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We consider second-order differential inclusions on a Riemannian manifold with
lower semicontinuous right-hand sides. Several existence theorems for solutions
of two-point boundary value problem are proved to be interpreted as control-
lability of special mechanical systems with control on nonlinear configuration
spaces. As an application, a statement of controllability under extreme values of
controlling force is obtained.

1. Introduction and motivation

The main object of research in this paper is a mechanical system with set-valued
force given in geometrically invariant terms. This language allows us to con-
sider, from unique mathematical point of view, a broad class of real mechanical
systems including those on curved nonlinear configuration spaces, forces with
control, and so forth. First we introduce some basic notions in order to set up
the problem. Details in geometry of manifolds can be found, for example, in
[1, 4, 5], in set-valued analysis—for example, in [2, 6, 7]. Some definitions, used
here, can be also found in Section 2.

Let M be a Riemannian manifold. Recall that, this means that in any tangent
space TmM, the scalar product 〈·,·〉m is given and 〈·,·〉m is smooth in m ∈M.
The total family of those scalar products is called a Riemannian metric. We will
omit the index m in notation of the form when it does not yield a confusion.
The norm in the tangent space, generated by the above scalar product, will be
denoted by the usual symbol ‖ · ‖.

We interpret M as the configuration space of a mechanical system. Tangent
vectors to M are interpreted as velocities. The function � : TM → TM, �(X)=
(1/2)〈X,X〉 on the phase space TM (the tangent bundle to M) is the kinetic
energy of mechanical system. The (nonautonomous) force field α(t,m,X) is a
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1-form on M that at any configuration m ∈M may depend on time t ∈ R and
velocity X ∈ TmM.

We assume the Riemannian manifold M to be complete. The mechanical
meaning of this assumption is that a free particle on the configuration space
M does not go to infinity in finite time. The Riemannian metric enables us to
identify differential 1-forms and vector fields on M, and henceforth, we regard
the force field as a vector field, also depending on time and velocity. Denote by
π : TM →M the natural projection, that is, π(TmM)=m for any tangent space
TmM. Thus, the vector force field can be considered as a map α : R×TM→ TM
such that πα(t,m,X)=m for all t ∈R and (m,X)∈ TM.

The equation of motion for the system is Newton’s second law in the follow-
ing geometric form:

D

dt
ṁ(t)= α

(
t,m(t), ṁ(t)

)
, (1.1)

where D/dt is the covariant derivative of Levi-Civitá connection on M and α is
the vector force field (see above).

Consider a mechanical system with control. Then at any point (m,X) of phase
space and time instant t, the set F(t,m,X) ⊂ TmM of all values of the force de-
termined by all possible values of controlling parameter is given. Thus, the tra-
jectory of such a system satisfies the following differential inclusion:

D

dt
ṁ(t)∈ F

(
t,m(t), ṁ(t)

)
(1.2)

that is a set-valued version of Newton’s law (1.1).

Definition 1.1. A C1-curve m(t), such that its derivative is absolutely continuous
and inclusion (1.2) holds for m(t) almost everywhere (a.e.), is called a solution
of inclusion (1.2).

In this paper, we investigate the two-point boundary value problem for (1.2),
that is, the existence of a solution m(t) such that for given points m0,m1 ∈M
and time instants t0, t1 the relations m(t0) = m0 and m1 = m1 hold. If such a
trajectory exists, there exists also a curve in the domain of controlling parameter
such that using this (time-dependent) control, we can derive the trajectory to m1

at t1 from m0 at t0. This means the controllability of the system for given m0, t0
and m1, t1.

It should be pointed out that the two-point boundary value problem on
curved (nonlinear) configuration spaces (unlike that on flat linear spaces) may
not be solvable even for single-valued bounded smooth forces. We can mention,
for example, examples of systems on two-dimensional sphere from [5] where
some or all couples of antipodal points cannot be joint by a trajectory of the
system.
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We show (see Theorem 3.1) that a point m1 is accessible from m0 at least
within small enough time interval if m1 and m0 are not conjugate at least along
one geodesic curve on M (notice that antipodal points on two-dimensional
sphere are conjugate along all geodesics joining them). We deal with bounded
lower semicontinuous (lsc) (or almost lsc, see Definitions 2.4 and 3.7) set-valued
forces F(t,m,X) not necessarily having convex images.

