EXISTENCE RESULTS FOR GENERAL INEQUALITY PROBLEMS WITH CONSTRAINTS

GEORGE DINCĂ, PETRU JEBELEAN, AND DUMITRU MOTREANU

Received 25 February 2002

To Professor Jean Mawhin on occasion of his 60th birthday

This paper is concerned with existence results for inequality problems of type $F^0(u;v) + \Psi'(u;v) \ge 0$, for all $v \in X$, where X is a Banach space, $F: X \to \mathbb{R}$ is locally Lipschitz, and $\Psi: X \to (-\infty + \infty]$ is proper, convex, and lower semicontinuous. Here F^0 stands for the generalized directional derivative of F and Ψ' denotes the directional derivative of Ψ . The applications we consider focus on the variational-hemivariational inequalities involving the *p*-Laplacian operator.

1. Introduction

The paper deals with nonlinear inequality problems of type

$$F^{0}(u; v - u) + h(v) - h(u) \ge 0, \quad \forall v \in C,$$
(1.1)

where F^0 stands for the generalized directional derivative of a locally Lipschitz functional F (in the sense of Clarke [5]), h is a convex, lower semicontinuous (in short, l.s.c.), and proper function, and C is a nonempty, closed, and convex subset of a Banach space X. It is clear that in problem (1.1) we can put $h + I_C$ in place of h, where I_C denotes the indicator function of the set C, to give the formulation with v arbitrary in X. However, we keep the statement (1.1) for allowing various possible choices separately on the data h and C.

The type of problem stated in (1.1) fits in the framework of the nonsmooth critical point theory developed by Motreanu and Panagiotopoulos [9], which is constructed for the nonsmooth functionals having the form

$$\Phi = \Psi + F \tag{1.2}$$

with Ψ convex, l.s.c., and proper, and F locally Lipschitz. Namely, a solution of

Copyright © 2003 Hindawi Publishing Corporation Abstract and Applied Analysis 2003:10 (2003) 601–619 2000 Mathematics Subject Classification: 47J20, 49J52, 49J53, 58E35 URL: http://dx.doi.org/10.1155/S1085337503210058

(1.1) means, in fact, a critical point of the associated nonsmooth functional (1.2) with $\Psi = h + I_C$.

The existence results in the present paper extend different theorems in the smooth and nonsmooth variational analyses (see, for comparison, Ambrosetti and Rabinowitz [2], Chang [4], Dincă et al. [8], Motreanu and Panagiotopoulos [9], Rabinowitz [10], and Szulkin [11]). In this respect, we solve problems of type

$$F^{0}(u;v) + \Psi'(u;v) \ge 0, \quad \forall v \in X,$$

$$(1.3)$$

where Ψ' stands for the directional derivative of a convex, proper, l.s.c. functional Ψ . Consequently, we are able to handle the abstract hemivariational inequality problem

$$F^{0}(u; v-u) + \langle d\varphi(u), v-u \rangle \ge 0, \quad \forall v \in C,$$
(1.4)

where φ is a convex, Gâteaux differentiable functional and $d\varphi$ is its differential. In particular, this contains the differential inclusion problem

$$d\varphi(u) \in \partial(-F)(u) \tag{1.5}$$

which we considered in our previous paper [8].

The rest of the paper is organized as follows. In Section 2, we briefly recall several elements of nonsmooth critical point theory developed by Motreanu and Panagiotopoulos [9]. In Section 3, we study some general inequality problems in relation with the nonsmooth critical point theory. Section 4 presents applications for different discontinuous boundary value problems with *p*-Laplacian.

2. Notions and preliminary results

Let *X* be a real Banach space and *X*^{*} its dual. *The generalized directional derivative* of a locally Lipschitz function $F : X \to \mathbb{R}$ at $u \in X$ in the direction $v \in X$ is defined by

$$F^{0}(u;v) = \limsup_{w \to u, t \ge 0} \frac{F(w+tv) - F(w)}{t}.$$
 (2.1)

The generalized gradient (in the sense of Clarke [5]) of *F* at $u \in X$ is defined to be the subset of X^* given by

$$\partial F(u) = \{ \eta \in X^* : F^0(u; v) \ge \langle \eta, v \rangle, \ \forall v \in X \},$$
(2.2)

where $\langle \cdot, \cdot \rangle$ stands for the duality pairing between X^* and X.

Let $\Psi : X \to (-\infty, +\infty]$ be a proper (i.e., $D(\Psi) := \{u \in X : \Psi(u) < +\infty\} \neq \emptyset$), convex, and l.s.c. function and let $F : X \to \mathbb{R}$ be locally Lipschitz.

We define the functional $\Phi: X \to (-\infty, +\infty]$ by $\Phi = \Psi + F$.

Definition 2.1 Motreanu and Panagiotopoulos [9]. An element $u \in X$ is called critical point of the functional Φ if this inequality holds

$$F^{0}(u;v-u) + \Psi(v) - \Psi(u) \ge 0, \quad \forall v \in X.$$

$$(2.3)$$

Definition 2.2 Motreanu and Panagiotopoulos [9]. The functional Φ is said to satisfy the Palais-Smale condition if every sequence $\{u_n\} \subset X$ for which $\Phi(u_n)$ is bounded and

$$F^{0}(u_{n}; v - u_{n}) + \Psi(v) - \Psi(u_{n}) \ge -\varepsilon_{n} ||v - u_{n}||, \quad \forall v \in X,$$

$$(2.4)$$

for a sequence $\{\varepsilon_n\} \subset \mathbb{R}^+$ with $\varepsilon_n \to 0$, contains a strongly convergent subsequence in *X*.

For the proof of the next theorem, we refer the reader to [8, Proposition 2.1] and [9, Corollary 3.2] (also see [8, Theorem 2.2]).

THEOREM 2.3. (i) If $u \in X$ is a local minimum for Φ , then u is a critical point of Φ .

(ii) If Φ satisfies the Palais-Smale condition and there exist a number $\rho > 0$ and a point $e \in X$ with $||e|| > \rho$ such that

$$\inf_{\|\nu\|=\rho} \Phi(\nu) > \Phi(0) \ge \Phi(e), \tag{2.5}$$

then Φ has a nontrivial critical point.

Remark 2.4. Definitions 2.1 and 2.2 recover and unify the nonsmooth critical point theories (and a fortiori the smooth critical point theory, see, e.g., Ambrosetti and Rabinowitz [2] and Rabinowitz [10]) due to Chang [4] and Szulkin [11]. Precisely, if $\Psi = 0$, Definitions 2.1 and 2.2 reduce to the corresponding definitions of Chang [4], while if $F \in C^1(X, \mathbb{R})$, then Definitions 2.1 and 2.2 coincide with those in Szulkin [11].

