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The significance of fixed-point theory stems from the fact that it furnishes a
unified approach and constitutes an important tool in solving equations which
are not necessarily linear. On the other hand, if the fixed-point equation Tx = x
does not possess a solution, it is contemplated to resolve a problem of finding an
element x such that x is in proximity to Tx in some sense. Best proximity pair
theorems analyze the conditions under which the optimization problem, namely
minx∈A d(x,Tx) has a solution. In this paper, we discuss the difference between
best approximation theorems and best proximity pair theorems. We also discuss
an application of a best proximity pair theorem to the theory of games.

1. Introduction

Many problems of practical interest are formulated as an operator equation
Fx = 0 where the operator F is defined on some suitable space. Often this op-
erator equation is solved by recasting it as a fixed-point equation Tx = x such
that the solution to the latter will yield a solution to the corresponding op-
erator equation Fx = 0. For instance, existence of fixed-point to the equation
Tx = Fx+ x, whenever Fx+ x is meaningful, is precisely a solution to the opera-
tor equation Fx = 0. The significance of this unified approach is that it serves as
an important tool in solving linear as well as nonlinear equations. Further, fixed-
point theory has gained impetus, due to its wide range of applicability, to resolve
diverse problems emanating from the theory of nonlinear differential equations,
theory of nonlinear integral equations, game theory, mathematical economics,
control theory, and so forth.

On the other side of the spectrum, if the fixed-point equation Tx = x does
not possess a solution, then the next question that arises naturally is whether
it is possible to find an element x in a suitable space such that x is close to Tx
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in some sense. Best approximation theorems provide affirmative answers to this
poser. In fact, if E is a normed linear space and if T is a mapping with domain
K ⊂ E, then a best approximation theorem furnishes sufficient conditions that
ascertain the existence of an element x0, known as best approximant, such that

d
(
x0,Tx0

)= d
(
Tx0,K

)
, (1.1)

where

d(A,B)= inf
{‖x− y‖ : x ∈A and y ∈ B

}
(1.2)

for any nonempty subsets A and B of E. Indeed, a classical best approximation
theorem, due to Fan [5], states that if K is a nonempty compact convex subset of
a Hausdorff locally convex topological vector space E with a continuous semi-
norm p and T : K → E is a single-valued continuous map, then there exists an
element x0 ∈ K such that

p
(
x0−Tx0

)= d
(
Tx0,K

)
. (1.3)

Later, this result has been generalized, by Reich [11, 12] and Sehgal and Singh
[16], to the one for continuous multifunctions. It is remarked that Sehgal and
Singh have also proved the following generalization [17] of the result due to
Prolla [10].

If K is a nonempty approximately compact convex subset of a normed lin-
ear space X , T : K → X is a multivalued continuous map with T(K) relatively
compact and g : K → K an affine, continuous, and surjective single-valued map
such that g−1 sends compact subsets of K onto compact sets, then there exists an
element x0 in K such that

d
(
gx0,Tx0

)= d
(
Tx0,K

)
. (1.4)

In the setting of Hausdorff locally convex topological vector spaces, Vetrivel,
Veeramani, and Bhattacharyya [22] have established existential theorems that
guarantee the existence of a best approximant for continuous Kakutani factor-
izable multifunctions which unify and generalize the known results on best ap-
proximations.

