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Abstract. The embedding functions of an intermediate space A into a Ba-
nach couple (A0, A1) are defined as its embedding constants into the couples
( 1

α
A0, 1

β
A1), ∀α, β > 0. Using these functions, we study properties and in-

terrelations of different intermediate spaces, give a new description of all real
interpolation spaces, and generalize the concept of weak-type interpolation
to any Banach couple to obtain new interpolation theorems.

0. Introduction

The interpolation theory arose from a general problem of studying linear
operators on large collections of Banach spaces. First those are spaces with a
good analytical description (expression of norm) depending on a numerical
parameter, such as Lp, Lipα, W k

p etc. [11]. As a natural generalization,
one then took families of spaces with a function parameter [17] or some
other common characteristics — for example, symmetric (rearrangement
invariant) spaces [21]. Impetuous development of the interpolation theory
generated soon a problem of this theory fundamentals and basic notions (see
e.g. a classical work [1]). So one get the totality of all intermediate spaces for
a Banach couple as a basic and largest object, from which one may extract
spaces with different interpolation properties.

A Banach space A is called intermediate for a Banach couple �A = (A0, A1)
if ∆(�A) ⊂ A ⊂ Σ(�A), where ∆(�A) = A0 ∩ A1, Σ(�A) = A0 + A1 with the
standard definition of norms. The totality of all such spaces will be denoted
by π(�A). The indicated embeddings are always accompanied by the norm
inequalities

(1) ‖x‖A ≥ D ‖x‖Σ(�A) (∀x ∈ A), ‖x‖A ≤ C ‖x‖∆(�A)

(∀x ∈ ∆(�A)
)
.
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A combination (A0, A1, A) = (�A, A) with A ∈ π(�A) will be called a triple.
If �A, �B are two Banach couples, then the notation T : �A → �B means that
a linear operator T acts from Σ(�A) into Σ(�B) such that

‖T‖AiBi = sup
x∈Ai

‖Tx‖Bi
/ ‖x‖Ai < ∞, i = 0, 1.

If for any such operator and for some spaces A ∈ π(�A), B ∈ π(�B), the
inequality

(2) ‖T‖AB ≤ M max
i=0,1

‖T‖AiBi

holds, we say the triple (�AA) is interpolation with respect to the triple
(�B, B) (in the case M = 1 we shall speak about exact interpolation). In the
case �A = �B, A = B the space A is said to be interpolation for the Banach
couple �A, and the totality of all such spaces will be denoted by Int(�A).

For an element y ∈ ∆(�B) and a functional f ∈ (
Σ(�A)

)∗, we define an
one-dimensional operator Tx = f(x) y which is obviously bounded from
�A to �B. We say the triple (�A, A) is partly interpolation with respect to
the triple (�B, B), if the inequality (2) is fulfilled for all one-dimensional
operators as above. If (�A, A) = (�B, B), then the space A will be called
partly interpolation, and the totality of all such spaces will be denoted by
Part(�A). We have the following chain of embeddings: Int(�A) ⊂ Part(�A) ⊂
π(�A), and besides no two totalities coincide here, unless a couple �A is trivial
(i.e. ∆(�A) is closed in both A0 and A1).

Plenty of literature is devoted to the study of interpolation spaces and
triples [14]. As a rule, the papers describe different interpolation construc-
tions, and it would be a good luck if a particular space of a practical problem
would correspond to one of such descriptions. Otherwise, one need some
methods to estimate at least the proximity of a given space to interpolation
one. Estimation of the position of an intermediate space relatively to other
spaces was studied in [19] (see also references given there) by the use of
so-called fundamental functions

(3) ϕ(t, A, �A) = sup
‖x‖A0≤1
‖x‖A1≤t

‖x‖A, ψ(t, A, �A) = ϕ(t, A∗, �A∗), �A∗ = (A∗
1, A

∗
0)

proposed yet in [7]. Another possibility was also mentioned in Introduction
to [19] — to use the most natural characteristics of an intermediate space
such as its embedding constants into the couple �A, i.e. the optimal numbers
C, D in the inequalities (1). Such an approach proves to be especially pow-
erful if, together with a given couple �A, to consider all couples (αA0, βA1)
with any positive numbers α, β. The space A remains to be intermediate
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for all such couples, while the embedding constants turn into functions of
α, β. The information contained in these functions suffices to get various
conclusions on interpolation and other close properties of the space A.

An idea to pass from a single couple (A0, A1) to collection of couples
(αA0, βA1) is due to J. Peetre [16], who introduced and systematically used
the functionals

J(α, β, x, �A) = ‖x‖αA0∩βA1 , K(α, β, x, �A) = ‖x‖αA0+βA1

(in fact, J.Peetre considered only couples (A0, tA1); the simultaneous usage
of two parameters is due to V. Ovchinnikov [15]). As functions of α, β
these functionals belong to the class of continuous nondecreasing functions
homogeneous of degree 1; this class will be denoted below by M.

The present paper develops the above mentioned idea from Introduction
to [19]. It consists of four sections. In Section 1 we define and study the
notion of embedding functions C(α, β) and D(α, β) (including some exam-
ples). In particular, we obtain the necessary and sufficient conditions for the
inequality C(α, β) ≤ D(α, β). A similar result was obtained by A. Dmitriev
[7] for the fundamental functions (3) but only for the case of regular couple
�A, i.e. when ∆(�A) is dense in A0 and A1. Our proof does not use the conju-
gate couple �A∗ and need not such density. In the next section we study the
sum and the intersection of arbitrary set of intermediate spaces and show
that, together with the multiplication by number, these operations allow,
starting from the initial spaces of the couple A0, A1, to obtain all spaces of
the real interpolation. As a tool for doing this we use the maximal and the
minimal intermediate spaces with given embedding functions.

Sections 3 and 4 are devoted to the weak-type interpolation in arbitrary
Banach couples which is defined here as follows: we say a linear operator
T : A → B is of weak type (Φ,Ψ), if all we know about these spaces is
that CA(α, β) ≤ Φ(α, β), DB(α, β) ≥ Ψ(α, β). The weak-type interpolation
relates to an operator being simultaneously of two weak types (Φ0,Ψ0) and
(Φ1,Ψ1). In Section 3 we describe the spaces which can be obtained from
this fact by a functorial approach, while the given in Section 4 generalization
of the Krein-Semenov theorem [13] may be regarded as the main result of
the paper. It is stronger than the former one even in the case of the couple
(L1, L∞) considered by the authors of this method.