This is important for applications because of the following example of set-
valued forces of the above-mentioned sort. Consider a set-valued bounded and
Hausdorff continuous force A(t,m,X) with convex closed images. Then (see
Lemma 3.5) the set-valued force ExtA(t,m,X), sending (t,m,X) into the set of
extreme points of A(t,m,X), is lsc. Obviously, under the above assumptions on
A(t,m,X), the force ExtA(t,m,X) is bounded and may not have convex im-
ages. The solvability of the two-point boundary value problem with the force
ExtA(t,m,X) (see Theorem 3.6) means controllability of the system with force
A(t,m,X) for given points under extreme values of controlling force. This fact
cannot be covered by previous existence theorems for upper semicontinuous
forces with convex images (see, e.g., [5]).

The structure of this paper is as follows. In Section 2, we construct some spe-
cial operators of integral type, based on the use of Riemannian parallel transla-
tion, and the so-called velocity hodograph equation that form a geometric ma-
chinery for investigating the problem. In this section, we also present some facts
from set-valued analysis, applied below. Section 3 is devoted to proving the solv-
ability results for the above problem.

2. Description of the involved machinery

Let M be a complete Riemannian manifold. Consider m0 ∈M, I = [0, l] ⊂ R,
and let v : I → Tm0M be a continuous curve.

Theorem 2.1 (see [3, 5]). There exists a unique C1-curve γ : I →M such that
γ(0) = m0 and the tangent vector γ̇(t) is parallel to the vector v(t) ∈ Tm0M for
every t ∈ I .

Indeed, the curve γ is represented as γ(t)= δ−1(
∫ t

0 v(τ)dτ) where δ is Cartan’s
development and δ−1 is its inverse map developing C1-curves from Tm0M into
M (see, e.g., [1] for details).

In what follows, we denote by �v(·) the curve γ constructed as above begin-
ning with v.

Consider the Banach space C0(I,Tm0M) of continuous maps from I to Tm0M
and the Banach manifold C1(I,M) of C1-smooth maps from I to M. As follows
from Theorem 2.1, the operator � : C0(I,Tm0M)→ C1(I,M) is well posed. If M
is a Euclidean space, then �v is the primitive of v.

The mapping � is a homeomorphism between C0(I,Tm0M) and its image
C1
m0

(I,M) in C1(I,M), where the manifold C1
m0

(I,M) consists of all C1-curves γ
with γ(0)=m0.
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Let m(t), where t ∈ I and m(0) =m0, be a C1-curve in M and let α(t,m,X)
be a single-valued force field. Denote by Γα(t,m(t), ṁ(t)) the curve in Tm0M
such that the vector Γα(t,m(t), ṁ(t)) is parallel to α(t,m(t), ṁ(t)) along m(·)
for every t (i.e., Γα(t,m(t), ṁ(t)) is obtained by parallel translation of vectors
α(t,m(t), ṁ(t)) along γ(·) at Tm0M).

Specify a vector C in Tm(0)M and consider the integral equation

m(t)=�
(∫ t

0
Γα
(
τ,m(τ), ṁ(τ)

)
dτ +C

)
(2.1)

on I = [0, l]. It is shown in [3] (see also [4, 5]) that (2.1) is the integral form of
the second Newton law (1.1), that is, its solution is the trajectory of mechanical
system with force α having the initial conditions γ(0)=m0 and γ̇(0)= C.

Let m(t), t ∈ I , be a trajectory of the mechanical system, that is, a solution of
(2.1).

Definition 2.2. The velocity hodograph of the trajectory m(t) is the curve v : I →
Tm(0)M such that v(t) is parallel to ṁ(t) along m(·).

It is not hard to see that the velocity hodograph of a solution of (2.1) satisfies
the equation

v(t)=
∫ t

0
Γα
(
τ,�v(τ),

d

dτ
�v(τ)

)
dτ +C. (2.2)

It is obvious that if v is a solution of (2.2), then �v is a solution of (2.1), that is,
a trajectory of the mechanical system. Below we will reduce the inclusion (1.2)
to a certain integral relation similar to the velocity hodograph equation.