The following simple example shows that the requirement of continuity as-
sumption of the involved multifunction in Sehgal and Singh’s result [16] cannot
be relaxed.
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Example 1.1. Let X =R, K = [0,1], T : K → 2X , and g = I , the identity map. Let
T : K → 2X be defined as follows:

T(x)=


{3} if x = 0,

[2,4] otherwise.
(1.5)

Then T is upper semicontinuous but not lower semicontinuous. Also, it is clear
that there is no x ∈ K such that

d(x,Tx)= d(Tx,K). (1.6)

Although a best approximation theorem guarantees the existence of an ap-
proximate solution, it is contemplated to solve the problem of finding an ap-
proximate solution which is optimal. Best proximity pair theorems are pertinent
to be explored in this direction. Indeed, if T : A→ B is a multivalued mapping, a
best proximity pair theorem provides sufficient conditions that ensures the exis-
tence of an element x0 ∈A such that

d
(
x0,Tx0

)= d(A,B). (1.7)

The pair (x0,Tx0) is called a best proximity pair of T . Moreover, if the map-
ping under consideration is a self-mapping, it may be noted that under suitable
conditions, this best proximity theorem boils down to a fixed-point theorem.
Thus, best proximity pair theorems also serve as a generalization of fixed-point
theorems.

Best proximity pair theorem (see [14]) analyzes the conditions under which
the problem of minimizing the real-valued function x→ d(x,Tx) has a solution.
It is evident that

d(x,Tx)≥ d(A,B) ∀x ∈ A. (1.8)

Therefore, a nice solution to the above optimization problem will be one for
which the value d(A,B) is attained. In view of this standpoint, best proximity
pair theorems are considered in this paper to expound the conditions that will
ensure the existence of an element x0 ∈ A such that

d
(
x0,Tx0

)= d(A,B). (1.9)

The pair (x0,Tx0) is called a best proximity pair of the multifunction T . It may
be noted that, since

d(x,Tx)≥ d(Tx,A)≥ d(A,B) ∀x ∈ A, (1.10)

an element satisfying the conclusion of a best proximity pair theorem is a best
approximant x0 but the refinement of the closeness between x0 and its image Tx0

is demanded. Also, best proximity pair theorem sheds light in another direction,
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that is, it evolves as a generalization of the problem, considered by Beer and Pai
[2], Sahney and Singh [15], Singer [18], and Xu [23], of exploring the sufficient
conditions for the nonemptiness of the set

Prox(A,B) := {(a,b)∈ A×B :
∥∥(a− b)

∥∥= d(A,B)
}
. (1.11)

The elements of Prox(A,B) are called proximal points of the pair comprising
A and B. In addition to the investigation of sufficiency for the nonemptiness of
the set Prox(A,B), Pai [8, 9] and Xu [23] have expounded the uniqueness and
characterization of proximal points.

2. Preliminaries

This section covers the preliminary notions and the results that will be required
in the sequel to establish the main theorems.

Let X and Y be nonempty sets. The collection of all nonempty subsets of X is
denoted by 2X .

A multifunction or set-valued function from X to Y is defined to be a function
that assigns to each element of X a nonempty subset of Y .

If T is a multifunction from X to Y , then it is designated as T : X → 2Y , and
for every x ∈ X , Tx is called a value of T .

For B ⊆ Y , the preimage or inverse image of B under T , denoted by T−1(B), is
defined as

T−1(B) := {x ∈ X : Tx∩B 	= φ
}
. (2.1)

In what follows, it will be assumed that X and Y are topological spaces.
A multifunction T : X → 2Y is said to be upper semicontinuous if for every

closed subset C of Y , its inverse image T−1(C) is closed in X .
It is known that if T : X → 2Y is an upper semicontinuous multifunction with

compact values, then T(K) is compact in Y whenever K is a compact subset
of X .

A multifunction T : X → 2Y is said to be a compact multifunction if T(X) is
contained in a compact subset of Y .

The following result characterizes the upper semicontinuity of multifunc-
tions.

Theorem 2.1 [1]. Let X be a topological space and Y a compact, Hausdorff topo-
logical space. A multifunction T : X → 2Y is upper semicontinuous if and only if for
every net {xα} in X and every net {yα} in Y , the conditions xα→ x, yα ∈ Txα, and
yα→ y imply that y is a member of Tx.

A characterization for lower semicontinuity is furnished below.

