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This paper is concerned with existence results for inequality problems of type
F0(u;v) + Ψ′(u;v) ≥ 0, for all v ∈ X , where X is a Banach space, F : X → R is
locally Lipschitz, and Ψ : X → (−∞+∞] is proper, convex, and lower semicon-
tinuous. Here F0 stands for the generalized directional derivative of F and Ψ′

denotes the directional derivative of Ψ. The applications we consider focus on
the variational-hemivariational inequalities involving the p-Laplacian operator.

1. Introduction

The paper deals with nonlinear inequality problems of type

F0(u;v−u) +h(v)−h(u)≥ 0, ∀v ∈ C, (1.1)

where F0 stands for the generalized directional derivative of a locally Lipschitz
functional F (in the sense of Clarke [5]), h is a convex, lower semicontinuous
(in short, l.s.c.), and proper function, and C is a nonempty, closed, and convex
subset of a Banach space X . It is clear that in problem (1.1) we can put h+ IC
in place of h, where IC denotes the indicator function of the set C, to give the
formulation with v arbitrary in X . However, we keep the statement (1.1) for
allowing various possible choices separately on the data h and C.

The type of problem stated in (1.1) fits in the framework of the nonsmooth
critical point theory developed by Motreanu and Panagiotopoulos [9], which is
constructed for the nonsmooth functionals having the form

Φ=Ψ+F (1.2)

with Ψ convex, l.s.c., and proper, and F locally Lipschitz. Namely, a solution of
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(1.1) means, in fact, a critical point of the associated nonsmooth functional (1.2)
with Ψ= h+ IC.

The existence results in the present paper extend different theorems in the
smooth and nonsmooth variational analyses (see, for comparison, Ambrosetti
and Rabinowitz [2], Chang [4], Dincă et al. [8], Motreanu and Panagiotopoulos
[9], Rabinowitz [10], and Szulkin [11]). In this respect, we solve problems of
type

F0(u;v) +Ψ′(u;v)≥ 0, ∀v ∈ X, (1.3)

where Ψ′ stands for the directional derivative of a convex, proper, l.s.c. func-
tional Ψ. Consequently, we are able to handle the abstract hemivariational in-
equality problem

F0(u;v−u) +
〈
dϕ(u),v−u

〉≥ 0, ∀v ∈ C, (1.4)

where ϕ is a convex, Gâteaux differentiable functional and dϕ is its differential.
In particular, this contains the differential inclusion problem

dϕ(u)∈ ∂(−F)(u) (1.5)

which we considered in our previous paper [8].
The rest of the paper is organized as follows. In Section 2, we briefly recall sev-

eral elements of nonsmooth critical point theory developed by Motreanu and
Panagiotopoulos [9]. In Section 3, we study some general inequality problems
in relation with the nonsmooth critical point theory. Section 4 presents applica-
tions for different discontinuous boundary value problems with p-Laplacian.

2. Notions and preliminary results

Let X be a real Banach space and X∗ its dual. The generalized directional deriv-
ative of a locally Lipschitz function F : X →R at u∈ X in the direction v ∈ X is
defined by

F0(u;v)= limsup
w→u,t↘0

F(w+ tv)−F(w)
t

. (2.1)

The generalized gradient (in the sense of Clarke [5]) of F at u∈ X is defined
to be the subset of X∗ given by

∂F(u)= {η ∈ X∗ : F0(u;v)≥ 〈η,v〉, ∀v ∈ X
}
, (2.2)

where 〈·,·〉 stands for the duality pairing between X∗ and X .
Let Ψ : X → (−∞,+∞] be a proper (i.e., D(Ψ) := {u∈ X : Ψ(u) < +∞} �=∅),

convex, and l.s.c. function and let F : X →R be locally Lipschitz.
We define the functional Φ : X → (−∞,+∞] by Φ=Ψ+F.
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Definition 2.1 Motreanu and Panagiotopoulos [9]. An element u ∈ X is called
critical point of the functional Φ if this inequality holds

F0(u;v−u) +Ψ(v)−Ψ(u)≥ 0, ∀v ∈ X. (2.3)

Definition 2.2 Motreanu and Panagiotopoulos [9]. The functional Φ is said to
satisfy the Palais-Smale condition if every sequence {un} ⊂ X for which Φ(un) is
bounded and

F0(un;v−un
)

+Ψ(v)−Ψ
(
un
)≥−εn∥∥v−un

∥∥, ∀v ∈ X, (2.4)

for a sequence {εn} ⊂ R+ with εn → 0, contains a strongly convergent subse-
quence in X .

For the proof of the next theorem, we refer the reader to [8, Proposition 2.1]
and [9, Corollary 3.2] (also see [8, Theorem 2.2]).