1. Embedding functions and their properties

Now we consider the embedding constants of an intermediate space A into
all couples (αA0, βA1), α, β > 0. For many purposes, it will be more conve-
nient to take the couples in the form ( 1αA0,

1
βA1) and define the embedding

constants as

C(α, β) = sup
x∈∆(�A)

‖x‖A
‖x‖ 1

αA0∩ 1
βA1

, D(α, β) = inf
x∈A

‖x‖A
‖x‖ 1

αA0+ 1
βA1

.
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By such a choice we have obtained two functions from M which will be
called embedding functions of a space A into the couple �A. At first sight
they seems to be not having any connection with each other. As we shall
see further, this is not true even in general case. And in special cases the
connection between them can be very close. Let us see these functions in
some examples.

Example 1. Let E be a rearrangement invariant space (see e.g. [12]) with
the fundamental function ϕ(t) which is defined as ‖χG‖E with mesG = t
(for instance, Lp has a fundamental function t1/p). Consider this space as
intermediate one for the couple �L = (L1, L∞). Then after not difficult but
tedious computation, we obtain that

C(α, β) = D(α, β) = βϕ(α/β).

Example 2. Take a couple of weight spaces (Ev, Ew) with continuous pos-
itive weights v(t), w(t) on (0,∞). If for some constants k1, k2 > 0

k1 min
(
v(t), w(t)

) ≤ z(t) ≤ k2 max
(
v(t), w(t)

)
, ∀t > 0,

then the space Ez is intermediate for this couple and

C(α, β) ∼ sup
t

z(t) min
(
α/v(t), β/w(t)

)
,

D(α, β) ∼ inf
t
z(t) max

(
α/v(t), β/w(t)

)
(equivalence with constant 2). If z = Φ(v, w) with some Φ ∈ M, then

C(α, β) ∼ D(α, β) ∼ Φ(α, β).

Sometimes it is enough only to estimate C and D functions from one side.
If we can find out that for some Φ ∈ M and for any x ∈ ∆(�A)

‖x‖A ≤ Φ(‖x‖A0 , ‖x‖A1),

then C(α, β) ≤ Φ(α, β). For estimating D-function, one may use the duality
between sums and intersections. If the couple �A is regular and ∆(�A) is dense
in A, we can pass to the conjugate spaces. If now for some Ψ ∈ M and for
any f ∈ ∆(�A∗) = (Σ(�A))∗ we have an inequality

‖f‖A∗ ≤ Ψ(‖f‖A∗
0
, ‖f‖A∗

1
),

then D(α, β) ≥ 1/Ψ(1/α, 1/β).
To prove this assertion we fix x ∈ Σ(�A) and take f ∈ (Σ(�A))∗ such that

f(x) = ‖x‖ 1
αA0+ 1

βA1
, ‖f‖αA∗

0∩βA∗
1

= 1.
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This is possible because ( 1
αA0 + 1

βA1)∗ = αA∗
0 ∩ βA∗

1. Then ‖f‖A∗
0

≤
1/α, ‖f‖A∗

1
≤ 1/β. So, for any x ∈ A we obtain

‖x‖A
‖x‖ 1

αA0+ 1
βA1

=
‖x‖A
|f(x)| ≥ inf

x∈A
‖x‖A
|f(x)| =

1
‖f‖A∗

≥ 1
Ψ(‖f‖A∗

0
, ‖f‖A∗

1
)

≥ 1
Ψ(1/α, 1/β)

,

that proves the assertion after infimizing over all x ∈ A.

Example 3. Let T be an unbounded selfadjoint operator in a Hilbert space
H such that (Tx, x) > 0 for all non-zero x ∈ H. Consider couple A0 =
H, A1 = D(T ) with the norm ‖x‖A1 = ‖Tx‖. For any increasing concave
function ϕ(t), we can define an operator function ϕ(T ) with the domain
D(ϕ(T )), which we regard as a Banach space Aϕ with the norm ‖x‖Aϕ =
‖ϕ(T )x‖. Using the integral representation of ϕ(T ) and Jensen inequality,
we obtain the so-called “moment inequality”

‖ϕ(T )x‖ ≤ ‖x‖ϕ(‖Tx‖/‖x‖),

which means that

‖x‖Aϕ ≤ ‖x‖A0ϕ(‖x‖A1/‖x‖A0).

This gives us immediately that C(α, β) ≤ αϕ(β/α).
In order to estimate D(α, β) we pass to the dual couple (A∗

0, A
∗
1) with

A∗
0 = H and A∗

1 = D(T−1) (or the completion of H with respect to the
norm ‖T−1x‖ if T−1 is a bounded operator). By the analogous way we
define the space A∗

ϕ and obtain that

‖ϕ−1(T )x‖ ≤ ‖x‖
ϕ(‖x‖/‖T−1x‖)

or in other words

‖x‖A∗
ϕ

≤ ‖x‖A∗
0

ϕ(‖x‖A∗
0
/‖x‖A∗

1
)
.

This gives us that D(α, β) ≥ αϕ(β/α), hence C(α, β) ≤ D(α, β).
The last inequality is not occasional. It is valid for any interpolation

space and even for a larger class of spaces, that will be seen from the next
theorem.

Theorem 1. In order that C(α, β) ≤ D(α, β) for all α, β > 0 it is necessary
and sufficient that A be an exact partly interpolation space for the couple �A.