Theorem 2.2 [1]. Let X and Y be topological spaces. A multifunction T : X → 2Y

is lower semicontinuous if and only if for every net {xα} in X with xα → x and
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y ∈ Tx, there is a subnet {xβ} of {xα} and a net {yβ} such that yβ ∈ Txβ and
yβ → y.

A multifunctionT : X → 2Y from a topological spaceX to another topological
space Y is said to be a Kakutani multifunction [6] if the following conditions are
satisfied:

(a) T is upper semicontinuous;
(b) eitherTx is a singleton for each x ∈ X (in which caseY is required to be a

Hausdorff topological vector space) or for each x ∈ X , Tx is a nonempty,
compact and convex subset of Y (in which case Y is required to be a
convex subset of a Hausdorff topological vector space).

The collection of all Kakutani multifunctions from X to Y is denoted by
�(X,Y).

A multifunction T : X → 2Y , from a topological space X to another topolog-
ical space Y , is said to be a Kakutani factorizable multifunction [6] if it can be
expressed as a composition of finitely many Kakutani multifunctions.

The collection of all Kakutani factorizable multifunctions from X to Y is de-
noted by �C(X,Y).

If T = T1T2 ···Tn is a Kakutani factorizable multifunction, then the func-
tions T1,T2, . . . ,Tn are known as the factors of T .

It may be noted that a Kakutani factorizable multifunction need not be con-
vex valued even though each of its factors is convex valued.

3. Best proximity pair theorems

The following notions will be used in the sequel.
A multifunctionT : X → 2Y from a topological spaceX to another topological

space Y is said to be a generalized Kakutani factorizable multifunction if there is a
diagram

T : X = X0
T0−−→ X1

T1−−→ ··· Tn−−→ Xn+1 = Y (3.1)

such that the following conditions are satisfied:

(1) T0 ∈�(X,X1);
(2) for each i= 1, . . . ,n+ 1;

(a) Ti is upper semicontinuous;
(b) for each x ∈ Ti−1(Xi−1), Ti(x) is a nonempty subset of Xi;
(c) either Ti is single-valued (in which case Xi+1 is required to be a

Hausdorff topological vector space) or for each x ∈ Xi, Ti(x) is a
compact convex subset of Xi+1 (in which case Xi+1 is required to be
a convex subset of a Hausdorff topological vector space).

The collection of all generalized Kakutani factorizable multifunctions is de-
noted by �′

C(X,Y).
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The multifunctions Ti are called factor multifunctions and the spaces Xi are
called factor spaces. It may be noted that if Ti are multifunctions, then the factor
spaces Xi should be necessarily convex.

A similar definition for Kakutani factorizable multifunctions can be found in
[6]. This version varies only in the nonempty conditions on the factor multi-
functions where, as in [6], it is required that for each x ∈ Xi, Ti(x) is a nonempty
subset of Xi+1. Here the nonemptiness of the ultimate composition map only is
assumed.

The proof of the following fixed-point theorem can be carried out in a similar
fashion as in Lassonde [6].

Theorem 3.1. If S is a nonempty convex subset of a Hausdorff locally convex topo-
logical vector space, then any compact generalized Kakutani factorizable multifunc-
tion T : S→ 2S (i.e., any compact multifunction in the family �′

C(S,S)) has a fixed
point.

Let A and B be any two nonempty subsets of a normed linear space E. Let Bi

for i = 1, . . . ,n be nonempty subsets of E. Also let A0, in this section, be the set
{a∈ A : d(a,bi)= d(A,Bi) for some bi ∈ Bi and for i= 1, . . . ,n}.

The following best proximity theorem [19] is also utilized in the proof of
Theorem 4.5.