Theorem 2.3. (i) If u∈ X is a local minimum for Φ, then u is a critical point of Φ.
(ii) If Φ satisfies the Palais-Smale condition and there exist a number ρ > 0 and

a point e ∈ X with ‖e‖ > ρ such that

inf
‖v‖=ρ

Φ(v) >Φ(0)≥Φ(e), (2.5)

then Φ has a nontrivial critical point.

Remark 2.4. Definitions 2.1 and 2.2 recover and unify the nonsmooth critical
point theories (and a fortiori the smooth critical point theory, see, e.g., Am-
brosetti and Rabinowitz [2] and Rabinowitz [10]) due to Chang [4] and Szulkin
[11]. Precisely, if Ψ= 0, Definitions 2.1 and 2.2 reduce to the corresponding defi-
nitions of Chang [4], while if F ∈ C1(X,R), then Definitions 2.1 and 2.2 coincide
with those in Szulkin [11].

3. Critical points as solutions of inequality problems

Throughout this section, (X,‖ · ‖X) is a real reflexive Banach space, compactly
embedded in the real Banach space (Z,‖ · ‖Z). Let � : Z → R be a locally Lips-
chitz function and let Ψ : X → (−∞,+∞] be convex, l.s.c., and proper.

We consider the inequality problem:

Find u∈D(Ψ) such that
(
�|X

)0
(u;v) +Ψ′(u;v)≥ 0, ∀v ∈ X, (3.1)

where (�|X)0 denotes the generalized directional derivative of the restriction
�|X while Ψ′(u;v) is the directional derivative of the convex function Ψ at u in
the direction v (which is known to exist). Note that if the Gâteaux differential
dΨ(u) of Ψ at u∈D(Ψ) exists, then 〈dΨ(u),v〉 =Ψ′(u;v), for all v ∈ X.



604 Existence results for inequality problems

Proposition 3.1. Each solution of problem (3.1) solves the problem:

Find u∈D(Ψ) such that �0(u;v) +Ψ′(u;v)≥ 0, ∀v ∈ X. (3.2)

If, in addition to our assumptions, X is densely embedded in Z, then problems (3.1)
and (3.2) are equivalent.

Proof. For u,v ∈ X , the inequality below holds(
�|X

)0
(u;v)≤�0(u;v). (3.3)

This becomes an equality if X is continuously and densely embedded in Z (see
[5, pages 46–47] and [9, pages 10–12]). �

Our approach for studying problem (3.1) is variational and relies on the use
of the functional

Φ=Ψ+ �|X : X −→ (−∞,+∞] (3.4)

which is clearly of the form required in the previous section with F =�|X .
The next result points out the relationship between the critical points of the

functional Φ in (3.4) and the solutions of problem (3.1).

Proposition 3.2. (i) If u∈ X is a critical point of the functional Φ in (3.4), that
is, (

�|X
)0

(u;v−u) +Ψ(v)−Ψ(u)≥ 0, ∀v ∈ X, (3.5)

then u is a solution of problem (3.1).
(ii) Conversely, assume that u∈ X is a solution of problem (3.1). If either Ψ is

Gâteaux differentiable at u or Ψ is continuous at u, then u is a critical point of Φ,
that is, relation (3.5) holds.

Proof. (i) As Ψ is proper, (3.5) obviously implies that u∈D(Ψ). For an arbitrary
w ∈ X , we set v = u+ tw, t > 0, in (3.5). Dividing by t and then letting t→ 0+,
we arrive at the conclusion that u solves problem (3.1).

(ii) Let u∈D(Ψ) be a solution of problem (3.1). If Ψ is Gâteaux differentiable
at u, then

Ψ(v)−Ψ(u)≥ 〈dΨ(u),v−u
〉=Ψ′(u;v−u), ∀v ∈ X (3.6)

which leads to (3.5).
If Ψ is continuous at u, then a standard result of convex analysis (see Barbu

and Precupanu [3, page 106]) allows to write

Ψ′(u;v)=max
{〈
x∗,v

〉
: x∗ ∈ ∂Ψ(u)

}
, ∀v ∈ X. (3.7)

Using the definition of the subdifferential ∂Ψ(u), we obtain (3.5). �
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Remark 3.3. In view of Proposition 3.2(i), each result stating the existence of
critical points for Φ in (3.4) asserts a fortiori existence of solutions to problem
(3.1).

Theorem 3.4. If Φ is coercive on X , that is,

Φ(u)−→ +∞ as ‖u‖X −→ +∞, (3.8)

then Φ has a critical point.

Proof. The compact embedding of X into Z implies that �|X is weakly con-
tinuous. We infer that Φ is sequentially weakly l.s.c. on X . Then, by standard
theory, Φ is bounded from below and attains its infimum at some u∈ X . From
Theorem 2.3(i), u is a critical point of Φ. �

Towards the application of Theorem 2.3(ii) to the functional Φ, we have to
know when Φ satisfies the Palais-Smale condition. The following lemma pro-
vides a useful sufficient condition that improves the usual results based on the
celebrated hypothesis (p5) in [2] or (p4) in [10].