Theorem 2.3. Let a point m1 ∈M be not conjugate with m0 along some geodesic
of the Levi-Civitá connection on M. Then for any geodesic a(t), (a(0)=m0, a(1)=
m1) along which m0 and m1 are not conjugate, and for any number k > 0, there
exist a number L(m0,m1,k,a) > 0 such that for 0 < t1 < L(m0,m1,k,a) and for any
curve u(t)∈Uk ⊂ C0([0, t1],Tm0M) (where Uk is the ball of radius k), there exists,
in a certain bounded neighbourhood of the vector t−1

1 a(0)∈ Tm0M, a unique vector
Cu ∈ Tm0M continuously dependent on u such that S(u+Cu)(t1)=m1.

This statement is proved as [3, Theorem 1.3] and [5, Theorem 3.3].
We will also use some facts from multivalued theory. A set-valued map (or a

multimap) F from a metric space Ω into a metric space X is a map sending any
point ω∈Ω to a nonempty subset F(ω)⊂ X .

Definition 2.4. A multimap F : Ω→ X is said to be lsc at ω0 ∈Ω if for any ε > 0,
there exists δ > 0 such that for any ω belonging to δ-neighbourhood of ω0, the
set F(ω0) is contained in the ε-neighbourhood of F(ω). The multimap F is called
lsc if it is lsc at any ω ∈Ω.
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Definition 2.5. A multimap F : Ω→ X is said to be upper semicontinuous at
ω0 ∈ Ω if for any ε > 0, there exists δ > 0 such that for any ω belonging to
δ-neighbourhood of ω0, the set F(ω) is contained in the ε-neighbourhood of
F(ω0). The multimap F is called upper semicontinuous if it is upper semicon-
tinuous at any ω ∈Ω.

Definition 2.6. A multimap F : Ω→ X is called Hausdorff continuous if it is both
upper and lsc.

Definition 2.7. A selection f of the set-valued map F : Ω→ X is a single-valued
map f : Ω→ X such that f (ω)∈ F(ω) for all ω ∈Ω.

We will be interested in existence of continuous selections of set-valued maps.
Notice that if F is a lsc set-valued map of Banach spaces with closed convex
images, by famous Michael’s theorem, then it has a continuous selection; but it
is not the case if either F is not lsc or has not convex images.

Definition 2.8. Let E be a separable Banach space. A nonempty subset � ⊂
L1([0, l];E) is said to be decomposable if for every f ,g ∈� and each measur-
able subset θ in [0, l],

f ◦ χθ + g ◦ χ[0,l]\θ ∈�, (2.3)

where χ denotes the indicator of corresponding set.

See more details of this definition in [2, 6].

Theorem 2.9 (Bressan and Colombo). Let (Ω,d) be a separable metric space, let
X be a Banach space, and let (J,�,µ) be a measure space (i.e., � is a σ-algebra on
J and µ is a measure on (J,�)) such that µ is nonatomic and µ(J)= 1. Consider the
space Y = L1((J,�,µ),X) of integrable maps from (J,�,µ) into X . If a multimap
F : Ω→ Y is lsc with closed decomposable values, then F has a continuous selection.

This statement is proved, for example, as [2, Lemma 9.2].
Now, we turn back to differential inclusion (1.2). Consider the manifold M

as above.

Definition 2.10. A set-valued vector field F on M is a set-valued map F : M →
TM such that π ◦F = id, that is, π(F(m))=m for each m∈M.

Definition 2.10 is a natural generalization of the standard definition of vector
field to set-valued case.

Obviously, F(t,m,X) in the right-hand side of (1.2) is a set-valued vector field
on M depending at each m ∈M on time t and velocity X ∈ TmM. Thus, it can
be presented as a map F : R×TM→ TM such that πF(t,m,X)=m for all t ∈R

and (m,X)∈ TM.

Definition 2.11. We say that the above-mentioned set-valued vector field F(t,m,
X) is lsc if it is lsc jointly in (t,m,X) as a set-valued map F : R×TM→ TM.
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3. The two-point boundary value problem

For the sake of simplicity here, we suppose that the set-valued vector field F(t,
m,X) is defined for t from a certain finite interval I = [0, l]⊂R.