Theorem 3.2. LetA be a nonempty compact convex subset and for each i= 1, . . . ,n,
let Bi be a nonempty closed convex subset of a normed linear space E such that A0

is nonempty and compact. Further, let Ti : A→ 2Bi and let i= 1, . . . ,n be Kakutani
multifunctions such that for each x ∈A0 and for each yi ∈ Ti(x), there exists x0 ∈ A
such that ‖x0− yi‖ = d(A,Bi), i= 1, . . . ,n. Then there exists x ∈ A0 such that

d
(
x,Ti(x)

)= d
(
A,Bi

)
for i= 1, . . . ,n. (3.2)

Sketch of the proof. Define P : B =∏n
i=1Bi→ 2A0 by

P
((
y1, . . . , yn

))= {x ∈A :
∥∥x− yi

∥∥= d
(
A,Bi

)∀i= 1, . . . ,n
}
. (3.3)

Let S : A0 → 2A0 be defined as S= P ◦T where T : A0 → 2B is defined by

T(x)=
n∏
i=1

Ti(x). (3.4)

It can be proved that S is a compact generalized Kakutani factorizable multi-
function [19].
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Now, by invoking Theorem 3.1 to the multifunction S, there exists x ∈ A0

such that x ∈ Sx. So, x ∈ P ◦ T(x). This means that x ∈ P(y) where y =
(y1, . . . , yn)∈ T(x). By the definition of the multifunction T , it is clear that yi ∈
Ti(x) for i= 1, . . . ,n. Also, since x ∈ P(y),

∥∥x− yi
∥∥= d

(
A,Bi

)
for i= 1, . . . ,n. (3.5)

This completes the proof of the theorem �

Example 3.3. Let E =R2 with the Euclidean norm.
Let

A := {(x,0) : 0≤ x ≤ 3
}
,

B1 := {(x, y) : y ≥ 1 and 0≤ x ≤ 2
}
,

B2 := {(x, y) : y ≥ 1 and 1≤ x ≤ 3
}
.

(3.6)

Then

A0 := {(x,0) : 1≤ x ≤ 2
}
. (3.7)

Let T1 : A→ 2B1 be defined as

T1(x,0)=


{

(v,1) : v ∈ [0,1]
}

if x 	= 0,{
(u,v) : 0≤ u≤ 2v ≥ 1

}
otherwise

(3.8)

and T2 : A→ 2B2 be defined as

T2(x,0)=


{

(v,1) : 1≤ v ≤ 3
}

if 0≤ x ≤ 1,{
(x+ 1,1)

}
otherwise.

(3.9)

It is easy to verify that all the conditions of Theorem 3.2 are satisfied and

d
(
(x,0),Ti(x,0)

)= 1= d
(
A,Bi

)
for i= 1,2,∀1≤ x ≤ 2. (3.10)

The following best proximity pair theorem, due to Sadiq Basha and Veera-
mani [13], is a consequence of Theorem 3.2.

Corollary 3.4. Let A be a nonempty, compact convex subset and let B be a
nonempty, closed and convex subset of a normed linear space E such that A0 is
nonempty and compact. If T : A→ 2B is a Kakutani multifunction such that T(A0)
⊆ B0, then there exists an element x ∈ A such that d(x,T(x))= d(A,B).
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Proof. Set n = 1 in Theorem 3.2. In this case, it easy to observe that the con-
dition T(A0) ⊆ B0 is equivalent to the condition in the hypothesis of the theo-
rem, namely for each x ∈ A0 and for each y ∈ T(x) there exists x0 ∈ A such that
‖x0 − y‖ = d(A,B). Hence, T satisfies all the conditions of Theorem 3.2 which
proves the required result. �

The next example exhibits the contrast between the best proximity pair theo-
rems and the best approximation theorems

Example 3.5. Let A = [0,1], B = [1,2], and f : A→ B defined by f (x) = x +
1. Clearly, f is a continuous function, but there is no point x ∈ A such that
d(x,Tx)= d(A,B). This shows that the condition f (A0)⊆ B0 is indispensable.

Also it is evident that f satisfies all the conditions of the best proximity pair
theorem and consequently 1 is the required best approximant.