Lemma 3.5. Assume, in addition, that Ψ and �, entering the expression of Φ in
(3.4), satisfy the following hypotheses:

(H1) D(Ψ) is a cone and there exist constants a0,a1,b0,b1 ≥ 0, α > 0, and σ ≥ 1
such that

Ψ(u)−αΨ′(u;u)≥ a0‖u‖σX − a1, ∀u∈D(Ψ), (3.9)

�(u)−α
(
�|X

)0
(u;u)≥−b0‖u‖σX − b1, ∀u∈D(Ψ), (3.10)

a0 > b0 +α if σ = 1, a0 > b0 if σ > 1; (3.11)

(H2) the following condition of (S+) type is satisfied: if {un} is a sequence in D(Ψ)
provided un → u weakly in X and limsupn→∞(−Ψ′(un;u− un)) ≤ 0, then
un→ u strongly in X .

Then the functional Φ satisfies the Palais-Smale condition in the sense of
Definition 2.2.

Proof. Let {un} be a sequence in X for which there is a constant M > 0 with

∣∣Φ(un)∣∣≤M, ∀n≥ 1, (3.12)

and inequality (2.4) holds for F =�|X and a sequence εn → 0+. By (3.12), each
un is in D(Ψ). For t > 0, set v = (1 + t)un in (2.4) with F =�|X . Dividing by t
and then letting t ↘ 0, one obtains that

Ψ′
(
un;un

)
+
(
�|X

)0(
un;un

)≥−εn∥∥un∥∥X , ∀n≥ 1. (3.13)
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Inequalities (3.12) and (3.13) ensure that for n sufficiently large, one has

M +α
∥∥un∥∥X ≥Ψ

(
un
)

+ �
(
un
)

+αεn
∥∥un∥∥X

≥Ψ
(
un
)−αΨ′

(
un;un

)
+
[
�
(
un
)−α

(
�|X

)0(
un;un

)]
.

(3.14)

Using (3.9) and (3.10), we find that

M +α
∥∥un∥∥X ≥ (a0− b0

)∥∥un∥∥σX − a1− b1. (3.15)

Then (3.11) and (3.15) show that {un} is bounded in X . By the compactness of
the embedding of X into Z, the sequence {un} contains a subsequence, again
denoted by {un} such that

un −→ u weakly in X, (3.16)

un −→ u strongly in Z, (3.17)

for some u∈ X . Now put v = un + t(u−un), t > 0, in (2.4) with F =�|X . Similar
to (3.13), we derive that

Ψ′
(
un;u−un

)
+
(
�|X

)0(
un;u−un

)≥−εn∥∥u−un
∥∥
X , ∀n≥ 1. (3.18)

This implies

Ψ′
(
un;u−un

)
+ �0(un;u−un

)≥−εn∥∥u−un
∥∥
X , ∀n≥ 1. (3.19)

As {un} is bounded in X , we infer from (3.17) and the upper semicontinuity of
�0 that

liminf
n→∞ Ψ′

(
un;u−un

)≥ 0. (3.20)

Taking into account (3.16) and (3.20), assumption (H2) completes the proof.
�

Remark 3.6. IfΨ′(u;·) is homogeneous, for all u∈D(Ψ), then (H2) becomes the
usual form of the (S+) condition: if {un} is a sequence in D(Ψ) provided un→ u
weakly in X and limsupn→∞Ψ

′(un;un−u)≤ 0, then un→ u strongly in X .

We can now state the following result.

Theorem 3.7. Let Φ be defined in (3.4) and assume Lemma 3.5(H1) and (H2)
together with the following hypotheses.
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(H3) There exists an element u∈D(Ψ) such that

a1 + b1 ≤
(
a0− b0

)‖u‖σX , (3.21)

Φ(u) < 0. (3.22)

(H4) There exists a constant ρ > 0 such that

inf
‖v‖X=ρ

Φ(v) >Φ(0). (3.23)

Then Φ has a nontrivial critical point u ∈ X . In particular, problem (3.1) has a
nontrivial solution.

Proof. We apply Theorem 2.3(ii) to the functional Φ in (3.4). Lemma 3.5 guar-
antees that Φ satisfies the Palais-Smale condition. It remains to check that Φ
verifies condition (2.5) with ‖e‖X > ρ. To this end, we prove that one can choose
e = tu (with u entering (H3)) if t > 0 is sufficiently large.