3. Critical points as solutions of inequality problems

Throughout this section, $(X, \|\cdot\|_X)$ is a real reflexive Banach space, compactly embedded in the real Banach space $(Z, \|\cdot\|_Z)$. Let $\mathcal{F} : Z \to \mathbb{R}$ be a locally Lipschitz function and let $\Psi : X \to (-\infty, +\infty]$ be convex, l.s.c., and proper.

We consider the inequality problem:

Find
$$u \in D(\Psi)$$
 such that $(\mathcal{F}|_X)^0(u;v) + \Psi'(u;v) \ge 0$, $\forall v \in X$, (3.1)

where $(\mathcal{F}|_X)^0$ denotes the generalized directional derivative of the restriction $\mathcal{F}|_X$ while $\Psi'(u; v)$ is the directional derivative of the convex function Ψ at *u* in the direction *v* (which is known to exist). Note that if the Gâteaux differential $d\Psi(u)$ of Ψ at $u \in D(\Psi)$ exists, then $\langle d\Psi(u), v \rangle = \Psi'(u; v)$, for all $v \in X$.

PROPOSITION 3.1. *Each solution of problem (3.1) solves the problem:*

Find
$$u \in D(\Psi)$$
 such that $\mathcal{F}^0(u; v) + \Psi'(u; v) \ge 0$, $\forall v \in X$. (3.2)

If, in addition to our assumptions, X is densely embedded in Z, then problems (3.1) and (3.2) are equivalent.

Proof. For $u, v \in X$, the inequality below holds

$$\left(\mathcal{F}|_{X}\right)^{0}(u;v) \leq \mathcal{F}^{0}(u;v). \tag{3.3}$$

This becomes an equality if *X* is continuously and densely embedded in *Z* (see [5, pages 46–47] and [9, pages 10–12]). \Box

Our approach for studying problem (3.1) is variational and relies on the use of the functional

$$\Phi = \Psi + \mathcal{F}|_X : X \longrightarrow (-\infty, +\infty]$$
(3.4)

which is clearly of the form required in the previous section with $F = \mathcal{F}|_X$.

The next result points out the relationship between the critical points of the functional Φ in (3.4) and the solutions of problem (3.1).

PROPOSITION 3.2. (i) If $u \in X$ is a critical point of the functional Φ in (3.4), that is,

$$\left(\mathscr{F}|_{X}\right)^{0}(u;v-u)+\Psi(v)-\Psi(u)\geq 0,\quad\forall v\in X,$$
(3.5)

then u is a solution of problem (3.1).

(ii) Conversely, assume that $u \in X$ is a solution of problem (3.1). If either Ψ is Gâteaux differentiable at u or Ψ is continuous at u, then u is a critical point of Φ , that is, relation (3.5) holds.

Proof. (i) As Ψ is proper, (3.5) obviously implies that $u \in D(\Psi)$. For an arbitrary $w \in X$, we set v = u + tw, t > 0, in (3.5). Dividing by t and then letting $t \to 0^+$, we arrive at the conclusion that u solves problem (3.1).

(ii) Let $u \in D(\Psi)$ be a solution of problem (3.1). If Ψ is Gâteaux differentiable at u, then

$$\Psi(\nu) - \Psi(u) \ge \langle d\Psi(u), \nu - u \rangle = \Psi'(u; \nu - u), \quad \forall \nu \in X$$
(3.6)

which leads to (3.5).

If Ψ is continuous at *u*, then a standard result of convex analysis (see Barbu and Precupanu [3, page 106]) allows to write

$$\Psi'(u;v) = \max\{\langle x^*, v \rangle : x^* \in \partial \Psi(u)\}, \quad \forall v \in X.$$
(3.7)

Using the definition of the subdifferential $\partial \Psi(u)$, we obtain (3.5).

Remark 3.3. In view of Proposition 3.2(i), each result stating the existence of critical points for Φ in (3.4) asserts a fortiori existence of solutions to problem (3.1).

THEOREM 3.4. If Φ is coercive on X, that is,

$$\Phi(u) \longrightarrow +\infty \quad as \|u\|_X \longrightarrow +\infty, \tag{3.8}$$

then Φ has a critical point.

Proof. The compact embedding of *X* into *Z* implies that $\mathcal{F}|_X$ is weakly continuous. We infer that Φ is sequentially weakly l.s.c. on *X*. Then, by standard theory, Φ is bounded from below and attains its infimum at some $u \in X$. From Theorem 2.3(i), *u* is a critical point of Φ .

Towards the application of Theorem 2.3(ii) to the functional Φ , we have to know when Φ satisfies the Palais-Smale condition. The following lemma provides a useful sufficient condition that improves the usual results based on the celebrated hypothesis (p_5) in [2] or (p_4) in [10].

LEMMA 3.5. Assume, in addition, that Ψ and \mathcal{F} , entering the expression of Φ in (3.4), satisfy the following hypotheses:

(H1) $D(\Psi)$ is a cone and there exist constants $a_0, a_1, b_0, b_1 \ge 0$, $\alpha > 0$, and $\sigma \ge 1$ such that

$$\Psi(u) - \alpha \Psi'(u; u) \ge a_0 \|u\|_X^{\sigma} - a_1, \quad \forall u \in D(\Psi),$$
(3.9)

$$\mathcal{F}(u) - \alpha \left(\mathcal{F}|_X \right)^0(u; u) \ge -b_0 \|u\|_X^\sigma - b_1, \quad \forall u \in D(\Psi),$$
(3.10)

$$a_0 > b_0 + \alpha \quad if \sigma = 1, \qquad a_0 > b_0 \quad if \sigma > 1;$$
 (3.11)

(H2) the following condition of (S_+) type is satisfied: if $\{u_n\}$ is a sequence in $D(\Psi)$ provided $u_n \to u$ weakly in X and $\limsup_{n\to\infty} (-\Psi'(u_n; u - u_n)) \le 0$, then $u_n \to u$ strongly in X.

Then the functional Φ satisfies the Palais-Smale condition in the sense of Definition 2.2.