This example, compared with Example 1.1, further illustrates the fact that
the best proximity pair theorem aims at an approximate solution which is opti-
mal.

Further, the contrast between the best proximity pair theorems and the best
approximation theorems is that the best proximity pair theorem subsumes the
fixed-point theorems for upper semicontinuous multifunctions whereas the best
approximation theorems for multifunctions do not contain so because of the
continuity assumption on the involved multifunctions.

Remark 3.6. In [13], Theorem 3.2 is proved in a more general setup where the
set A is approximately compact and T is a Kakutani factorizable multifunction.

By choosing Bi = A for each i = 1, . . . ,n in Theorem 3.2, the following com-
mon fixed-point theorem is obtained.

Corollary 3.7. Let A be a nonempty convex subset of a normed linear space E.
Suppose that Ti : A→ 2A, i = 1, . . . ,n, are Kakutani multifunctions such that for
every x ∈ A, ∩n

i=1Ti(x) 	= ∅, then there exists x ∈ A such that x ∈ Ti(x) for all
i= 1, . . . ,n.

Remark 3.8. It is remarked that the above corollary also follows from Lassonde’s
theorem [6] by observing that the map F : A→ 2A, defined by F(x)=∩n

i=1Ti(x),
is a compact Kakutani self-multifunction and hence, by Lassonde’s theorem, it
has a fixed point.

4. Applications to game theory

The entire edifice of game theory expounds with a mathematical search to strike
an optimal balance between persons generally having conflicting interests. Each
player has to select one from his fixed range of strategies so as to bring the best
outcome according to his own preferences.
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Following the pioneering work of Debreu [3], the generalized game is one
in which the choices of each player is restricted to a subset of strategies deter-
mined by the choice of other players. Mathematically, the situation is described
as follows: suppose there are n players. Let Xi be the strategy set and let fi : X =∏n

i=1Xi→R be the pay-off function for the ith player, for each i= 1, . . . ,n. Given
the strategies xi = (x1, . . . ,xi−1,xi+1, . . . ,xn) of all other players, the choice of the
ith player is restricted to the set Ai(xi)⊆ Xi. An equilibrium point in a general-
ized game is an element x ∈ X such that for each i= 1, . . . ,n, xi ∈ Ai(xi) and

max
y∈Ai(xi)

fi
(
y,xi

)= fi
(
xi,x

i
)= fi(x), (4.1)

where the following convenient notations are used.

Notation 4.1. Denote

X =
n∏
i=1

Xi, Xi =
n∏
j=1
j 	=i

Xj . (4.2)

It is written as (xi,xi) for a point x of X for which its ith coordinate is xi and
xi ∈ Xi.

The above definition of the equilibrium point is a natural extension of Nash
equilibrium point introduced in [7]. Since then, a number of generalizations
for the existence of an equilibrium point have been given in various directions.
For instance, the existence results of equilibria of generalized games were given
by Ding and Tan [4], Tan and Yuan [20], Tuclea [21], Lassonde [6], etc. For a
unified treatment on the study of the existence of equilibria of generalized games
in various settings, it is referred to Yuan [24].

Consider an economic situation where for each player two strategy setsXi and
Yi are associated. The pay-off for each player is calculated by taking into account
his choice of profitable strategy and independent strategy. So, let fi : Ŷi×X →R

be the pay-off for each player where

Ŷi = Yi×
n∏
j=1
j 	=i

Xj . (4.3)

Also, let Ai : X → 2Ŷi be the constraint correspondence for each of the players.
Moreover, the expenditure for each of the player on his travel from the two dif-
ferent strategy sets of him should also be taken into account. In this situation, we
cannot expect an equilibrium point as the strategy sets Xi and Yi may be quite
different. Indeed, a main result of this section, Theorem 4.5 furnishes sufficient
conditions to obtain a pair of n points which behaves like an equilibrium point
to the game and optimizes the travel expenditure for each of the players.