Proof. a)sufficiency. We have to prove that, for any two elements x ∈ A and
y ∈ Ao ∩ A1, we always have

(4)
‖y‖A

‖y‖ 1
αA0∩ 1

βA1

≤ ‖x‖A
‖x‖ 1

αA0+ 1
βA1

.
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Without loss of generality, we may take ‖y‖ 1
αA0∩ 1

βA1
= 1. Now let us

take a functional f(x) with norm 1 in the conjugate space ( 1
αA0 + 1

βA1)∗

and such that f(x) = ‖x‖ 1
αA0+ 1

βA1
. Consider the one-dimensional operator

Tz = f(z)y and show that the restrictions of this operator on the spaces
A0, A1 have the norms not greater than 1. Indeed,

‖Tz‖A0 = |f(z)| ‖y‖A0 ≤ α‖z‖ 1
αA0+ 1

βA1
≤ ‖z‖A0

and so for A1. Thus ‖Tx‖A ≤ ‖x‖A and from this

‖y‖A ≤ ‖x‖A
|f(x)| =

‖x‖A
‖x‖ 1

αA0+ 1
βA1

which proves (4).
b)necessity. Let (4) is true for any x ∈ A, y ∈ A0 ∩ A1. Take some

one-dimensional operator Tx = f(x)y and define

Mi = sup
x∈Ai

|f(x)|
‖x‖Ai

, i = 0, 1.

Then the norm of T on the space Ai is equal to Mi‖y‖Ai . We have to show
that

‖Tx‖A ≤ max
i=0,1

Mi‖y‖Ai‖x‖A.

It follows from (4) that

‖Tx‖A = |f(x)| ‖y‖A ≤ |f(x)|
‖x‖ 1

αA0+ 1
βA1

‖y‖ 1
αA0∩ 1

βA1
‖x‖A.

Now we show that

|f(x)|
‖x‖ 1

αA0+ 1
βA1

≤ max(αM0, βM1).

Indeed, take arbitrary ε > 0 and let x0 ∈ A0, x1 ∈ A1 be such that x =
x0 + x1 and

‖x‖ 1
αA0+ 1

βA1
≥ (1 − ε)

(
‖x0‖ 1

αA0
+ ‖x1‖ 1

βA1

)
.

Then |f(x)|
‖x‖ 1

αA0+ 1
βA1

≤ |f(x0)| + |f(x1)|
(1 − ε)

( 1
α‖x0‖A0 + 1

β ‖x1‖A1

)
≤ 1

1 − ε
max

[
α|f(x0)|
‖x0‖A0

,
β|f(x1)|
‖x1‖A1

]

≤ 1
1 − ε

max(αM0, βM1),
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and it remains only to pass to limit as ε → 0.
So, we have

‖Tx‖A ≤ max(αM0, βM1) max(
1
α

‖y‖A0 ,
1
β

‖y‖A1)‖x‖A.

Now we put α = M1, β = M0. Then

‖Tx‖A ≤ M0M1 max
[‖y‖A0

M1
,
‖y‖A1

M0

]
‖x‖A

= max(M0‖y‖A0 ,M1‖y‖A1)‖x‖A.

If the interpolation constant of the space A is greater than 1, the inequal-
ity for C and D function is fulfilled up to equivalence. The inverse inequality
happens more seldom; it is caused not by properties of a single space but
by those of the couple on the whole. We give only one result with sufficient
condition.

Theorem 2. If a couple �A satisfies inequality

inf
α,β

sup
x∈∆(�A)

‖x‖αA0+βA1

‖x‖αA0∩βA1

≥ k > 0,

then for any intermediate space D(α, β) ≤ 1
kC(α, β).

Proof. Let α, β > 0 be fixed. For arbitrary ε > 0 we can find x ∈ ∆(�A)
such that ‖x‖αA0+βA1 ≥ (k − ε)‖x‖αA0∩βA1 . It follows then immediately
from the definitions of C and D functions that

D(1/α, 1/β)
C(1/α, 1/β)

≤ ‖x‖αA0∩βA1

‖x‖αA0+βA1

≤ 1
k − ε

,

and this proves our theorem if ε tends to 0.

If in Theorem 2 we have k = 1, then for any exact interpolation (and
even partly interpolation space), we obtain an equality D(α, β) = C(α, β).
The couple (L1, L∞) from Example 1 is quite so. As another example we
can take the couple (C,C1) on [0,1].

Further on we shall index the embedding functions when studying dif-
ferent intermediate spaces in the same Banach couple. It is evident that
an exact embedding A ⊂ B entails inequalities CA(α, β) ≥ CB(α, β) and
DA(α, β) ≥ DB(α, β). The inverse implication is not true, and even the way
for obtaining inverse relations is not clear. Nevertheless, such relations do
exist, and the following theorem is valid.
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Theorem 3. Let A,B ∈ π(�A) and∫ ∞

0

CB(α, β)
DA(α, β)

dβ

β
=

∫ ∞

0

CB(α, β)
DA(α, β)

dα

α
< ∞.

Then A ⊂ B. In the case of exact embedding A0 ⊂ A1 the limits of the first
integral are from 0 to α, of the second from β to ∞. If A1 ⊂ A0 (exactly)
then the limits of the first integral are from α to ∞, of the second from 0 to
β.

Notice that the equality of integrals is not an additional condition. It
always follows from the fact that all C and D functions are homogeneous of
degree one.

Proof. Actually, this theorem was proved in [18] in the terms of fundamental
functions (3) satisfying inequality∫ ∞

0

ϕ(t, B)ψ(t, A)
t2

dt < ∞.

In order to obtain the present wording it is enough to use the connection
between embedding and fundamental functions

ϕ(t, B) = CB(1, t), ψ(t, A) = t/DA(1, t)

and the homogeneity of functions C(α, β) and D(α, β).

Let us say a couple �A is C-abundant, if for any Φ(α, β) ∈ M there exists
a space A ∈ π(�A) with CA(α, β) ∼ Φ(α, β). The D-abundance is defined by
the same way. The couples (L1, L∞) from Example 1 and (Ev, Ew) from
Example 2 have abundance of the both types. Some criteria of abundance
(in the terms of fundamental functions) are given in [19]. For any type of
abundance (and even under some weaker conditions), the embedding of A
into B is proper, i.e. A �= B. This means that in such a couple there is no
space A, for which the ratio C(1, t)/D(1, t) is integrable with respect to the
measure dt/t.