Proof. Let $\{u_n\}$ be a sequence in X for which there is a constant M > 0 with

$$\left|\Phi(u_n)\right| \le M, \quad \forall n \ge 1, \tag{3.12}$$

and inequality (2.4) holds for $F = \mathcal{F}|_X$ and a sequence $\varepsilon_n \to 0^+$. By (3.12), each u_n is in $D(\Psi)$. For t > 0, set $v = (1 + t)u_n$ in (2.4) with $F = \mathcal{F}|_X$. Dividing by t and then letting t > 0, one obtains that

$$\Psi'(u_n;u_n) + (\mathcal{F}|_X)^0(u_n;u_n) \ge -\varepsilon_n ||u_n||_X, \quad \forall n \ge 1.$$
(3.13)

Inequalities (3.12) and (3.13) ensure that for *n* sufficiently large, one has

$$M + \alpha ||u_n||_X \ge \Psi(u_n) + \mathcal{F}(u_n) + \alpha \varepsilon_n ||u_n||_X$$

$$\ge \Psi(u_n) - \alpha \Psi'(u_n; u_n) + [\mathcal{F}(u_n) - \alpha (\mathcal{F}|_X)^0(u_n; u_n)].$$
(3.14)

Using (3.9) and (3.10), we find that

$$M + \alpha ||u_n||_X \ge (a_0 - b_0) ||u_n||_X^{\sigma} - a_1 - b_1.$$
(3.15)

Then (3.11) and (3.15) show that $\{u_n\}$ is bounded in *X*. By the compactness of the embedding of *X* into *Z*, the sequence $\{u_n\}$ contains a subsequence, again denoted by $\{u_n\}$ such that

$$u_n \longrightarrow u$$
 weakly in X, (3.16)

$$u_n \longrightarrow u$$
 strongly in Z, (3.17)

for some $u \in X$. Now put $v = u_n + t(u - u_n)$, t > 0, in (2.4) with $F = \mathcal{F}|_X$. Similar to (3.13), we derive that

$$\Psi'(u_n; u - u_n) + \left(\mathcal{F}|_X\right)^0(u_n; u - u_n) \ge -\varepsilon_n ||u - u_n||_X, \quad \forall n \ge 1.$$
(3.18)

This implies

$$\Psi'(u_n; u - u_n) + \mathcal{F}^0(u_n; u - u_n) \ge -\varepsilon_n ||u - u_n||_X, \quad \forall n \ge 1.$$
(3.19)

As $\{u_n\}$ is bounded in *X*, we infer from (3.17) and the upper semicontinuity of \mathcal{F}^0 that

$$\liminf_{n \to \infty} \Psi'(u_n; u - u_n) \ge 0.$$
(3.20)

Taking into account (3.16) and (3.20), assumption (H2) completes the proof. \Box

Remark 3.6. If $\Psi'(u; \cdot)$ is homogeneous, for all $u \in D(\Psi)$, then (H2) becomes the usual form of the (S_+) condition: if $\{u_n\}$ is a sequence in $D(\Psi)$ provided $u_n \to u$ weakly in *X* and $\limsup_{n\to\infty} \Psi'(u_n; u_n - u) \le 0$, then $u_n \to u$ strongly in *X*.

We can now state the following result.

THEOREM 3.7. Let Φ be defined in (3.4) and assume Lemma 3.5(H1) and (H2) together with the following hypotheses.

(H3) There exists an element $\overline{u} \in D(\Psi)$ such that

$$a_1 + b_1 \le (a_0 - b_0) \|\overline{u}\|_X^{\sigma}, \tag{3.21}$$

$$\Phi(\overline{u}) < 0. \tag{3.22}$$

(H4) *There exists a constant* $\rho > 0$ *such that*

$$\inf_{\|\nu\|_X=\rho} \Phi(\nu) > \Phi(0). \tag{3.23}$$

Then Φ has a nontrivial critical point $u \in X$. In particular, problem (3.1) has a nontrivial solution.

Proof. We apply Theorem 2.3(ii) to the functional Φ in (3.4). Lemma 3.5 guarantees that Φ satisfies the Palais-Smale condition. It remains to check that Φ verifies condition (2.5) with $||e||_X > \rho$. To this end, we prove that one can choose $e = t\overline{u}$ (with \overline{u} entering (H3)) if t > 0 is sufficiently large.

First, note that $\overline{u} \neq 0$. Indeed, from (3.9), (3.10), and (3.21), we have

$$\Phi(\overline{u}) - \alpha \left[\Psi'(\overline{u}; \overline{u}) + \left(\mathcal{F}|_X \right)^0 (\overline{u}; \overline{u}) \right] \ge 0, \tag{3.24}$$

which leads to a contradiction with (3.22) if $\overline{u} = 0$.

We observe that, due to the fact that $\overline{u} \in D(\Psi)$ and since $D(\Psi)$ is a cone, the convex function $s \mapsto \Psi(s\overline{u})$ is locally Lipschitz on $(0, +\infty)$. A straightforward computation shows that

$$\partial_{s}(s^{-1/\alpha}\Phi(s\overline{u})) = \partial_{s}(s^{-1/\alpha}\Psi(s\overline{u}) + s^{-1/\alpha}\mathcal{F}|_{X}(s\overline{u}))$$

$$\subset -\frac{1}{\alpha}s^{-1/\alpha-1}\Psi(s\overline{u}) + s^{-1/\alpha}\partial_{s}(\Psi(s\overline{u}))$$

$$+ \left(-\frac{1}{\alpha}s^{-1/\alpha-1}\mathcal{F}(s\overline{u}) + s^{-1/\alpha}\langle\partial(\mathcal{F}|_{X})(s\overline{u}),\overline{u}\rangle\right), \quad \forall s > 0,$$
(3.25)

where the notation ∂_s stands for the generalized gradient with respect to *s*. For an arbitrary t > 1, Lebourg's mean value theorem yields some $\tau = \tau(t) \in (1, t)$ such that

$$t^{-1/\alpha}\Phi(t\overline{u}) - \Phi(\overline{u}) = \xi(t-1), \qquad (3.26)$$

where $\xi \in \partial_s(s^{-1/\alpha}\Phi(s\overline{u}))|_{s=\tau}$. This implies

$$t^{-1/\alpha}\Phi(t\overline{u}) - \Phi(\overline{u}) \in \frac{1}{\alpha}(t-1)\tau^{-1/\alpha-1} [(\alpha\tau\partial_s(\Psi(s\overline{u}))|_{s=\tau} - \Psi(\tau\overline{u})) + (-\mathcal{F}(\tau\overline{u}) + \alpha\langle\partial(\mathcal{F}|_X)(\tau\overline{u}),\tau\overline{u}\rangle)].$$
(3.27)