The following lemma is a key tool in the proof of Theorem 3.2.
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Lemma 4.2. Let A and B be nonempty compact subsets of a normed linear space F
and f : A×B→R be a continuous function. Given a continuous multifunction T :
A→ 2B with compact values, the function g : A→R defined by g(x)= δ(Tx,x) :=
maxz∈T(x) f (z,x) is a continuous function.

Proof. Suppose g is not continuous at some point x0. Then, there exists an ε > 0
and a sequence (xn) such that xn→ x0

but
∣∣g(xn)− g

(
x0
)∣∣ > ε for every n. (4.4)

Now, choose y0 ∈ Tx0 such that

g
(
x0
)= δ

(
Tx0,x0

)= f
(
y0,x0

)
. (4.5)

This choice is possible as f is continuous and Tx0 is compact. Since T is a lower
semicontinuous multifunction by Theorem 2.2, there exist sequences (xnk ) and
(ynk) such that ynk ∈ Txnk and ynk → y0. But,

g
(
x0
)= f

(
y0,x0

)≤ ∣∣ f (y0,x0
)− f

(
ynk ,xnk

)∣∣+ f
(
ynk ,xnk

)
. (4.6)

As ynk ∈ Txnk , f (ynk ,xnk )≤ δ(Txnk ,xnk )= g(xnk ). Therefore,

g
(
x0
)≤ ∣∣ f (y0,x0

)− f
(
ynk ,xnk

)∣∣+ g
(
xnk
)
. (4.7)

Since f is a continuous function, there exists an m1 ∈N such that for all k > m1,

(
g
(
x0
)− g

(
xnk
))≤ ε. (4.8)

Choose, for every n, zn ∈ Txn such that

g
(
xn
)= δ

(
Txn, yn

)= f
(
zn,xn

)
. (4.9)

But, the sequence (zn)⊆ Y . As Y is compact, the sequence (zn) has a convergent
sequence (znk ). Let znk → z0. The upper semi-continuity of the multifunction T
implies that z0 ∈ Tx0 (by Theorem 2.1). Now,

g
(
xnk
)= f

(
znk ,xnk

)
≤ ∣∣ f (znk ,xnk)− f

(
z0,x0

)∣∣+ f
(
z0,x0

)
≤ ∣∣ f (znk ,xnk)− f

(
z0,x0

)∣∣+ g
(
x0
)

(
since z0 ∈ Tx0, f

(
z0,x0

)≤ δ
(
Tx0,x0

)= g
(
x0
))
.

(4.10)
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Again, as f is a continuous function, there exists an m2 ∈ N such that for all
k > m2,

(
g
(
xnk
)− g

(
x0
))≤ ε. (4.11)

Choosing m=max{m1,m2}, (4.8) and (4.11) imply, for all k ≥m,

∣∣g(xnk)− g
(
x0
)∣∣≤ ε, (4.12)

eventually contradicting (4.4). �

Let X1, . . . ,Xn and Y1, . . . ,Yn be nonempty compact convex sets in a normed
linear space F. Also, let X =∏n

i=i Xi, Y =
∏n

i=1Yi, and

X0 =
{
x ∈ X : ‖x− y‖ = d(X,Y) for some y ∈ Y

}
. (4.13)

Definition 4.3. Let X be a normed linear space. A single-valued function f : X →
R is said to be quasi-concave if the set

{
x ∈ X : f (x)≥ t

}
(4.14)

is convex for each t ∈R.