First, note that u �= 0. Indeed, from (3.9), (3.10), and (3.21), we have

Φ(u)−α
[
Ψ′(u;u) +

(
�|X

)0
(u;u)

]≥ 0, (3.24)

which leads to a contradiction with (3.22) if u= 0.
We observe that, due to the fact that u ∈ D(Ψ) and since D(Ψ) is a cone,

the convex function s �→Ψ(su) is locally Lipschitz on (0,+∞). A straightforward
computation shows that

∂s
(
s−1/αΦ(su)

)= ∂s
(
s−1/αΨ(su) + s−1/α�|X(su)

)
⊂− 1

α
s−1/α−1Ψ(su) + s−1/α∂s

(
Ψ(su)

)
+
(
− 1
α
s−1/α−1�(su) + s−1/α〈∂(�|X)(su),u

〉)
, ∀s > 0,

(3.25)

where the notation ∂s stands for the generalized gradient with respect to s. For
an arbitrary t > 1, Lebourg’s mean value theorem yields some τ = τ(t) ∈ (1, t)
such that

t−1/αΦ(tu)−Φ(u)= ξ(t− 1), (3.26)

where ξ ∈ ∂s(s−1/αΦ(su))|s=τ . This implies

t−1/αΦ(tu)−Φ(u)∈ 1
α

(t− 1)τ−1/α−1[(ατ∂s(Ψ(su)
)|s=τ −Ψ(τu)

)
+
(−�(τu) +α

〈
∂
(
�|X

)
(τu),τu

〉)]
.

(3.27)
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Then, taking into account the convexity of s �→Ψ(su), the regularity property of
a convex function (see Clarke [5, pages 39–40]) and relations (3.9) and (3.10),
we get that

Φ(tu)≤ t1/αΦ(u) +
1
α
t1/α(t− 1)τ−1/α−1[(αΨ′(τu;τu)−Ψ(τu)

)
+
(−�(τu) +α

(
�|X

)0
(τu;τu)

)]
≤ t1/αΦ(u) +

1
α
t1/α(t− 1)τ−1/α−1[− (a0− b0

)
τσ‖u‖σX + a1 + b1

]
, ∀t > 1.

(3.28)
By (3.21) and because τ > 1, we derive that

Φ(tu)≤ t1/αΦ(u), ∀t > 1. (3.29)

Then (3.29) and assumption (3.22) imply

lim
t→+∞Φ(tu)=−∞. (3.30)

Now, by means of (3.30), we can choose t > 0 sufficiently large to satisfy

t‖u‖X > ρ, Φ(tu)≤Φ(0), (3.31)

for ρ > 0 entering (H4). If we compare (3.23) and (3.31), it is seen that the re-
quirement in (2.5) is achieved for e = tu. Theorem 2.3(ii) assures that Φ in (3.4)
has a nontrivial critical point u∈ X . Furthermore, Remark 3.3 shows that u is a
(nontrivial) solution of problem (3.1). The proof of Theorem 3.7 is thus com-
plete. �

In the final part of this section, we are concerned with the case when

Ψ=ΨC := ϕ+ IC, (3.32)

where C is a nonempty, closed, and convex subset of X , IC denotes the indicator
function of C, and ϕ : X →R is a convex, Gâteaux differentiable functional. Note
that ΨC is convex, l.s.c., and proper and D(ΨC)= C. Therefore, the functional

Φ=ΨC + �|X , (3.33)

with � as at the beginning of this section, has the form required in (3.4).
Consider the following problem of variational-hemivariational inequality

type:

Find u∈ C such that
(
�|X

)0
(u;v−u) +

〈
dϕ(u),v−u

〉≥ 0, ∀v ∈ C.
(3.34)



George Dincă et al. 609

Remark 3.8. (i) Taking into account that, for u∈ C,

Ψ′C(u;v)=

〈
dϕ(u),v

〉
if u+ tv ∈ C for some t ∈ (0,1],

+∞ otherwise,
(3.35)

a straightforward computation shows that problem (3.34) is equivalent to the
following problem of type (3.1):

Find u∈D
(
ΨC
)= C such that

(
�|X

)0
(u;v) +Ψ′C(u;v)≥ 0, ∀v ∈ X. (3.36)

(ii) If C is a nonempty, closed, and convex cone, then each solution of prob-
lem (3.34) solves also the problem:

Find u∈ C such that
(
�|X

)0
(u;v) +

〈
dϕ(u),v

〉≥ 0, ∀v ∈ C. (3.37)

Proposition 3.9. If u∈ X is a critical point of Φ in (3.33) and (3.32), then u is a
solution of problem (3.34).

Proof. Viewing Remark 3.8(i), the conclusion follows from Proposition 3.2(i).
�

Theorem 3.10. If the functional Φ in (3.33) and (3.32) is coercive on X , then
problem (3.34) has a solution.

Proof. It is a direct consequence of Theorem 3.4 and Proposition 3.9. �

Theorem 3.11. For the defining Φ data entering (3.33) and (3.32), we assume the
following.