Then, taking into account the convexity of $s \mapsto \Psi(s\overline{u})$, the regularity property of a convex function (see Clarke [5, pages 39–40]) and relations (3.9) and (3.10), we get that

$$\begin{split} \Phi(t\overline{u}) &\leq t^{1/\alpha} \Phi(\overline{u}) + \frac{1}{\alpha} t^{1/\alpha} (t-1) \tau^{-1/\alpha - 1} \big[\left(\alpha \Psi'(\tau \overline{u}; \tau \overline{u}) - \Psi(\tau \overline{u}) \right) \\ &+ \left(- \mathcal{F}(\tau \overline{u}) + \alpha \big(\mathcal{F}|_X \big)^0(\tau \overline{u}; \tau \overline{u}) \big) \big] \\ &\leq t^{1/\alpha} \Phi(\overline{u}) + \frac{1}{\alpha} t^{1/\alpha} (t-1) \tau^{-1/\alpha - 1} \big[- (a_0 - b_0) \tau^{\sigma} \| \overline{u} \|_X^{\sigma} + a_1 + b_1 \big], \quad \forall t > 1. \end{split}$$

$$(3.28)$$

By (3.21) and because $\tau > 1$, we derive that

$$\Phi(t\overline{u}) \le t^{1/\alpha} \Phi(\overline{u}), \quad \forall t > 1.$$
(3.29)

Then (3.29) and assumption (3.22) imply

$$\lim_{t \to +\infty} \Phi(t\overline{u}) = -\infty.$$
(3.30)

Now, by means of (3.30), we can choose $\overline{t} > 0$ sufficiently large to satisfy

$$\overline{t} \|\overline{u}\|_X > \rho, \qquad \Phi(\overline{t}\overline{u}) \le \Phi(0),$$

$$(3.31)$$

for $\rho > 0$ entering (H4). If we compare (3.23) and (3.31), it is seen that the requirement in (2.5) is achieved for $e = \overline{tu}$. Theorem 2.3(ii) assures that Φ in (3.4) has a nontrivial critical point $u \in X$. Furthermore, Remark 3.3 shows that u is a (nontrivial) solution of problem (3.1). The proof of Theorem 3.7 is thus complete.

In the final part of this section, we are concerned with the case when

$$\Psi = \Psi_C := \varphi + I_C, \tag{3.32}$$

where *C* is a nonempty, closed, and convex subset of *X*, *I*_{*C*} denotes the indicator function of *C*, and $\varphi : X \to \mathbb{R}$ is a convex, Gâteaux differentiable functional. Note that Ψ_C is convex, l.s.c., and proper and $D(\Psi_C) = C$. Therefore, the functional

$$\Phi = \Psi_C + \mathcal{F}|_X,\tag{3.33}$$

with \mathcal{F} as at the beginning of this section, has the form required in (3.4).

Consider the following problem of variational-hemivariational inequality type:

Find
$$u \in C$$
 such that $(\mathcal{F}|_X)^0(u; v-u) + \langle d\varphi(u), v-u \rangle \ge 0, \quad \forall v \in C.$

(3.34)

Remark 3.8. (i) Taking into account that, for $u \in C$,

$$\Psi'_{C}(u;v) = \begin{cases} \langle d\varphi(u), v \rangle & \text{if } u + tv \in C \text{ for some } t \in (0,1], \\ +\infty & \text{otherwise,} \end{cases}$$
(3.35)

a straightforward computation shows that problem (3.34) is equivalent to the following problem of type (3.1):

Find
$$u \in D(\Psi_C) = C$$
 such that $(\mathcal{F}|_X)^0(u; v) + \Psi'_C(u; v) \ge 0$, $\forall v \in X$. (3.36)

(ii) If *C* is a nonempty, closed, and convex cone, then each solution of problem (3.34) solves also the problem:

Find
$$u \in C$$
 such that $(\mathcal{F}|_X)^0(u; v) + \langle d\varphi(u), v \rangle \ge 0$, $\forall v \in C$. (3.37)

PROPOSITION 3.9. If $u \in X$ is a critical point of Φ in (3.33) and (3.32), then u is a solution of problem (3.34).

Proof. Viewing Remark 3.8(i), the conclusion follows from Proposition 3.2(i). \Box

THEOREM 3.10. If the functional Φ in (3.33) and (3.32) is coercive on X, then problem (3.34) has a solution.

Proof. It is a direct consequence of Theorem 3.4 and Proposition 3.9. \Box

THEOREM 3.11. For the defining Φ data entering (3.33) and (3.32), we assume the following.

(H1') The set C is a nonempty, closed, and convex cone in X and there exist constants $a_0, a_1, b_0, b_1 \ge 0$, $\alpha > 0$, and $\sigma \ge 1$ such that one has (3.11),

$$\varphi(u) - \alpha \langle d\varphi(u), u \rangle \ge a_0 \|u\|_X^{\sigma} - a_1, \quad \forall u \in C,$$
(3.38)

$$\mathcal{F}(u) - \alpha (\mathcal{F}|_X)^0(u; u) \ge -b_0 \|u\|_X^\sigma - b_1, \quad \forall u \in C.$$
(3.39)

- (H2') The following condition of (S_+) type is satisfied: if $\{u_n\}$ is a sequence in C provided $u_n \to u$ weakly in X and $\limsup_{n\to\infty} \langle d\varphi(u_n), u_n u \rangle \leq 0$, then $u_n \to u$ strongly in X.
- (H3') There exists an element $\overline{u} \in C$ such that (3.21) holds with a_0 , a_1 , b_0 , and b_1 from (H1') together with

$$\mathcal{F}(\overline{u}) + \varphi(\overline{u}) < 0. \tag{3.40}$$

(H4') There exists a constant $\rho > 0$ such that

$$\inf_{\substack{\|\nu\|_{X}=\rho\\\nu\in C}} \left(\mathcal{F}(\nu) + \varphi(\nu) \right) > \mathcal{F}(0) + \varphi(0).$$
(3.41)

Then Φ in (3.33) and (3.32) has a nontrivial critical point $u \in C$. In particular, problem (3.34) has a nontrivial solution.

Proof. Note that assumptions (H1'), (H2'), (H3'), and (H4') are just (H1), (H2), (H3), and (H4), respectively, in the case where $D(\Psi) = C$ is a closed convex cone and Ψ is given by (3.32). Thus it suffices to apply Theorem 3.7 and Proposition 3.9 to the functional Φ in (3.33) and (3.32).

Remark 3.12. It is worth pointing out that if we take C = X, then problem (3.34) becomes

Find
$$u \in X$$
, such that $d\varphi(u) \in \partial(-\mathcal{F}|_X)(u)$. (3.42)

Thus, [8, Theorems 3.2 and 3.4] are immediate consequences of Theorems 3.10 and 3.11, respectively.