Let X1, . . . ,Xn and Y1, . . . ,Yn be nonempty compact convex sets in a normed
linear space F. Also, let

X0 =
{
x ∈ X : ‖x− ŷi‖ = d

(
X,Ŷi

)
for some ŷi ∈ Ŷi

}
. (4.15)

Definition 4.4. Let fi : Ŷi×X →R for i= 1, . . . ,n be n single-valued continuous
functions. These n functions are said to satisfy condition (B) with respect to the

given compact-valued multifunctions Ai : X → 2Ŷi if for each x ∈ X0 and for each
ŷi ∈ Ŷi such that

ŷi ∈Ai(x),

δi
(
Ai(x),x

)
:= max

ẑ∈Ai(x)
fi
(
ẑ,x
)= fi

(
ŷi,x

)
, i= 1, . . . ,n, (4.16)

there exists a∈ X such that ‖a− ŷi‖ ≤ d(X,Ŷi).

Theorem 4.5. Let X1, . . . ,Xn and Y1, . . . ,Yn be nonempty compact convex sets in a
normed linear space F. For i = 1, . . . ,n, let Ŷi =

∏n
j=1, j 	=i Xj ×Yi; also let fi : Ŷi ×

X → R be continuous functions satisfying condition (B) with respect to the given
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lower semicontinuous multifunctions Ai : X → 2Ŷi , i= 1, . . . ,n in �(X,Ŷi) and are
such that for any fixed x ∈ Xi, the function ŷi → fi( ŷi,x) is quasi-concave on Ŷi

for each i= 1, . . . ,n. Then, there exist x = (x1, . . . ,xn)∈ X and ŷi = (x′1, . . . ,x
′
i−1, yi,

x′i+1, . . . ,x
′
n)∈ Ŷi, i= 1, . . . ,n such that for each i= 1, . . . ,n,

ŷi ∈Ai(x)

δi
(
Ai(x),x

)
:= max

ẑ∈Ai(x)
fi
(
ẑ,x
)= fi

(
ŷi,x

)
∥∥x− ŷi

∥∥= d
(
X,Ŷi

)
,

∥∥xi− yi
∥∥= d

(
Xi,Yi

)
.

(4.17)

Proof. For i= 1, . . . ,n, let the multifunction Ei : X → 2Ŷi be defined as follows:

Ei(x)= { ŷi ∈ Ai(x) : fi
(
ŷi,x

)= δi
(
Ai(x),x

)}
. (4.18)

It is shown that Ei satisfy all the conditions of Theorem 3.2. For this it is claimed
that Ei ∈�(X,Ŷi), for i= 1, . . . ,n.

Let i∈ {1, . . . ,n} be fixed. For any fixed x ∈ X , Ei(x) is nonempty and compact
because the function ŷi→ fi( ŷi,x) is continuous on the compact set Ai(x). Now,
it is shown that Ei(x) is convex

Let z1, z2 ∈ Ei(x). This implies

fi
(
z1,x

)≥ δi
(
Ai(x),x

)
,

fi
(
z2,x

)≥ δi
(
Ai(x),x

)
.

(4.19)

Since ŷi→ fi( ŷi,x) is quasi-concave on Ŷi,

fi
(
λz1 + (1− λ)z2,x

)≥ δi
(
Ai(x),x

)
. (4.20)

But, Ai(x) is a convex set. So,

fi
(
λz1 + (1− λ)z2,x

)≤ δi
(
Ai(x),x

)
. (4.21)

Therefore,

fi
(
λz1 + (1− λ)z2,x

)= δi
(
Ai(x),x

)
. (4.22)

Hence λz1 + (1− λ)z2 ∈ Ei(x). Therefore, Ei(x) is convex for i= 1, . . . ,n.
Next, it is shown that Ei : X → 2Ŷi is an upper semicontinuous multifunction

on Xi. Let zn ∈ X with zn→ z and wn ∈ Ei(zn) with wn→w.
The fact wn ∈ Ei(zn) implies the fact that fi(wn,zn)= δi(Ai(zn), zn). It follows

that, by Lemma 4.2, x→ δi(Ai(x),x) is a continuous function. So, δi(Ai(zn), zn)→
δi(Ai(z), z). Moreover, since fi is a continuous function fi(wn,zn)→ fi(w,z). This
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implies that fi(w,z)= δi(Ai(z), z). Hence w ∈ Ei(z). Therefore, Ei is upper semi-
continuous on X for every i = 1, . . . ,n. Hence, this establishes the claim that
Ei ∈�(X,Ŷi), for i= 1, . . . ,n.