2. Sum and intersection of banach spaces

Embedding functions give a natural way to define and to construct the
maximal and the minimal intermediate spaces from [18] (last time they
usually are called (generalized) Lorentz and Marcinkiewicz spaces respec-
tively). Roughly speaking, for an arbitrary function Φ(α, β) ∈ M, a maximal
(Lorentz) space ΛΦ(�A) is the “narrowest” one for which C(α, β) ≤ Φ(α, β),
and a minimal (Marcinkiewicz) space MΦ(�A) is the “widest” one for which
D(α, β) ≥ Φ(α, β). More exact description of these spaces and of their role
in the interpolation theory may be given via generalized sums and intersec-
tions of Banach spaces.
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The usual operations of sum and intersection of two spaces together with
the multiplication by number are the simplest operations preserving the in-
terpolation property of spaces (and even the interpolation constant). In
particular, all above considered spaces αA0 ∩ βA1 and αA0 + βA1 are ex-
act interpolation for the couple �A. Following [1], these operations may be
generalized to the case of arbitrary many spaces.

The intersection ∆(Aω), ω ∈ Ω, is the set of elements x belonging to
any Aω with supω ‖x‖Aω < ∞, and this supremum is taken as the norm in
∆(Aω). The sum Σ(Aω) is defined as the intersection of all Banach spaces
in which any Aω is embedded exactly, provided that at least one of such
spaces really exists. Thus we have that

‖x‖Σ(Aω) ≤ inf
ω

‖x‖Aω

for any x common for all Aω. For a given set of spaces {Aω} to be summa-
ble, it is sufficient that they are intermediate for some couple �A, and their
embedding constants into the space Σ(�A) are bounded on the whole (we say
they are uniformly embedded into Σ(�A)).

It is also possible to give a direct construction of the sum as a collection
of all x representable in a form x =

∑
xω, where xω ∈ Aω, ω ∈ Ω and∑ ‖xω‖Aω < ∞ (it follows from this immediately that the set of xω �= 0

is at most countable). The norm in a space thus obtained is defined as
inf

∑ ‖xω‖Aω over all possible representation of x as above.
If all Aω ∈ π(�A) then both ∆(Aω) and Σ(Aω) also are intermediate for

the couple �A. We have even a more general assertion.

Theorem 4. Let each triple (�A, Aω), ω ∈ Ω, be exact interpolation for
the corresponding triple (�B, Bω). Then the triple

(
�A,∆(Aω)

)
is exact in-

terpolation for the triple
(
�B,∆(Bω)

)
, and the triple

(
�A,Σ(Aω)

)
is exact

interpolation for the triple
(
�B,Σ(Bω)

)
.

Proof. If we write the inequality ‖Tx‖Bω ≤ ‖x‖Aω for all ω ∈ Ω and take
supremum of both sides, we immediately obtain the first assertion of the
theorem. To prove the second assertion, we define the space D ∈ π(�A) with
the norm ‖x‖D = 1

2 (‖x‖Σ(Aω) + ‖Tx‖Σ(Bω)) and see that each summand
in the brackets is not greater than ‖x‖Aω for each ω. Thus any Aω is
exactly embedded in D, and so the norm in D must be no greater than the
norm in the sum Σ(Aω). This implies the required inequality ‖Tx‖Σ(Bω) ≤
‖x‖Σ(Aω).

The next assertion gives us a partial case of space summing when the
parameter is a continuous real variable.

Theorem 5. Let the spaces At, a < t < b, be uniformly embedded in Σ(�A),
and let the space ∆(�A) be dense in any At. Let ‖x‖At be a continuous
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function of t for each x ∈ ∆(�A). Then the space Σ(At) consists of all
x ∈ Σ(�A) representable in the form

(5) x =
∫ b

a

u(t)dt,

where u(t) is a function with values in ∆(�A) such that the function ‖u(t)‖At
is summable with respect to t on (a, b). The norm in Σ(�A) is given by the
equality

(6) ‖x‖Σ(At) = inf
∫ b

a

‖u(t)‖Atdt,

where infimum is taken over all representations of x as above.

Notice that a may be equal to zero and b may be equal to infinity.

Proof. Let us denote the space of all x representable in the form (5) with
the norm (6) by A. Fix some t = t0 and consider the functions

uε(t) =
{
x/2ε if |t − t0| ≤ ε
0 if |t − t0| > ε,

where ε < min(|t0 − a|, |t0 − b|). Then (5) is fulfilled for u = uε, hence

‖x‖A ≤ lim
ε→0

∫ b

a

‖uε(t)‖Atdt = ‖x‖At0 ,

in virtue of ‖x‖At being continuous. So any At is exactly embedded in A.
Let now B be some other Banach space such that all At are exactly

embedded in B. Then for each x representable in the form (5),

∫ b

a

‖u(t)‖Atdt ≥
∫ b

a

‖u(t)‖Bdt,

thus the integral from (5) converges in B and x ∈ B. Further

‖x‖A = inf
∫ b

a

‖u(t)‖Atdt ≥ inf ‖
∫ b

a

u(t)dt‖B = ‖x‖B ,

hence A is exactly embedded in B. Since B is arbitrary, this finishes the
proof.

Starting from the initial spaces A0, A1 and using different combinations of
multiplications by number, sums and intersections, one can get a large class
of intermediate spaces which we denote by Prim(�A). In virtue of Theorem
4, all these spaces are exact interpolation for the couple �A. Just in this
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class we find the above mentioned spaces ΛΦ(�A),MΦ(�A), since they may be
represented in a form

ΛΦ(�A) =
∑
α,β

Φ(α, β)(
1
α
A0 ∩ 1

β
A1) =

∑
t

Φ(1, t)(A0 ∩ 1
t
A1),

MΦ(�A) = ∆
α,β

Φ(α, β)(
1
α
A0 +

1
β
A1) = ∆

t
Φ(1, t)(A0 +

1
t
A1).

By the way, we can get from this representation the formulas for norms
in these spaces. Indeed, from the definition of intersection we obtain an
expression of the norm in Marcinkiewicz space via K-functional of Peetre:

‖x‖MΦ(�A) = sup
t

Φ(1, t)K(1,
1
t
, x, �A).

Due to Theorem 5, the norm in Lorentz space can be expressed via J-
functional of Peetre:

‖x‖ΛΦ(�A) = inf
∫ ∞

0
Φ(1, t) J(1,

1
t
, u(t), �A) dt,

where infimum is taken over all representation of x in the form

x =
∫ ∞

0
u(t)dt, u(t) ∈ ∆(�A), ∀t > 0.