Introduce the norm ‖F(t,m,X)‖ by standard formula

∥∥F(t,m,X)
∥∥= sup

y∈F(t,m,X)
‖y‖. (3.1)

Theorem 3.1. Let a point m1 ∈M be not conjugate with the point m0 ∈M along
some geodesic a(t) of the metric 〈 ,〉 and let the set-valued vector field F(t,m,X)
with closed images be lsc and uniformly bounded, that is, ‖F(t,m,X)‖ < k for a
certain k > 0 and for all t,m,X . There exists a number L(m0,m1,a) such that for
any t0, 0 < t0 < L(m0,m1,a), inclusion (1.2) has a solution m(t) such that m(0)=
m0 and m(t0)=m1.

Proof. Let I = [0, l]. Consider the set-valued vector field F(t,m(t), ṁ(t)) defined
along the C1-curve m(t) = �(v(t)), v ∈ C0(I,Tm0M), and apply the parallel
translation along m(·) at the point m0 = m(0) to all the sets F(t,m(t), ṁ(t)).
Then for any given v, we obtain the set-valued mapping of ΓF(t,�(v(·)),
(d/dt)�(v(·))) from the segment I to Tm0M. �

Lemma 3.2. The set-valued mapping

ΓF
(
t,�
(
v(·)), d

dt
�
(
v(·))

)
: C0(I,Tm0M

)× I −→ Tm0M (3.2)

is lsc.

Proof. Since F(t,m,X) is lsc, the multimap F(t,�(v(t)),(d/dt)�(v(t))) with val-
ues in TM is lsc in v as the operator � : C0(I,Tm0M)→ C1

m0
(I,M) is a home-

omorphism. Now applying the operator Γ, ΓF(t,�(v(t)),(d/dt)�(v(t))) is lsc
since Γ is continuous. �

For any given v, denote by

PΓF
(
t,S
(
v(t)

)
,
d

dt
S
(
v(t)

))=
{
y(·) : y(t)∈ ΓF

(
t,S
(
v(t)

)
,
d

dt
S
(
v(t)

))}

(3.3)

the set of all measurable selections of the set-valued mapping

ΓF
(
t,S
(
v(·)), d

dt
S
(
v(·))

)
: I −→ Tm0M. (3.4)

Since the field F is bounded by k and the parallel translation preserves the norm
of vectors for all v, the curves belonging to PΓF(t,S(v(t)),(d/dt)S(v(t))) are
also bounded by the same k, that is, they are integrable. Thus, the mapping
sending v ∈ C0(I,Tm0M) to PΓF(t,S(v(t)),(d/dt)S(v(t))) is a multimap from
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C0(I,Tm0M) to L1((I,�,µ),Tm0M), where � is Borel σ-algebra and µ is the nor-
malized Lebesgue measure. We can easily show that this multimap is lsc and
that its values are decomposable. Thus from Theorem 2.9, it follows that it has a
continuous selection, denote this selection by pΓF(t,S(v(·)),(d/dt)S(v(·))).

Clearly, a sufficiently small t1 > 0 satisfies the inequality t1 < L(m0,m1,kt1,a)
where L(m0,m1,kt1,a) is the number appearing in Theorem 2.3. We define the
number L(m0,m1,a) as the supremum of t1 such that t1 < L(m0,m1,kt1,a).

Let t0<L(m0,m1,a). Without loss of generality, we can suppose that I = [0, t0].
Consider the single-valued map

B : C0([0, t0],Tm0M
)−→ C0([0, t0],Tm0M

)
(3.5)

defined by the formula

Bv =
∫ t

0
pΓF

(
s,S
(
v(·) +Cv

)
,
d

dt
S
(
v(·) +Cv

))
ds, (3.6)

where Cv is the vector from Theorem 2.3.

Lemma 3.3. The map B : C0(I,Tm0M)→ C0(I,Tm0M) is completely continuous.