Now, let x ∈ X0 and ŷi ∈ E(x). This implies that fi( ŷi,x) = δ(Ai(x),x), i =
1, . . . ,n. Since fi, i= 1, . . . ,n, satisfy condition (B) with respect to the multifunc-
tions Ai, there exists a∈ X such that ‖a− ŷi‖ = d(X,Ŷi). Hence, Ei satisfy all the
conditions of Theorem 3.2. Therefore, there exists x ∈ X such that

d
(
x,Eix

)= d
(
X,Ŷi

)
. (4.23)

Since Eix is compact, there exists ŷi ∈ Eix such that

∥∥x− ŷi
∥∥= d

(
X,Ŷi

)
for i= 1, . . . ,n. (4.24)

Equipping the spaces X and Ŷi with product norm, the following result can be
inferred:

d
(
X,Ŷi

)= inf
{∥∥x1− x′1

∥∥+ ···+
∥∥xi− yi

∥∥+ ···+
∥∥xn− x′n

∥∥ :
(
x1, . . . ,xn

)∈ X

and
(
x′1, . . . , yi, . . . ,x

′
n

)∈ Ŷi
}

≤ inf
{∥∥xi− yi

∥∥ : xi ∈ Xi and yi ∈ Yi
}

= d
(
Xi,Yi

)
.

(4.25)

So,

d
(
Xi,Yi

)≤ ∥∥xi− yi
∥∥≤ ∥∥x− ŷi

∥∥= d
(
X,Ŷi

)≤ d
(
Xi,Yi

)
. (4.26)

Hence, ‖xi− yi‖ = d(Xi,Yi). This establishes the theorem. �

Corollary 4.6. Let X1, . . . ,Xn be nonempty compact convex sets in a normed lin-
ear space F. Also, let fi : X ×X → R be continuous functions, X =∏n

i=1Xi, such
that for any fixed x ∈ X , the function y → fi(y,x) is quasi-concave on X for each
i= 1, . . . ,n. Then, there exists x ∈ X such that for each i= 1, . . . ,n,

max
z∈X

fi(z,x)= fi(x,x). (4.27)

Proof. Choose Yi = Xi and Ai : X → 2X as Ai(x) = X for all i = 1, . . . ,n. As
the single-valued continuous functions satisfy condition (B) automatically, the
above theorem ensures the existence of x ∈ X and ŷi ∈ X , i= 1, . . . ,n, such that
for each i= 1, . . . ,n,

max
ẑ∈X

fi
(
ẑ,x
)= fi

(
ŷi,x

)
,

∥∥x− ŷi
∥∥= d(X,X)= 0,

∥∥xi− yi
∥∥= d

(
Xi,Xi

)= 0.
(4.28)

Therefore, ŷi = x for all i= 1, . . . ,n and this completes the proof. �
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A particular case of the above corollary is the following.

Corollary 4.7. Let X be a nonempty compact convex subset of a normed linear
space F. Let f : X ×X →R be a continuous function such that for each fixed x ∈ X ,
the function y → f (y,x) is quasi-concave. Then, there exists a point x ∈ X such
that

max
z∈X

f (z,x)= f (x,x). (4.29)

Remark 4.8. In the above corollary, and hence in the main theorem, the quasi-
concavity condition on f cannot be dropped.

Let X be any infinite compact convex subset of a normed linear space F. Let
f : X ×X → R be defined as f ((x, y)) = ‖x− y‖. Then, there cannot exist any
x ∈ X such that

max
z∈X

f (z,x)= f (x,x). (4.30)
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