For arbitrary A ∈ π(�A), the inequality CA(α, β) ≤ Φ(α, β) is necessary
and sufficient for an embedding A ⊃ ΛΦ(�A), and the inequality DA(α, β) ≥
Φ(α, β) is necessary and sufficient for an embedding A ⊂ MΦ(�A).

The spaces from Prim(�A) are closely connected with the real interpola-
tion spaces (K-spaces), i.e. spaces having an (equivalent) norm of the type
‖x‖A = ‖K(1, t, x, �A)‖E with some Banach function space (lattice) E de-
fined over R

+ with the measure dt/t and containing the function min(1, t)
(sometimes E is called a parameter of the real interpolation). The class of
such spaces we denote by Real(�A). As shown by Y. Brudnyi and N. Krugliak
[5], a space A ∈ Real(�A) if and only if it has a property of K-monotonicity :
for any x ∈ A, y ∈ Σ(�A) an inequality K(1, t, y, �A) ≤ K(1, t, x, �A),∀t > 0,
implies that y ∈ A and ‖y‖A ≤ λ‖x‖A with a constant λ independent of
x, y (as usual, in the case λ = 1 we add a word “exact” and in the case of
λ common for some set of spaces we say the K-monotonicity is uniform).
Note that the initial spaces of couple A0, A1 are K-monotone if and only
if their unit balls are closed in the space Σ(�A); such a couple is said to be
mutually closed.

Theorem 6. For any Banach couple Real(�A) ⊂ Prim(�A). For any mutu-
ally closed Banach couple Real(�A) = Prim(�A).

The proof of this theorem is a mere union of the following two lemmas.
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Lemma 1. The sum and the intersection of any number of exact K-spaces
also are K-spaces.

Proof. The assertion about intersection is obvious, while the assertion about
sum can be proved by the use of a special result from [5] called K-divisibility.
Namely, let all Aω be K-spaces, y ∈ Σ(Aω), x ∈ Σ(�A) and K(1, t, x, �A) ≤
K(1, t, y, �A). Due to definition of Σ(Aω), for arbitrary ε > 0, there exists a
collection of yω ∈ Aω, ω ∈ Ω, such that y =

∑
yω and

‖y‖Σ(Aω) ≥ (1 − ε)
∑

‖yω‖Aω .

Since for any t > 0 the K-functional is a norm in Σ(�A), we obtain that

K(1, t, x, �A) ≤ K(1, t, y, �A) = K(1, t,
∑

yω, �A) ≤
∑

K(1, t, yω, �A).

The property of K-divisibility gives us the existence of xω such that x =∑
xω and K(1, t, xω, �A) ≤ γK(1, t, yω, �A) for any ω, where γ is the so-called

“constant of K-divisibility”. Every Aω is an exact K-space, so ‖xω‖Aω ≤
‖γyω‖Aω and

‖x‖Σ(Aω) ≤
∑

‖xω‖Aω ≤ γ
∑

‖yω‖Aω ≤ γ

1 − ε
‖y‖Σ(Aω).

It is evident that, instead of exact K-monotonicity of spaces Aω, we could
require only uniform one.

Lemma 2. For a space A ∈ π(�A) to be K-monotone, it is necessary and
sufficient that A = Σ

(
MΦω (�A)

)
over some function set {Φω} ⊂ M.

Proof. The sufficiency follows from Lemma 1, because any Marcinkiewicz
space is K-monotone. In order to prove the necessity let us define Φω(α, β) =
1/K(1/α, 1/β, yω, �A) for each yω from the closed unit ball of A. Then for
any x from the unit ball of MΦω (�A), we have

K(1, t, x, �A) ≤ 1/Φω(1, 1/t) = K(1, t, yω, �A),

thus ‖x‖A ≤ ‖yω‖A ≤ 1. This means that the unit balls of all MΦω (�A) are
contained in the unit ball of A which turns to be a union of them, and so
A is the “narrowest” space exactly containing all MΦω (�A), i.e. the sum of
them.

3. Weak-type interpolation

In this section we discuss how an information about embedding functions
of intermediate spaces can be used in the interpolation theory. In many
cases just this information is most accessible and easy to compute. For
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example, in the couple (L1, L∞) one gets such information by study of an
operator only on characteristic functions of measurable subsets. And even
in the cases when a given space is well-known, we can encounter a situation
this knowledge is useless for lack of appropriate interpolation theorems. So
it makes sense to study linear operators acting from a space A ∈ π(�A) to a
space B ∈ π(�B), when all we know is that CA(α, β) ≤ Φ(α, β), DB(α, β) ≥
Ψ(α, β). Such operators will be said to be of weak type (Φ,Ψ); this is
equivalent to their boundedness from ΛΦ(�A) to MΨ(�B).

The weak-type interpolation relates to an operator being simultaneously
of two weak types (Φ0,Ψ0) and (Φ1,Ψ1). Using general interpolation proper-
ties of Lorentz and Marcinkiewicz spaces [18], we get from this immediately
that any such operator is also of weak type (Φ,Ψ), where

(7) Φ(α, β) = Θ
(
Φ0(α, β),Φ1(α, β)

)
, Ψ(α, β) = Θ

(
Ψ0(α, β),Ψ1(α, β)

)
with arbitrary function Θ ∈ M. However, for some particular classes of
functions Θ, we can establish stronger results. To this end we need to add
some words about special properties of functions from M.

If Θ(α, β) ∈ M then θ(t) = Θ(1, t) is a quasiconcave function, that is
it increases while θ(t)/t decreases. We say θ(t) (and Θ(α, β) as well) is a
quasi-power, if there exist positive numbers µ, ν < 1 such that a function
θ(t)t−µ is equivalent to some increasing function, and a function θ(t)t−ν is
equivalent to some decreasing function. The numbers pθ = supµ, qθ = inf ν
(over all possible numbers µ, ν with aforesaid properties) are called lower
and upper extension indices of the function θ(t). They can be found from
the relations

(8) pθ = lim
t→0

logmθ(t)
log t

, qθ = lim
t→∞

logmθ(t)
log t

,

where mθ(t) = sups
(
θ(ts)/θ(s)

)
. Obviously, 0 < pθ ≤ qθ < 1. Notice that

via (8) such indices may be defined for any positive function, and then for
arbitrary quasiconcave function, we get weaker inequalities 0 ≤ pθ ≤ qθ ≤ 1.