4. Applications to nonsmooth boundary value problems

In order to illustrate how the abstract results of Section 3 can be applied, we consider a concrete problem of type (3.34). To this end, let Ω be a bounded domain in \mathbb{R}^N , $N \ge 1$, with Lipschitz-continuous boundary $\Gamma = \partial \Omega$ and let $\omega \subset \overline{\Omega}$ be a measurable set. Given $p \in (1, \infty)$, the Sobolev space $W^{1,p}(\Omega)$ is endowed with its usual norm (see [1, page 44]).

We denote

$$W_{0} = \{ v \in W^{1,p}(\Omega) : v|_{\Gamma} = 0 \},$$

$$W_{1} = \{ v \in W^{1,p}(\Omega) : \int_{\Omega} v = 0 \},$$

$$W_{2} = \{ v \in W_{1} : v|_{\Gamma} = \text{constant} \}.$$
(4.1)

In the sequel, *W* will stand for any of the above (closed) subspaces W_0 , W_1 , and W_2 of $W^{1,p}(\Omega)$. By the Poincaré-Wirtinger inequality, the functional

$$W \ni \nu \longmapsto \|\nu\|_{1,p} := \left(\int_{\Omega} |\nabla \nu|^p\right)^{1/p}$$
(4.2)

is a norm on *W*, equivalent to the induced norm from $W^{1,p}(\Omega)$. The dual space W^* is considered endowed with the dual norm of $\|\cdot\|_{1,p}$.

Now, we define the *p*-Laplacian operator $-\Delta_p: W \to W^*$ by

$$\langle -\Delta_p u, v \rangle = \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v, \quad \forall u, v \in W.$$
 (4.3)

Arguments similar to those in [7] show that the convex functional $\varphi: W \to \mathbb{R}$ defined by

$$\varphi(u) = \frac{1}{p} \|u\|_{1,p}^p, \quad \forall u \in W,$$

$$(4.4)$$

is continuously differentiable on W and its differential is $-\Delta_p$, that is,

$$\langle d\varphi(u), v \rangle = \langle -\Delta_p u, v \rangle, \quad \forall u, v \in W.$$
 (4.5)

Moreover, as $d\varphi$ is the duality mapping on W, corresponding to the gauge function $t \mapsto t^{p-1}$ and because W is uniformly convex, $d\varphi$ satisfies condition (S_+) (see Remark 3.6).

If p^* stands for the Sobolev critical exponent, that is,

$$p^* = \begin{cases} \frac{Np}{N-p} & \text{if } p < N, \\ +\infty & \text{if } p \ge N, \end{cases}$$

$$(4.6)$$

then, for any fixed $q \in (1, p^*)$, by the Rellich-Kondrachov theorem, the embedding $W \hookrightarrow L^q(\Omega)$ is compact (the space $L^q(\Omega)$ is understood with its usual norm $\|\cdot\|_{0,q}$).

The results in Section 3 will be applied by taking X = W, $Z = L^{q}(\Omega)$, and φ defined in (4.4).

Further, to complete the setting, let a function $g : \Omega \times \mathbb{R} \to \mathbb{R}$ be measurable and satisfy the growth condition

$$\left|g(x,s)\right| \le c_1 |s|^{q-1} + c_2 \quad \text{for a.e. } x \in \Omega, \ \forall s \in \mathbb{R},\tag{4.7}$$

where $c_1, c_2 \ge 0$ are constants. For a.e. $x \in \Omega$ and all $s \in \mathbb{R}$, we put

$$\underline{g}(x,s) = \lim_{\delta \to 0^+} \operatorname{essinf}_{|t-s| < \delta} g(x,t),$$

$$\overline{g}(x,s) = \lim_{\delta \to 0^+} \operatorname{essung}_{|t-s| < \delta} g(x,t).$$
(4.8)

The following condition will be invoked below:

$$g \text{ and } \overline{g} \text{ are } N \text{-measurable}$$
 (4.9)

(recall that a function $h: \Omega \times \mathbb{R} \to \mathbb{R}$ is called *N*-measurable if $h(\cdot, u(\cdot)): \Omega \to \mathbb{R}$ is measurable whenever $u: \Omega \to \mathbb{R}$ is measurable).

By (4.7), the primitive $G : \Omega \times \mathbb{R} \to \mathbb{R}$ of function *g*:

$$G(x,s) = \int_0^s g(x,t)dt \quad \text{for a.e. } x \in \Omega, \ \forall s \in \mathbb{R},$$
(4.10)

satisfies

$$\left| G(x,s) \right| \le \frac{c_1}{q} |s|^q + c_2 |s| \quad \text{for a.e. } x \in \Omega, \ \forall s \in \mathbb{R}.$$

$$(4.11)$$

Taking into account (4.11), we define the functional $\mathscr{G}: L^q(\Omega) \to \mathbb{R}$ by putting

$$\mathscr{G}(u) = -\int_{\Omega} G(x, u), \quad \forall u \in L^{q}(\Omega).$$
(4.12)

It is known (see, e.g., Chang [4]) that \mathscr{G} is Lipschitz continuous on the bounded subsets of $L^q(\Omega)$. At this stage, we introduce the closed convex cone *K* in *W*:

$$K = \{ u \in W : u(x) \ge 0 \text{ for a.e. } x \in \omega \}$$

$$(4.13)$$

and we formulate the problem:

Find
$$u \in K$$
 such that $(\mathcal{G}|_W)^0(u; v - u) + \langle -\Delta_p u, v - u \rangle \ge 0$, $\forall v \in K$.
(4.14)

Thus, the functional framework in Section 3 is now accomplished by taking $\mathcal{F} = \mathcal{G}$ and C = K. Clearly, problem (4.14) is of the same type as (3.34). Before passing on to obtaining existence results for problem (4.14), it should be noticed that the nonsmooth functional $\Phi = \Phi_K : W \to (-\infty, +\infty]$, defined by

$$\Phi_K = \mathcal{G}|_W + \varphi + I_K \tag{4.15}$$

with φ in (4.4), I_K the indicator function of the cone *K* in (4.13), has the form required in (3.33) and (3.32).