(H1′) The set C is a nonempty, closed, and convex cone in X and there exist con-
stants a0,a1,b0,b1 ≥ 0, α > 0, and σ ≥ 1 such that one has (3.11),

ϕ(u)−α
〈
dϕ(u),u

〉≥ a0‖u‖σX − a1, ∀u∈ C, (3.38)

�(u)−α
(
�|X

)0
(u;u)≥−b0‖u‖σX − b1, ∀u∈ C. (3.39)

(H2′) The following condition of (S+) type is satisfied: if {un} is a sequence in C
provided un → u weakly in X and limsupn→∞〈dϕ(un),un − u〉 ≤ 0, then
un→ u strongly in X .

(H3′) There exists an element u∈ C such that (3.21) holds with a0, a1, b0, and b1

from (H1′) together with

�(u) +ϕ(u) < 0. (3.40)

(H4′) There exists a constant ρ > 0 such that

inf
‖v‖X=ρ
v∈C

(
�(v) +ϕ(v)

)
> �(0) +ϕ(0). (3.41)
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Then Φ in (3.33) and (3.32) has a nontrivial critical point u ∈ C. In particular,
problem (3.34) has a nontrivial solution.

Proof. Note that assumptions (H1′), (H2′), (H3′), and (H4′) are just (H1), (H2),
(H3), and (H4), respectively, in the case where D(Ψ)= C is a closed convex cone
and Ψ is given by (3.32). Thus it suffices to apply Theorem 3.7 and Proposition
3.9 to the functional Φ in (3.33) and (3.32). �

Remark 3.12. It is worth pointing out that if we take C = X , then problem (3.34)
becomes

Find u∈ X, such that dϕ(u)∈ ∂
(−�|X

)
(u). (3.42)

Thus, [8, Theorems 3.2 and 3.4] are immediate consequences of Theorems 3.10
and 3.11, respectively.

4. Applications to nonsmooth boundary value problems

In order to illustrate how the abstract results of Section 3 can be applied, we
consider a concrete problem of type (3.34). To this end, let Ω be a bounded
domain in RN , N ≥ 1, with Lipschitz-continuous boundary Γ= ∂Ω and let ω ⊂
Ω be a measurable set. Given p ∈ (1,∞), the Sobolev space W1,p(Ω) is endowed
with its usual norm (see [1, page 44]).

We denote

W0 =
{
v ∈W1,p(Ω) : v|Γ = 0

}
,

W1 =
{
v ∈W1,p(Ω) :

∫
Ω
v = 0

}
,

W2 =
{
v ∈W1 : v|Γ = constant

}
.

(4.1)

In the sequel, W will stand for any of the above (closed) subspaces W0, W1, and
W2 of W1,p(Ω). By the Poincaré-Wirtinger inequality, the functional

W � v �−→ ‖v‖1,p :=
(∫

Ω
|∇v|p

)1/p

(4.2)

is a norm on W , equivalent to the induced norm from W1,p(Ω). The dual space
W∗ is considered endowed with the dual norm of ‖ · ‖1,p.

Now, we define the p-Laplacian operator −∆p : W →W∗ by

〈−∆pu,v
〉= ∫

Ω
|∇u|p−2∇u∇v, ∀u,v ∈W. (4.3)

Arguments similar to those in [7] show that the convex functional ϕ : W → R

defined by

ϕ(u)= 1
p
‖u‖p1,p, ∀u∈W, (4.4)
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is continuously differentiable on W and its differential is −∆p, that is,

〈
dϕ(u),v

〉= 〈−∆pu,v
〉
, ∀u,v ∈W. (4.5)

Moreover, as dϕ is the duality mapping on W , corresponding to the gauge func-
tion t �→ tp−1 and because W is uniformly convex, dϕ satisfies condition (S+)
(see Remark 3.6).

If p∗ stands for the Sobolev critical exponent, that is,

p∗ =


Np

N − p
if p < N,

+∞ if p ≥N,
(4.6)

then, for any fixed q ∈ (1, p∗), by the Rellich-Kondrachov theorem, the embed-
ding W↩Lq(Ω) is compact (the space Lq(Ω) is understood with its usual norm
‖ · ‖0,q).

The results in Section 3 will be applied by taking X =W , Z = Lq(Ω), and ϕ
defined in (4.4).

Further, to complete the setting, let a function g : Ω×R→ R be measurable
and satisfy the growth condition

∣∣g(x,s)
∣∣≤ c1|s|q−1 + c2 for a.e. x ∈Ω, ∀s∈R, (4.7)

where c1, c2 ≥ 0 are constants. For a.e. x ∈Ω and all s∈R, we put

g(x,s)= lim
δ→0+

ess inf
|t−s|<δ

g(x, t),

g(x,s)= lim
δ→0+

esssup
|t−s|<δ

g(x, t). (4.8)

The following condition will be invoked below:

g and g are N-measurable (4.9)

(recall that a function h : Ω×R→R is called N-measurable if h(·,u(·)) : Ω→R

is measurable whenever u : Ω→R is measurable).
By (4.7), the primitive G : Ω×R→R of function g:

G(x,s)=
∫ s

0
g(x, t)dt for a.e. x ∈Ω, ∀s∈R, (4.10)

satisfies

∣∣G(x,s)
∣∣≤ c1

q
|s|q + c2|s| for a.e. x ∈Ω, ∀s∈R. (4.11)
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Taking into account (4.11), we define the functional � : Lq(Ω)→R by putting

�(u)=−
∫
Ω
G(x,u), ∀u∈ Lq(Ω). (4.12)

It is known (see, e.g., Chang [4]) that � is Lipschitz continuous on the bounded
subsets of Lq(Ω). At this stage, we introduce the closed convex cone K in W :

K = {u∈W : u(x)≥ 0 for a.e. x ∈ ω
}

(4.13)

and we formulate the problem:

Find u∈ K such that
(
�|W

)0
(u;v−u) +

〈−∆pu,v−u
〉≥ 0, ∀v ∈ K.

(4.14)

Thus, the functional framework in Section 3 is now accomplished by taking �=
� andC = K . Clearly, problem (4.14) is of the same type as (3.34). Before passing
on to obtaining existence results for problem (4.14), it should be noticed that the
nonsmooth functional Φ=ΦK : W → (−∞,+∞], defined by

ΦK =�|W +ϕ+ IK (4.15)

with ϕ in (4.4), IK the indicator function of the cone K in (4.13), has the form
required in (3.33) and (3.32).

We also need to invoke the following constant, depending on the cone K in
the Banach space W :

λ1 = λ1,K := inf

{‖v‖p1,p
‖v‖p0,p

: v ∈ K \ {0}
}
. (4.16)

Note that

‖v‖0,p ≤ λ
−1/p
1 ‖v‖1,p, ∀v ∈ K. (4.17)

Theorem 4.1. Assume (4.7) together with

(i) limsups→−∞ pG(x,s)/|s|p < λ1 uniformly for a.e. x ∈Ω \ω;
(ii) limsups→+∞ pG(x,s)/sp < λ1 uniformly for a.e. x ∈Ω.

Then problem (4.14) has a solution.

Proof. By Theorem 3.10, it suffices to show that the functional ΦK in (4.15) is
coercive on W .

From (i) and (ii), there are numbers ε ∈ (0,λ1) and s0 > 0 such that

G(x,s)≤ λ1− ε

p
|s|p for a.e. x ∈Ω \ω, ∀s <−s0, (4.18)

G(x,s)≤ λ1− ε

p
sp for a.e. x ∈Ω, ∀s > s0. (4.19)



George Dincă et al. 613

Using (4.11), we can find a positive constant k = k(s0) with∣∣G(x,s)
∣∣≤ k for a.e. x ∈Ω, ∀s∈ [− s0, s0

]
. (4.20)

For u∈ K , we put

Ω− := {x ∈Ω : u < 0}, Ω+ :=Ω \Ω−. (4.21)

Notice that by (4.13) we have Ω− ⊂Ω \ω. Then by (4.18) and (4.20), it follows
that ∫

Ω−
G(x,u)=

∫
[u<−s0]

G(x,u) +
∫

[−s0≤u<0]
G(x,u)

≤ λ1− ε

p

∫
Ω−
|u|p + k|Ω|.

(4.22)

On the other hand, by (4.19) and (4.20), one sees that∫
Ω+

G(x,u)=
∫

[u>s0]
G(x,u) +

∫
[0≤u≤s0]

G(x,u)

≤ λ1− ε

p

∫
Ω+

|u|p + k|Ω|.
(4.23)

Combining (4.22) and (4.23), the following estimate holds:∫
Ω
G(x,u)≤ 2k|Ω|+

λ1− ε

p
‖u‖p0,p, ∀u∈ K. (4.24)

Then, from (4.15), it follows that

ΦK (u)= 1
p
‖u‖p1,p−

∫
Ω
G(x,u)≥ 1

p
‖u‖p1,p−

λ1− ε

p
‖u‖p0,p− 2k|Ω|, ∀u∈W.

(4.25)
By (4.17), we infer

ΦK (u)≥ ε

pλ1
‖u‖p1,p− 2k|Ω|, ∀u∈W, (4.26)

showing that

lim
‖u‖1,p→∞

ΦK (u)= +∞. (4.27)
�

Theorem 4.2. Assume (4.7), (4.9), and int(Ω \ω) �= ∅ if W =W1 or W =W2,
together with

(i) limsups↗0 pG(x,s)/|s|p < λ1 uniformly for a.e. x ∈Ω \ω;
(ii) limsups↘0 pG(x,s)/sp < λ1 uniformly for a.e. x ∈Ω;
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and there are numbers θ > p and s0 > 0 such that

(iii) 0 < θG(x,s)≤ sg(x,s) for a.e. x ∈Ω \ω,∀s≤−s0,
(iv) 0 < θG(x,s)≤ sg(x,s) for a.e. x ∈Ω,∀s≥ s0.