Theorem 7. Let a linear operator T be of weak types (Φ0,Ψ0) and (Φ1,Ψ1)
such that both the ratios Φ1(t, 1)/Φ0(t, 1) and Ψ1(t, 1)/Ψ0(t, 1) have positive
extension indices. Let θ(t) = Θ(1, t) be a quasi-power. Then T : ΛΦ(�A) →
ΛΨ(�B) and T : MΦ(�A) → MΨ(�B) with Φ,Ψ defined by (7).

These assertions were proved via fundamental functions in [18] and via
orbital methods (with some generalizations) in [10]. We would like only to
emphasize once more the role of embedding functions taking as example
the first assertion. Let �Λ =

(
ΛΦ0(�A),ΛΦ1(�A)

)
and define G ∈ π(�Λ) as

a collection of x ∈ ΛΦ(�A), for which Tx ∈ ΛΨ(�B) with the norm ‖x‖G =
max(‖x‖ΛΦ(�A), ‖Tx‖ΛΨ(�B)). Our goal is to estimate the embedding function

CG(α, β) in the couple �Λ. Using an inequality from [18]

(9) ‖y‖ΛΨ(�B) ≤ C Θ(‖y‖MΨ0 (
�B), ‖y‖MΨ1 (

�B))
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and the relation ΛΘ(�Λ) = ΛΦ(�A), we obtain that ‖x‖G ≤ C Θ(‖x‖ΛΦ0 (
�A),

‖x‖ΛΦ1 (
�A)), whence CG(α, β) ≤ C Θ(α, β). This means that G ⊃ ΛΘ(�Λ) =

ΛΦ(�A), thus ‖Tx‖ΛΨ(�B) ≤ C ‖x‖ΛΦ(�A) for all x ∈ ΛΦ(�A) q.e.d.

In fact, Theorem 7 says that any operator T satisfying its conditions is
bounded from the couple

(
ΛΦ(�A), MΦ(�A)

)
to the couple

(
ΛΨ(�B), MΨ(�B)

)
.

Thus for any interpolation functor F , we obtain that T : A → B, where A =
F(

ΛΦ(�A), MΦ(�A)
)
, B = F(

ΛΨ(�B), MΨ(�B)
)
. Now we give a description of

all possible spaces A,B obtained on this way.
As usual, a notation �AK

E will be used for a space from Real(�A) with the
norm

‖x‖�AK
E

= ‖K(1, t, x, �A)‖E .

For instance, MΦ(�A) = �AK
Lϕ∞

, where ϕ(t) = Φ(1, 1/t). As shown in [18], the

Lorentz space ΛΦ(�A) can be represented in analogous form if the function Φ
is a quasi-power: ΛΦ(�A) = �AK

Lϕ1
, where the space L1 is taken with respect

to the measure dt/t. It is easy to check that, under conditions of Theorem
7, both the functions Φ and Ψ from (7) are quasi-powers, thus

(10) A = F(�AK
Lϕ1

, �AK
Lϕ∞), B = F(�BK

Lψ1
, �BK

Lψ∞
),

and we may use the general reiteration theorem from [9] giving

A = �AK
Eϕ , B = �BK

Eψ , E = F(L1, L∞).

It remains only to add that, due to Calderón [6], a space E has such a form
if and only if it is rearrangement invariant (with respect to the measure dt/t
in our case).

The obtained representation of spaces A,B is rather specific — it im-
plies, in particular, that A and B are interpolation in their own couples(
ΛΦ(�A),MΦ(�A)

)
and

(
ΛΨ(�B),MΨ(�B)

)
respectively. Returning to the ini-

tial problem of weak-type interpolation, we can enlarge the class of admissi-
ble spaces A,B by use of operations of sum and intersection. Let Ω be a set
of indices ω such that any Eω is rearrangement invariant (in above sense)
and any Θω is a quasi-power. Let ϕω(t) = Φω(1, 1/t), ψω(t) = Ψω(1, 1/t),
where

Φω(α, β) = Θω

(
Φ0(α, β),Φ1(α, β)

)
, Ψω(α, β) = Θω

(
Ψ0(α, β),Ψ1(α, β)

)
,

and let Aω = �AK
Eϕωω

, Bω = �BK
Eψωω

. As we know yet, T : Aω → Bω for each

ω ∈ Ω. If all spaces Aω are uniformly embedded in the space Σ(�A), and all
spaces Bω are uniformly embedded in the space Σ(�B), we may define

A =
∑
ω∈Ω

Aω, B =
∑
ω∈Ω

Bω.
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If at last, the interpolation constants of interpolation from Aω to Bω for
all ω ∈ Ω are bounded on the whole, we may apply Theorem 4 and thus
obtain that T : A → B. An analogous result is true if to replace all sums by
intersections.

The above conditions on spaces Aω, Bω are connected only with the prop-
erties of functions Θω telling on the corresponding constants in inequality
(9). If to look through the proof of this inequality in [18], it is not dif-
ficult to see that the both kinds of uniformity are ensured by inequalities
inf pθω > 0, sup qθω < 1 over all ω ∈ Ω (for instance, when the set Ω is
finite).

Notice that the spaces A,B ∈ Real(�A) due to Lemma 1. By use of the
K-divisibility one can easy prove that in the case of sum

A = �AK
E , B = �BK

F , E =
∑
ω∈Ω

Eϕω
ω , F =

∑
ω∈Ω

Eψω
ω ,

while in the case of intersection

E = ∆
ω∈Ω

Eϕω
ω , F = ∆

ω∈Ω
Eψω
ω .

We see that in the both cases the structure of spaces E,F is rather compli-
cated and may be not easy to verify. Therefore we will give another assertion
not requiring any information concerning this structure.

Theorem 8. Under conditions of Theorem 7 let ϕ(t) = Φ(1, 1/t), ψ(t) =
Ψ(1, 1/t) and let the triple (Lϕ1 , L

ϕ
∞, E) be interpolation with respect to the

triple (Lψ1 , L
ψ
∞, F ). Then T : �AK

E → �BK
F .

