, . . . }, then the corresponding eigenspace N(λkj) is spanned
by two functions

(30)
e1(x, y) = C1Jk(λkjr) cos kϕ,

e2(x, y) = C2Jk(λkjr) sin kϕ,

where (r, ϕ) are the polar coordinates of point (x, y) and Jk(r) is k-th Bessel
function. Consequently dimN(λkj) = 2 and we can not apply the bifurca-
tion theorem of [B2].
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Theorem 6. Let P (w, λ) = (0, 0) be the bifurcation problem (BP) para-
metrized by the two-dimensional disc. For every θ ∈ [0, π) let H = Hθ be
the two-element subgroup generated by the reflection with respect to lθ axis.
Then (0, λkj) is a bifurcation point of the equation P (w, λ) = (0, 0) in the
space of H-invariant functions W 2

p (Ω)
H × R and in some neighborhood of

this point the set of solutions equation consists on two smooth curves with
all properties stated in Theorem 5.

Proof. It is sufficient to show that for every k, j ∈ N we have dimN(λkj)H =
1. Observe that the action of H on the function spaces is given by a change
of variables throughout the matrix Mθ. It is easy to check that N(λkj)H is
of dimension 1 and spanned by the function

(31) e(x, y)θ = CJ(λkjr) cos k(ϕ− θ).

This means that assumption (A6) is satisfied and the statement follows from
Theorem 5.

Remark. Observe that the region Ω has the symmetry with respect every
axis lθ, θ ∈ [0, π) by the reflection. Applying Theorem 6 to distinct θ ∈ [0, π

k )
we get different branches of solutions in general.

We now turn to the case when the region Ω is the square

(32) Ω = {(x, y) : −1 < x < 1, −1 < y < 1}.

As previously, a bifurcation can occur at these parameters for which the
subspaces N(λ) of W 2

p (Ω), p > 2, given by (12) are nontrivial. In this
case there are the eigenvalues of the operator −∆ on the space W 2

p0(Ω) of
functions vanishing on the boundary.

It is well known that if

(33) λkm = (
π

2
k)2 + (

π

2
m)2, k,m ∈ N,

is an eigenvalue of the Dirichlet problem on square then dimN(λk,m) is
equal to the number of ordered pairs of natural numbers (p, q) such that
p2+ q2 = k2+m2. For example, dimN(λ1,7) = 3, since 12+72 = 72+12 =
52 + 52 = 50. Moreover each eigenspace N(λk,m) has a natural structure of
an orthogonal representation of the group of all symmetries of square (see
[KrM] for a detailed discussion of this representation structure – also for the
Dirichlet problem on the n - dimensional cube).

If k = m and dimN(λkk) = 1 then the eigenspace N(λkk) is spanned by
the function

(34) e(x, y) = Cvk(x)vk(y),



302 A. Y. BORISOVICH AND W. MARZANTOWICZ

where

vk(t) =

 cos (k
π

2
t), if k is odd,

sin (k
π

2
t), if k is even.

Consequently, in this case the bifurcation problem reduces to that one stud-
ied in [B2].

If k �= m and dimN(λkm) = 2 then the space N(λkm) is spanned by the
functions

(35)
e1(x, y) = C1vk(x)vm(y),

e2(x, y) = C2vm(x)vk(y).

Note that in this case there are four symmetries lθ of the region Ω given
by the following angles θ1 = 0, θ2 = π

4 , θ3 =
π
2 , θ4 =

3π
4 .

Theorem 7. Suppose that we have bifurcation problem (BP) on square
satisfying assumptions (A1) − (A4). Let H be the two-elements group gen-
erated by the reflection with respect the axis y = x(θ = π

4 ). Then for every
k, m ∈ N , such that dimN(λkm) = 2, the point (0, λkm) is a bifurcation
point of the equation P (w, λ) = (0, 0) in the space of H-invariant functions
W 2

p (Ω)
H × R, and in some neighborhood of this point the set of solutions

consists of two smooth curves which intersect at the point (0, λkm) only.
Moreover the local bifurcation picture is as in Theorem 5.

Proof. In view of Theorem 5, it is enough to check the assumption (A6),
i.e., that dimN(λkm)H = 1. It is easy to check that

N(λkm)H = N(λkm) ∩W 2
p (Ω)

H

is spanned by the function

(36) e(x, y)θ = C(vk(x)vm(y) + vm(x)vk(y)).

The statement follows from Theorem 5.

Remark. It is worth pointing out that for some k,m ∈ N, such that k �=
m and dimN(λkm) = 2, the invariant degeneracy space N(λkm)θ is one-
dimensional also for the reflections corresponding to other than the remain-
ing angles θ ∈ {0, π

2 ,
3π
4 }. Consequently, we get other branches of solutions

that these of Theorem 7.
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