Then problem (4.14) has a nontrivial solution.

Proof. We will apply Theorem 3.11. Without loss of generality, we may suppose
in (4.7) that q ∈ (p, p∗). For u ∈ K (see (4.13)), the sets Ω− and Ω+ will be
considered as being defined by (4.21), and recall that Ω− ⊂Ω \ω.

First we check (H4′). By (i) and (ii), one can find numbers ε ∈ (0,λ1) and
δ0 > 0 such that

G(x,s)≤ λ1− ε

p
|s|p for a.e. x ∈Ω \ω, ∀s∈ [− δ0,0

)
, (4.28)

G(x,s)≤ λ1− ε

p
|s|p for a.e. x ∈Ω, ∀s∈ (0,δ0

]
. (4.29)

From (4.11), there exists a constant c = c(δ0) with

G(x,s)≤ c|s|q for a.e. x ∈Ω, ∀|s| > δ0. (4.30)

For an arbitrary u∈ K , by (4.28) and (4.30) we have∫
Ω−

G(x,u)=
∫
Ω−∩[−δ0≤u]

G(x,u) +
∫

[u<−δ0]
G(x,u)

≤ λ1− ε

p

∫
Ω−
|u|p + c

∫
Ω−
|u|q.

(4.31)

Similarly, (4.29) and (4.30) imply∫
Ω+

G(x,u)=
∫
Ω+∩[u≤δ0]

G(x,u) +
∫

[u>δ0]
G(x,u)

≤ λ1− ε

p

∫
Ω+

|u|p + c
∫
Ω+

|u|q.
(4.32)

Then, combining (4.31) and (4.32), we infer∫
Ω
G(x,u)≤ λ1− ε

p
‖u‖p0,p + c‖u‖q0,q. (4.33)

Taking into account the continuity of the embedding W↩ Lq(Ω), from (4.33)
and (4.17) we get, for a constant c̃, the relations

�(u) +ϕ(u)=−
∫
Ω
G(x,u) +

1
p
‖u‖p1,p ≥

ε

λ1p
‖u‖p1,p− c̃‖u‖q1,p > 0

=�(0) +ϕ(0)
(4.34)
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provided u ∈ K and ‖u‖1,p = ρ > 0 is sufficiently small. Therefore, Theorem
3.11(H4′) is satisfied.

To check hypothesis (H1′), we proceed as follows. From (iv), we have

G(x,s)
s

≤ 1
θ
g(x,s) for a.e. x ∈Ω, ∀s≥ s0. (4.35)

For a.e. x ∈ Ω, the primitive G(x,s) as a function of s being continuous (even
locally Lipschitz), (4.35) implies

G(x,s)
s

≤ 1
θ
g(x,s) for a.e. x ∈Ω, ∀s > s0. (4.36)

Similarly, by (iii), we get

G(x,s)≤ 1
θ
sg(x,s) for a.e. x ∈Ω \ω, ∀s <−s0. (4.37)

Recall that under the assumptions (4.7) and (4.9), for u∈ Lq(Ω), the following
inclusion holds (see [4, Theorem 2.1]):

∂(−�)(u)⊂ [g(x,u), g(x,u)
]

for a.e. x ∈Ω. (4.38)

Then, from (4.20), (4.36), (4.37), (4.38), and (4.7), for an arbitrary u ∈ K , we
obtain

−�(u)=
∫
Ω
G(x,u)=

∫
[u<−s0]

G(x,u) +
∫

[u>s0]
G(x,u) +

∫
[−s0≤u≤s0]

G(x,u)

≤ 1
θ

[∫
[u<−s0]

ug(x,u) +
∫

[u>s0]
ug(x,u)

]
+ k|Ω|

≤ 1
θ

[∫
[u<−s0]

uw+
∫

[u>s0]
uw
]

+ k|Ω|

= 1
θ

[∫
Ω
uw−

∫
[|u|≤s0]

uw
]

+ k|Ω|

≤ 1
θ

∫
Ω
uw+ k0, ∀w ∈ ∂(−�)(u),

(4.39)

for a constant k0 > 0. As ∂(−�)(u)=−∂�(u), it follows that

�(u)≥ 1
θ

∫
Ω
uw− k0, ∀w ∈ ∂�(u). (4.40)
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Taking the supremum over w ∈ ∂�(u) in (4.40), we deduce

�(u)− 1
θ

(
�|W

)0
(u;u)≥−k0, ∀u∈ K. (4.41)

By virtue of (4.4) and (4.5), one has

ϕ(u)− 1
θ

〈
dϕ(u),u

〉= ( 1
p
− 1
θ

)
‖u‖p1,p, ∀u∈W. (4.42)

From (4.41) and (4.42), it turns out that Theorem 3.11(H1′) is fulfilled with

α= 1
θ
, a0 = 1

p
− 1
θ
, a1 = 0, σ = p, b0 = 0, b1 = k0.