Proof. Due to the general principle of N. Aronszajn and E. Gagliardo [1],
there exists an interpolation functor F such that E ⊂ F(Lϕ1 , L

ϕ
∞),

F ⊃ F(Lψ1 , L
ψ
∞), thus �AK

E ⊂ A, �BK
F ⊃ B, where the spaces A,B are defined

by (10) with this functor. Our assertion follows now from the boundedness
of T from A to B which was proved above.

The required interpolation property of the triple (Lϕ1 , L
ϕ
∞, E) with respect

to the triple (Lψ1 , L
ψ
∞, F ) may be obtained, for instance, from Theorem 3

by comparison of the embedding functions of spaces E,F . Let DE(α, β)
be calculated in the couple (Lϕ1 , L

ϕ
∞) and let CF (α, β) be calculated in the

couple (Lψ1 , L
ψ
∞). If∫ ∞

0

CF (α, β)
DE(α, β)

dβ

β
=

∫ ∞

0

CF (α, β)
DE(α, β)

dα

α
< ∞,

then E ⊂ ΛCF (Lϕ1 , L
ϕ
∞). Any linear operator T which is bounded from

the couple (Lϕ1 , L
ϕ
∞) to the couple (Lψ1 , L

ψ
∞) acts from ΛCF (Lϕ1 , L

ϕ
∞) to

ΛCF (Lψ1 , L
ψ
∞) ⊂ F , hence T : E → F . We refer the reader to [20], where

this method was realized for some Orlicz spaces.
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4. Generalization of the
Krein-Semenov interpolation theorem

All results of the preceding section are based on Theorem 7 which re-
quirements on the functions Φi,Ψi (i = 0, 1) as well as the definition (7) of
the functions Φ,Ψ are absolutely symmetrical. For the case of rearrange-
ment invariant spaces in the couple �A = �B = (L1, L∞), S. G. Krein and E.
M. Semenov ([13], see also [12]) have established another kind of weak-type
interpolation, where the basic conditions concerned only the initial space A,
while the resulting space B was defined via A by a special construction. This
result was later partly generalized in [8], and then the spaces constructed
by S. G. Krein and E. M. Semenov were used in [13] as parameters of the
k-method of interpolation proposed by C. Bennett [3]. In this section we
give a generalization of the Krein-Semenov method to arbitrary K-spaces
(by the way we remove the condition on the function Φ1(t, 1)/Φ0(t, 1) to be
increasing that was present in all above mentioned results).

Let N be the set of all functions f(t) : R
+ → R

+, for which tf(t) is a
quasiconcave function. For each Banach function space E with nonempty
intersection E ∩ N, define a function

σE(s) = sup
f∈E∩N

‖f(t/s)‖E
‖f(t)‖E , s > 0,

which obviously is quasiconcave too. Its extension indices may be regarded
as some global characteristics of the space E and will be denoted by pE
(lower) and qE (upper). One can show that for the case of rearrangement
invariant space E, these characteristics coincide with the Boyd indices [4] of
E, provided the latter are less than 1.

Theorem 9. Let a linear operator T be of weak types (Φ0,Ψ0) and (Φ1,Ψ1)
such that pΦ0(t,1) > qΦ1(t,1). Assume there exists a positive function δ(t) such
that

Ψ1(δ(t), 1)/Ψ0(δ(t), 1) = Φ1(t, 1)/Φ0(t, 1)

for all t > 0. If a Banach function space E has the characteristics pE >

qΦ1(t,1), qE < pΦ0(t,1), then T : A → B, where A ∈ π(�A), B ∈ π(�B) with
the norms

‖x‖A = ‖1
t
K(1, t, x, �A)‖E , ‖x‖B = ‖κ(t)

t
K(1, δ(t), x, �B)‖E

and

κ(t) =
Ψ0

(
1, 1/δ(t)

)
Φ0(1, 1/t)

=
Ψ1

(
1, 1/δ(t)

)
Φ1(1, 1/t)

.

Proof. On the first stage let us prove the theorem for the case when the
functions α0(t) = Φ0(t, 1) and α1(t) = Φ1(t, 1) are quasi-powers, i.e. pα1 >
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0, qα0 < 1. Take some x ∈ A and for arbitrary fixed t > 0 define two
functions

a(s) =

{
K(1, s, x, �A) if s ≤ t

K(1, t, x, �A) if s ≥ t,
b(s) =

{
sK(1, t, x, �A)/t if s ≤ t

K(1, s, x, �A) if s ≥ t.

Both the functions a(s), b(s) are increasing and concave and K(1, s, x, �A) ≤
a(s) + b(s). Thus in virtue of K-divisibility, there exists a decomposition
x = x0 + x1; x0, x1 ∈ Σ(�A) such that

K(1, s, x0, �A) ≤ γ a(s), K(1, s, x1, �A) ≤ γ b(s).

Show that x0 ∈ ΛΦ0(�A), x1 ∈ ΛΦ1(�A).
From the definition of A, we have K(1, s, x, �A) ∈ E1/s, thus a(s) ∈ E0 =

E1/s∩L∞, b(s) ∈ E1 = E1/s∩L1/s
∞ . Hence x0 ∈ A0 = �AK

E0
, x1 ∈ A1 = �AK

E1

and it suffices to prove that Ai ⊂ ΛΦi(�A), i = 0, 1. We shall do this by the
use of Theorem 3. To this end we estimate

DA0(τ, 1) = inf
x∈A0

‖K(1, s, x, �A)‖E0

K(1, τ, x, �A)/τ
≥ max

{
τ, inf
x∈A

∥∥∥∥∥K(1, s, x, �A)/s

K(1, τ, x, �A)/τ

∥∥∥∥∥
E

}

≥ max{τ, ‖ min(τ/s, 1)‖E}

(the last inequality is due to concavity of K(1, s, x, �A) as a function of s).
The function min(1/s, 1) ∈ N, therefore

‖ min(τ/s, 1)‖E ≥ ‖ min(1/s, 1)‖E
σE(1/τ)

.