We also need to invoke the following constant, depending on the cone *K* in the Banach space *W*:

$$\lambda_1 = \lambda_{1,K} := \inf \left\{ \frac{\|v\|_{1,p}^p}{\|v\|_{0,p}^p} : v \in K \setminus \{0\} \right\}.$$
(4.16)

Note that

$$\|v\|_{0,p} \le \lambda_1^{-1/p} \|v\|_{1,p}, \quad \forall v \in K.$$
(4.17)

THEOREM 4.1. Assume (4.7) together with

- (i) $\limsup_{s \to -\infty} pG(x, s)/|s|^p < \lambda_1$ uniformly for a.e. $x \in \Omega \setminus \omega$;
- (ii) $\limsup_{s\to+\infty} pG(x,s)/s^p < \lambda_1$ uniformly for a.e. $x \in \Omega$.

Then problem (4.14) has a solution.

Proof. By Theorem 3.10, it suffices to show that the functional Φ_K in (4.15) is coercive on W.

From (i) and (ii), there are numbers $\varepsilon \in (0, \lambda_1)$ and $s_0 > 0$ such that

$$G(x,s) \le \frac{\lambda_1 - \varepsilon}{p} |s|^p \quad \text{for a.e. } x \in \Omega \setminus \omega, \ \forall s < -s_0, \tag{4.18}$$

$$G(x,s) \le \frac{\lambda_1 - \varepsilon}{p} s^p$$
 for a.e. $x \in \Omega, \ \forall s > s_0.$ (4.19)

Using (4.11), we can find a positive constant $k = k(s_0)$ with

$$\left| G(x,s) \right| \le k \quad \text{for a.e. } x \in \Omega, \ \forall s \in [-s_0, s_0]. \tag{4.20}$$

For $u \in K$, we put

$$\Omega_{-} := \{ x \in \Omega : u < 0 \}, \qquad \Omega_{+} := \Omega \setminus \Omega_{-}.$$
(4.21)

Notice that by (4.13) we have $\Omega_{-} \subset \Omega \setminus \omega$. Then by (4.18) and (4.20), it follows that

$$\int_{\Omega_{-}} G(x,u) = \int_{[u<-s_0]} G(x,u) + \int_{[-s_0 \le u < 0]} G(x,u)$$

$$\le \frac{\lambda_1 - \varepsilon}{p} \int_{\Omega_{-}} |u|^p + k |\Omega|.$$
(4.22)

On the other hand, by (4.19) and (4.20), one sees that

$$\int_{\Omega_{+}} G(x,u) = \int_{[u>s_{0}]} G(x,u) + \int_{[0 \le u \le s_{0}]} G(x,u)$$

$$\leq \frac{\lambda_{1} - \varepsilon}{p} \int_{\Omega_{+}} |u|^{p} + k |\Omega|.$$
(4.23)

Combining (4.22) and (4.23), the following estimate holds:

$$\int_{\Omega} G(x,u) \le 2k |\Omega| + \frac{\lambda_1 - \varepsilon}{p} ||u||_{0,p}^p, \quad \forall u \in K.$$
(4.24)

Then, from (4.15), it follows that

$$\Phi_{K}(u) = \frac{1}{p} \|u\|_{1,p}^{p} - \int_{\Omega} G(x,u) \ge \frac{1}{p} \|u\|_{1,p}^{p} - \frac{\lambda_{1} - \varepsilon}{p} \|u\|_{0,p}^{p} - 2k|\Omega|, \quad \forall u \in W.$$
(4.25)

By (4.17), we infer

$$\Phi_{K}(u) \ge \frac{\varepsilon}{p\lambda_{1}} \|u\|_{1,p}^{p} - 2k|\Omega|, \quad \forall u \in W,$$
(4.26)

showing that

$$\lim_{\|u\|_{1,p}\to\infty}\Phi_K(u)=+\infty.$$
(4.27)

THEOREM 4.2. Assume (4.7), (4.9), and $int(\Omega \setminus \omega) \neq \emptyset$ if $W = W_1$ or $W = W_2$, together with

- (i) $\limsup_{s \neq 0} pG(x, s)/|s|^p < \lambda_1$ uniformly for a.e. $x \in \Omega \setminus \omega$;
- (ii) $\limsup_{s>0} pG(x,s)/s^p < \lambda_1$ uniformly for a.e. $x \in \Omega$;

and there are numbers $\theta > p$ and $s_0 > 0$ such that

- (iii) $0 < \theta G(x,s) \leq sg(x,s)$ for a.e. $x \in \Omega \setminus \omega$, $\forall s \leq -s_0$,
- (iv) $0 < \theta G(x, s) \le sg(x, s)$ for a.e. $x \in \Omega$, $\forall s \ge s_0$.

Then problem (4.14) has a nontrivial solution.

Proof. We will apply Theorem 3.11. Without loss of generality, we may suppose in (4.7) that $q \in (p, p^*)$. For $u \in K$ (see (4.13)), the sets Ω_- and Ω_+ will be considered as being defined by (4.21), and recall that $\Omega_- \subset \Omega \setminus \omega$.

First we check (H4'). By (i) and (ii), one can find numbers $\varepsilon \in (0, \lambda_1)$ and $\delta_0 > 0$ such that

$$G(x,s) \le \frac{\lambda_1 - \varepsilon}{p} |s|^p \quad \text{for a.e. } x \in \Omega \setminus \omega, \ \forall s \in [-\delta_0, 0), \tag{4.28}$$

$$G(x,s) \le \frac{\lambda_1 - \varepsilon}{p} |s|^p \quad \text{for a.e. } x \in \Omega, \ \forall s \in (0,\delta_0].$$
(4.29)

From (4.11), there exists a constant $c = c(\delta_0)$ with

$$G(x,s) \le c|s|^q \quad \text{for a.e. } x \in \Omega, \ \forall |s| > \delta_0.$$
(4.30)

For an arbitrary $u \in K$, by (4.28) and (4.30) we have

$$\int_{\Omega_{-}} G(x,u) = \int_{\Omega_{-} \cap [-\delta_{0} \le u]} G(x,u) + \int_{[u < -\delta_{0}]} G(x,u)$$

$$\leq \frac{\lambda_{1} - \varepsilon}{p} \int_{\Omega_{-}} |u|^{p} + c \int_{\Omega_{-}} |u|^{q}.$$
(4.31)

Similarly, (4.29) and (4.30) imply

$$\int_{\Omega_{+}} G(x, u) = \int_{\Omega_{+} \cap [u \le \delta_{0}]} G(x, u) + \int_{[u > \delta_{0}]} G(x, u)$$

$$\leq \frac{\lambda_{1} - \varepsilon}{p} \int_{\Omega_{+}} |u|^{p} + c \int_{\Omega_{+}} |u|^{q}.$$
(4.32)

Then, combining (4.31) and (4.32), we infer

$$\int_{\Omega} G(x, u) \le \frac{\lambda_1 - \varepsilon}{p} \|u\|_{0, p}^p + c \|u\|_{0, q}^q.$$
(4.33)

Taking into account the continuity of the embedding $W \hookrightarrow L^q(\Omega)$, from (4.33) and (4.17) we get, for a constant \tilde{c} , the relations

$$\mathcal{G}(u) + \varphi(u) = -\int_{\Omega} G(x, u) + \frac{1}{p} \|u\|_{1, p}^{p} \ge \frac{\varepsilon}{\lambda_{1} p} \|u\|_{1, p}^{p} - \tilde{\varepsilon} \|u\|_{1, p}^{q} > 0$$

= $\mathcal{G}(0) + \varphi(0)$ (4.34)

provided $u \in K$ and $||u||_{1,p} = \rho > 0$ is sufficiently small. Therefore, Theorem 3.11(H4') is satisfied.