(4.43)

To check condition Theorem 3.11(H3′), we first note that, on the basis of (i), (ii)
and arguing as in the proof of [7, Proposition 7], one has

G(x, t)≥ γ1(x)tθ for a.e. x ∈Ω, ∀t > s0, (4.44)

G(x, t)≥ γ2(x)|t|θ for a.e. x ∈Ω \ω, ∀t <−s0, (4.45)

where γ1,γ2 ∈ L∞(Ω), γ1(x) > 0 for a.e. x ∈Ω, and γ2(x) > 0 for a.e. x ∈Ω \ω.
Since, by assumption, int(Ω \ω) �= ∅ if W =W1 or W =W2, there is some u∈
K such that |Ω(u)| > 0, where Ω(u) = {x ∈Ω : u > s0}. For t ≥ 1, using (4.20),
(4.44), (4.45), and the inclusion [tu <−s0]⊂Ω \ω, we estimate −� as follows:

−�(tu)=
∫

[t|u|>s0]
G(x, tu) +

∫
[t|u|≤s0]

G(x, tu)

≥
∫

[t|u|>s0]
G(x, tu)− k|Ω|

=
∫

[tu>s0]
G(x, tu) +

∫
[tu<−s0]

G(x, tu)− k|Ω|

≥ tθ
[∫

Ω(u)
γ1(x)uθ +

∫
[tu<−s0]

γ2(x)|u|θ
]
− k|Ω|

≥ tθ
∫
Ω(u)

γ1(x)uθ − k|Ω|.

(4.46)

Therefore,

�(tu) +ϕ(tu)≤−tθ
∫
Ω(u)

γ1(x)uθ +
tp

p
‖u‖p1,p + k|Ω|, ∀t ≥ 1. (4.47)

Taking into account θ > p, it follows that ΦK (tu)→−∞ as t→ +∞. This estab-
lishes (H3′) with u replaced by tu, for some t ≥ 1 sufficiently large.
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Finally, hypothesis (H2′) is also satisfied because, as we have already noted,
the duality mapping dϕ verifies condition (S+).

The application of Theorem 3.11 concludes the proof. �

Remark 4.3. If ω =∅, then K =W . Taking into account Remark 3.12, in this
case, problem (4.14) becomes

Find u∈W such that −∆pu∈ ∂
(−�|W

)
(u). (4.48)

This means that for u ∈W , it corresponds h ∈ ∂(−�|W )(u) ⊂ ∂(−�)(u) ⊂
Lq

′
(Ω), with 1/q+ 1/q′ = 1, such that u satisfies the variational equality∫

Ω

(|∇u|p−2∇u∇v+hv
)= 0, ∀v ∈W. (4.49)

Assuming (4.7) and (4.9), inclusion (4.38) and equality (4.49) show that each so-
lution of problem (4.48) for W =W0 also solves the differential inclusion prob-
lem:

Find u∈W0 =W
1,p
0 (Ω) such that −∆pu∈

[
g(x,u), g(x,u)

]
for a.e. x ∈Ω.

(4.50)

In the case W =W1, denoting by ŵ = (1/|Ω|)∫Ωw the mean value of any w ∈
L1(Ω), relation (4.49) is expressed as follows:∫

Ω

(|∇u|p−2∇u∇w+h(w− ŵ)
)= 0, ∀w ∈W1,p(Ω), (4.51)

or, equivalently,∫
Ω

[|∇u|p−2∇u∇w+ (h− ĥ)w
)= 0, ∀w ∈W1,p(Ω). (4.52)

Thus, if W =W1, with u∈W in (4.48), the following problem is solved:

Find u∈W1 such that −∆pu∈
[
g(x,u)− ĝ(·,u), g(x,u)

− ĝ(·,u)
]

for a.e. x ∈Ω.
(4.53)

A problem similar to (4.53) is solved when W =W2 in (4.48).

Corollary 4.4 (see [8, Theorem 5.1]). Assume (4.7), (4.9), and

limsup
|s|→+∞

pG(x,s)
|s|p < λ1,W0 uniformly for a.e. x ∈Ω. (4.54)

Then problem (4.50) has a solution.
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Proof. Theorem 4.1 applies with ω =∅. �

Corollary 4.5 (see [6, Theorem 3.6] and [8, Theorem 5.2]). Assume (4.7) and
(4.9) together with

limsup
s→0

pG(x,s)
|s|p < λ1,W0 uniformly for a.e. x ∈Ω. (4.55)

If there are numbers θ > p and s0 > 0 such that

0 < θG(x,s)≤ sg(x,s) for a.e. x ∈Ω, ∀|s| ≥ s0, (4.56)

then problem (4.50) has a nontrivial solution.

Proof. We apply Theorem 4.2 with ω =∅. �
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