Recall that in our case the space E1/s is a parameter of the real interpolation,
thus the value ‖ min(1/s, 1)‖E is well-defined. Now we can estimate the
integral

∫ ∞

0

Φ0(α, β)
DA0(α, β)

dα

α
=

∫ ∞

0

Φ0(τ, 1)
DA0(τ, 1)

dτ

τ

≤ C

∫ ∞

0
α0(τ) min

(
1/τ, σE(1/τ)

)
dτ/τ

= C

∫ 1

0
α0(τ)σE(1/τ) dτ/τ + C

∫ ∞

1
α0(τ) dτ/τ2

< ∞,

since pα0 > qE , qα0 < 1. Thus Theorem 3 gives us an embedding A0 ⊂
ΛΦ0(�A).
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Analogously,

DA1(τ, 1) = inf
x∈A1

‖K(1, s, x, �A)‖E1

K(1, τ, x, �A)/τ
≥ max{1, ‖ min(τ/s, 1)‖E},

whence∫ ∞

0

Φ1(α, β)
DA1(α, β)

dα

α
≤ C

∫ ∞

0
α1(τ) min

(
1, σE(1/τ)

)
dτ/τ

= C

∫ 1

0
α1(τ) dτ/τ + C

∫ ∞

1
α1(τ)σE(1/τ) dτ/τ

< ∞,

since pα1 > 0, qα1 < pE . We have proved the second embedding A1 ⊂
ΛΦ1(�A) as well.

So the operator T is defined on x0, x1, and the following inequalities hold:

‖Txi‖MΨi (
�B) ≤ C ‖xi‖ΛΦi (

�A), i = 0, 1.

Keeping the previously fixed value of t, we are now able to estimate

κ(t)
t

K(1, δ(t), Tx, �B) ≤ κ(t)
t

[
K(1, δ(t), Tx0, �B) + K(1, δ(t), Tx1, �B)

]
≤ κ(t)

t

[ ‖Tx0‖MΨ0 (
�B)

Ψ0
(
1, 1/δ(t)

) +
‖Tx1‖MΨ1 (

�B)

Ψ1
(
1, 1/δ(t)

)
]

≤ C

[
1

α0(t)
‖x0‖ΛΦ0 (

�A) +
1

α1(t)
‖x1‖ΛΦ1 (

�A)

]
.

Since both the functions Φ0,Φ1 are quasi-powers, we have that ΛΦi(�A) =
�AK
L
ϕi
1
, i = 0, 1, where ϕi(s) = Φi(1, 1/s) = αi(s)/s. Therefore

‖x0‖ΛΦ0 (
�A) ≤ C

∫ ∞

0
K(1, s, x0, �A)α0(s) ds/s2 ≤ γ C

∫ ∞

0
a(s)α0(s) ds/s2,

‖x1‖ΛΦ1 (
�A) ≤ C

∫ ∞

0
K(1, s, x1, �A)α1(s) ds/s2 ≤ γ C

∫ ∞

0
b(s)α1(s) ds/s2,

which allows to obtain

κ(t)
t

K(1, δ(t), Tx, �B)

≤ C

[∫ ∞

0
a(s)mα0(s/t) ds/s2 +

∫ ∞

0
b(s)mα1(s/t) ds/s2

]

= C

[∫ 1

0

1
ts

K(1, ts, x, �A)mα0(s) ds/s +
∫ ∞

1

1
t
K(1, t, x, �A)mα0(s) ds/s2

+
∫ 1

0

1
t
K(1, t, x, �A)mα1(s) ds/s +

∫ ∞

1

1
ts

K(1, ts, x, �A)mα1(s) ds/s
]
.
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Now we have everything to estimate ‖Tx‖B taking in account that K(1, t,
x, �A)/t ∈ N :

‖Tx‖B = ‖κ(t)
t

K(1, δ(t), Tx, �B)‖E

≤ C ‖1
t
K(1, t, x, �A)‖E

[∫ 1

0
σE(

1
s

)mα0(s)
ds

s
+

∫ ∞

1
mα0(s)

ds

s2

+
∫ 1

0
mα1(s)

ds

s
+

∫ ∞

1
σE(

1
s

)mα1(s)
ds

s

]
.

In order to finish the first stage of the proof, we only have to ascertain that
all the four integrals in the brackets are finite. But this is ensured by the
given inequalities for indices.

Let us pass to the second stage of the proof to remove the extra conditions
pα1 > 0, qα0 < 1. Put λ = 1

2 min(pα0 − qE , pE − qα1) and show that all
conditions of our theorem are fulfilled, if to replace Φ0,Φ1,Ψ0,Ψ1 by

Φ̃0 = Φ1−λ
0 Φλ1 , Φ̃1 = Φλ0Φ1−λ

1 , Ψ̃0 = Ψ1−λ
0 Ψλ

1 , Ψ̃1 = Ψλ
0Ψ1−λ

1 .

These equalities may be considered as partial cases of the relation (7), thus
the operator T remains to be of weak types (Φ̃0, Ψ̃0) and (Φ̃1, Ψ̃1). It is
possible to take a function δ(t) as before, since

Ψ̃1(δ(t), 1)
Ψ̃0(δ(t), 1)

=
[

Ψ1(δ(t), 1)
Ψ0(δ(t), 1)

]1−2λ

=
[

Φ1(t, 1)
Φ0(t, 1)

]1−2λ

=
Φ̃1(t, 1)
Φ̃0(t, 1)

.

Just so easy one can ascertain that the second function κ(t) does not change
as well. It only remains to find out new relations between indices.

Denote like before Φ̃i(t, 1) = α̃i(t), i = 0, 1. By a direct calculation we
obtain that

pα̃0 = (1 − λ)pα0 + λpα1 , qα̃0 = (1 − λ)qα0 + λqα1 ,

pα̃1 = λpα0 + (1 − λ)pα1 , qα̃1 = λqα0 + (1 − λ)qα1 ,

whence

pα̃0 − qE ≥ pα0 − λ − qE ≥ λ, pE − qα̃1 ≥ pE − λ − qα1 ≥ λ,

and so pα̃0 > qE , qα̃1 < pE . On the other hand pα̃1 ≥ λpα0 > 0 even if
pα1 = 0, and qα̃0 ≤ 1 − λ + λqα1 < 1 even if qα0 = 1. Thus we can carry
out the first stage of the proof for the functions Φ̃i, Ψ̃i, i = 0, 1 and get the
desired result.

Remark. As all over the real interpolation, any result of the last two sections
remains to be true when T is a bounded nonlinear operator in the sense of
Gagliardo-Peetre (see [5]).
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