To check hypothesis (H1'), we proceed as follows. From (iv), we have

$$\frac{G(x,s)}{s} \le \frac{1}{\theta}g(x,s) \quad \text{for a.e. } x \in \Omega, \ \forall s \ge s_0.$$
(4.35)

For a.e. $x \in \Omega$, the primitive G(x, s) as a function of *s* being continuous (even locally Lipschitz), (4.35) implies

$$\frac{G(x,s)}{s} \le \frac{1}{\theta} \underline{g}(x,s) \quad \text{for a.e. } x \in \Omega, \ \forall s > s_0.$$
(4.36)

Similarly, by (iii), we get

$$G(x,s) \le \frac{1}{\theta} s\overline{g}(x,s) \quad \text{for a.e. } x \in \Omega \setminus \omega, \ \forall s < -s_0.$$
(4.37)

Recall that under the assumptions (4.7) and (4.9), for $u \in L^q(\Omega)$, the following inclusion holds (see [4, Theorem 2.1]):

$$\partial(-\mathscr{G})(u) \subset [\underline{g}(x,u), \overline{g}(x,u)] \quad \text{for a.e. } x \in \Omega.$$
 (4.38)

Then, from (4.20), (4.36), (4.37), (4.38), and (4.7), for an arbitrary $u \in K$, we obtain

$$-\mathscr{G}(u) = \int_{\Omega} G(x, u) = \int_{[u < -s_0]} G(x, u) + \int_{[u > s_0]} G(x, u) + \int_{[-s_0 \le u \le s_0]} G(x, u)$$

$$\leq \frac{1}{\theta} \left[\int_{[u < -s_0]} u\overline{g}(x, u) + \int_{[u > s_0]} u\underline{g}(x, u) \right] + k |\Omega|$$

$$\leq \frac{1}{\theta} \left[\int_{[u < -s_0]} uw + \int_{[u > s_0]} uw \right] + k |\Omega|$$

$$= \frac{1}{\theta} \left[\int_{\Omega} uw - \int_{[|u| \le s_0]} uw \right] + k |\Omega|$$

$$\leq \frac{1}{\theta} \int_{\Omega} uw + k_0, \quad \forall w \in \partial(-\mathscr{G})(u),$$
(4.39)

for a constant $k_0 > 0$. As $\partial(-\mathcal{G})(u) = -\partial \mathcal{G}(u)$, it follows that

$$\mathfrak{G}(u) \ge \frac{1}{\theta} \int_{\Omega} uw - k_0, \quad \forall w \in \partial \mathfrak{G}(u).$$
 (4.40)

Taking the supremum over $w \in \partial \mathscr{G}(u)$ in (4.40), we deduce

$$\mathscr{G}(u) - \frac{1}{\theta} (\mathscr{G}|_W)^0(u; u) \ge -k_0, \quad \forall u \in K.$$
(4.41)

By virtue of (4.4) and (4.5), one has

$$\varphi(u) - \frac{1}{\theta} \langle d\varphi(u), u \rangle = \left(\frac{1}{p} - \frac{1}{\theta}\right) \|u\|_{1,p}^{p}, \quad \forall u \in W.$$
(4.42)

From (4.41) and (4.42), it turns out that Theorem 3.11(H1') is fulfilled with

$$\alpha = \frac{1}{\theta}, \qquad a_0 = \frac{1}{p} - \frac{1}{\theta}, \qquad a_1 = 0, \qquad \sigma = p, \qquad b_0 = 0, \qquad b_1 = k_0.$$
(4.43)

To check condition Theorem 3.11(H3'), we first note that, on the basis of (i), (ii) and arguing as in the proof of [7, Proposition 7], one has

$$G(x,t) \ge \gamma_1(x)t^{\theta} \quad \text{for a.e. } x \in \Omega, \ \forall t > s_0,$$

$$(4.44)$$

$$G(x,t) \ge \gamma_2(x)|t|^{\theta} \quad \text{for a.e. } x \in \Omega \setminus \omega, \ \forall t < -s_0,$$
(4.45)

where $\gamma_1, \gamma_2 \in L^{\infty}(\Omega)$, $\gamma_1(x) > 0$ for a.e. $x \in \Omega$, and $\gamma_2(x) > 0$ for a.e. $x \in \Omega \setminus \omega$. Since, by assumption, $\operatorname{int}(\Omega \setminus \omega) \neq \emptyset$ if $W = W_1$ or $W = W_2$, there is some $\overline{u} \in K$ such that $|\Omega(\overline{u})| > 0$, where $\Omega(\overline{u}) = \{x \in \Omega : \overline{u} > s_0\}$. For $t \ge 1$, using (4.20), (4.44), (4.45), and the inclusion $[t\overline{u} < -s_0] \subset \Omega \setminus \omega$, we estimate $-\mathscr{G}$ as follows:

$$-\mathscr{G}(t\overline{u}) = \int_{[t|\overline{u}| > s_0]} G(x, t\overline{u}) + \int_{[t|\overline{u}| \le s_0]} G(x, t\overline{u})$$

$$\geq \int_{[t|\overline{u}| > s_0]} G(x, t\overline{u}) - k|\Omega|$$

$$= \int_{[t\overline{u} > s_0]} G(x, t\overline{u}) + \int_{[t\overline{u} < -s_0]} G(x, t\overline{u}) - k|\Omega| \qquad (4.46)$$

$$\geq t^{\theta} \bigg[\int_{\Omega(\overline{u})} \gamma_1(x)\overline{u}^{\theta} + \int_{[t\overline{u} < -s_0]} \gamma_2(x)|\overline{u}|^{\theta} \bigg] - k|\Omega|$$

$$\geq t^{\theta} \int_{\Omega(\overline{u})} \gamma_1(x)\overline{u}^{\theta} - k|\Omega|.$$

Therefore,

$$\mathscr{G}(t\overline{u}) + \varphi(t\overline{u}) \le -t^{\theta} \int_{\Omega(\overline{u})} \gamma_1(x)\overline{u}^{\theta} + \frac{t^p}{p} \|\overline{u}\|_{1,p}^p + k|\Omega|, \quad \forall t \ge 1.$$
(4.47)

Taking into account $\theta > p$, it follows that $\Phi_K(t\overline{u}) \to -\infty$ as $t \to +\infty$. This establishes (H3') with \overline{u} replaced by $t\overline{u}$, for some $t \ge 1$ sufficiently large.

Finally, hypothesis (H2') is also satisfied because, as we have already noted, the duality mapping $d\varphi$ verifies condition (*S*₊).

The application of Theorem 3.11 concludes the proof.

Remark 4.3. If $\omega = \emptyset$, then K = W. Taking into account Remark 3.12, in this case, problem (4.14) becomes

Find
$$u \in W$$
 such that $-\Delta_p u \in \partial (-\mathcal{G}|_W)(u)$. (4.48)

This means that for $u \in W$, it corresponds $h \in \partial(-\mathcal{G}|_W)(u) \subset \partial(-\mathcal{G})(u) \subset L^{q'}(\Omega)$, with 1/q + 1/q' = 1, such that *u* satisfies the variational equality

$$\int_{\Omega} \left(|\nabla u|^{p-2} \nabla u \nabla v + hv \right) = 0, \quad \forall v \in W.$$
(4.49)

Assuming (4.7) and (4.9), inclusion (4.38) and equality (4.49) show that each solution of problem (4.48) for $W = W_0$ also solves the differential inclusion problem:

Find
$$u \in W_0 = W_0^{1,p}(\Omega)$$
 such that $-\Delta_p u \in [\underline{g}(x,u), \overline{g}(x,u)]$ for a.e. $x \in \Omega$.
(4.50)

In the case $W = W_1$, denoting by $\hat{w} = (1/|\Omega|) \int_{\Omega} w$ the mean value of any $w \in L^1(\Omega)$, relation (4.49) is expressed as follows:

$$\int_{\Omega} \left(|\nabla u|^{p-2} \nabla u \nabla w + h(w - \hat{w}) \right) = 0, \quad \forall w \in W^{1,p}(\Omega),$$
(4.51)

or, equivalently,

$$\int_{\Omega} \left[|\nabla u|^{p-2} \nabla u \nabla w + (h - \hat{h}) w \right] = 0, \quad \forall w \in W^{1,p}(\Omega).$$
(4.52)

Thus, if $W = W_1$, with $u \in W$ in (4.48), the following problem is solved:

Find
$$u \in W_1$$
 such that $-\Delta_p u \in [\underline{g}(x,u) - \overline{\overline{g}(\cdot,u)}, \overline{g}(x,u) - \overline{g(\cdot,u)}]$ for a.e. $x \in \Omega$. (4.53)

A problem similar to (4.53) is solved when $W = W_2$ in (4.48).

COROLLARY 4.4 (see [8, Theorem 5.1]). Assume (4.7), (4.9), and

$$\limsup_{|s| \to +\infty} \frac{pG(x,s)}{|s|^p} < \lambda_{1,W_0} \quad uniformly \text{ for a.e. } x \in \Omega.$$
(4.54)

Then problem (4.50) has a solution.

Proof. Theorem 4.1 applies with $\omega = \emptyset$.

COROLLARY 4.5 (see [6, Theorem 3.6] and [8, Theorem 5.2]). *Assume* (4.7) *and* (4.9) *together with*

$$\limsup_{s \to 0} \frac{pG(x,s)}{|s|^p} < \lambda_{1,W_0} \quad uniformly \text{ for a.e. } x \in \Omega.$$
(4.55)

If there are numbers $\theta > p$ *and* $s_0 > 0$ *such that*

$$0 < \theta G(x,s) \le sg(x,s) \quad \text{for a.e. } x \in \Omega, \ \forall |s| \ge s_0, \tag{4.56}$$

then problem (4.50) has a nontrivial solution.

Proof. We apply Theorem 4.2 with $\omega = \emptyset$.

Acknowledgment

The authors are grateful to the referee for valuable comments and suggestions.

References

- R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, vol. 65, Academic Press, New York, 1975.
- [2] A. Ambrosetti and P. H. Rabinowitz, *Dual variational methods in critical point theory* and applications, J. Functional Analysis 14 (1973), 349–381.
- [3] V. Barbu and Th. Precupanu, *Convexity and Optimization in Banach Spaces*, Mathematics and Its Applications (East European Series), vol. 10, D. Reidel, Dordrecht, 1986.
- K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), no. 1, 102– 129.
- [5] F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, New York, 1983.
- [6] G. Dinca, P. Jebelean, and J. Mawhin, A result of Ambrosetti-Rabinowitz type for p-Laplacian, Qualitative Problems for Differential Equations and Control Theory, World Scientific Publishing, New Jersey, 1995, pp. 231–242.
- [7] _____, Variational and topological methods for Dirichlet problems with p-Laplacian, Port. Math. (N.S.) 58 (2001), no. 3, 339–378.
- [8] G. Dinca, P. Jebelean, and D. Motreanu, Existence and approximation for a general class of differential inclusions, Houston J. Math. 28 (2002), no. 1, 193–215.
- [9] D. Motreanu and P. D. Panagiotopoulos, *Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities*, Nonconvex Optimization and Its Applications, vol. 29, Kluwer Academic Publishers, Dordrecht, 1999.
- [10] P. H. Rabinowitz, *Minimax Methods in Critical Point Theory with Applications to Differential Equations*, CBMS Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, District of Columbia, 1986.

 [11] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), no. 2, 77–109.

George Dincă: Department of Mathematics, University of Bucharest, St. Academiei, no. 14, 70109 Bucharest, Romania

E-mail address: dinca@cnfis.ro

Petru Jebelean: Department of Mathematics, West University of Timişoara, Bv. V. Pârvan, no. 4, 1900 Timişoara, Romania *E-mail address*: jebelean@hilbert.math.uvt.ro

Dumitru Motreanu: Département de Mathématiques, Université de Perpignan, 52, avenue de Villeneuve, 66860 Perpignan Cedex, France *E-mail address*: motreanu@univ-perp.fr