Proof. By the construction for all v and t, the sets ΓF(t,�(v(·)+Cv),(d/dt)�(v(·)
+Cv)) are bounded in Tm0M by the universal constant k. Hence, all selections
PΓF(t,S(v(t) + Cv),(d/dt)S(v(t) + Cv)), in particular, all pΓF(t,S(v(·) + Cv),
(d/dt)S(v(·)+Cv)), are bounded by the same constant. This means that all curves

∫ t

0
pΓF

(
s,�
(
v(·) +Cv

)
,
d

ds
S
(
v(·) +Cv

))
ds∈ C0(I,Tm0M

)
(3.7)

are uniformly bounded and equicontinuous. Hence, B(C0(I,Tm0M)) is compact
in C0(I,Tm0M).

By Theorem 2.9, B : C0(I,Tm0M)→ L1((I,�,µ),Tm0M) is continuous. Since
Cv continuously depends on v (see Theorem 2.3), this means that the vector

∫ l

0
pΓF

(
s,�
(
v(·) +Cv

)
,
d

ds
S
(
v(·) +Cv

))
ds∈ Tm0M (3.8)

is continuous in v ∈ C0(I,Tm0M). A very simple modification of the above ar-
guments show that for a specified t∗ ∈ I , the map sending v(·) ∈ C0(I,Tm0M)
to the restriction of pΓF(t,S(v(·) +Cv),(d/dt)S(v(·) +Cv)) on [0, t∗] is continu-
ous as a map from C0(I,Tm0M) to L1(([0, t∗],�,µ),Tm0M), hence we obtain that

the vector
∫ t∗

0 pΓF(s,�(v(·) +Cv),(d/ds)S(v(·) +Cv))ds is continuous jointly in
t and v for any specified t∗ ∈ I .
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Thus for any ε > 0, v ∈ C0(I,Tm0M), and t∗ ∈ I , there exists δ = δ(ε,v, t∗) > 0
such that if ‖v(·)− v1(·)‖C0(I,Tm0M) < (1/2)δ and |t− t′| < (1/2)δ,

∥∥∥∥
∫ t

0
pΓF

(
s,�
(
v(·)), d

ds
S
(
v(·))

)
ds

−
∫ t′

0
pΓF

(
s,�
(
v1(·)), d

ds
S
(
v1(·))

)
ds
∥∥∥∥
Tm0M

< ε.
(3.9)

Since I is compact, for given v, we can find unique δ = δ(ε,v) for all t ∈ I . This
completes the proof of continuity of B : C0(I,Tm0M)→ C0(I,Tm0M). �

Denote by Ukt0 the ball in C0([0, t0],Tm0M) with radius kt0 centered at the
origin. Since parallel translation preserves the norm of a vector, we can easily see
that B maps Ukt0 into itself and therefore it has a fixed point v0(·) in Ukt0 , that is,
v0(·)= Bv0(·).

Taking into account (3.6), we can see that the equation v0(·) = Bv0(·) is a
certain analogue of velocity hodograph equation (2.2). Thus, now we should
demonstrate that m(t) = S(v0(t) +Cv0 ) is the solution in question for (1.2). By
construction, m(0)=m0, m(t0)=m1, m(t) is a C1-curve, and ṁ(t) is absolutely
continuous. Since v0(·) is a fixed point of B,

v̇0(t)= pΓF
(
t,S
(
v0(t) +Cv0

)
,
d

dt
S
(
v0(t) +Cv0

))
(3.10)

and from the definition of pΓF(t,S(v0(t) +Cv0 ),(d/dt)S(v0(t) +Cv0 )), it follows
that a.e.

v̇0(t)∈ ΓF
(
t,S
(
v0(t) +Cv0

)
,
d

dt
S
(
v0(t) +Cv0

))
. (3.11)

Taking into account the properties of covariant derivative and the defini-
tion of operator Γ, and after parallel translation of v̇0(t) and ΓF(t,S(v0(t) +Cv0 ),
(d/dt)S(v0(t) + Cv0 )) along m(·) to the point m(t), we obtain (D/dt)ṁ(t) and
F(t,m(t), ṁ(t)), respectively. Thus, (D/dt)ṁ(t) ∈ F(t,m(t), ṁ(t)). This proves
Theorem 3.1.

Consider a set-valued bounded and Hausdorff continuous force A(t,m,X)
with convex closed images.

Definition 3.4. A point a in convex closed set A is called extreme if there does
not exist an open interval of straight line in A that includes a. The multimap
ExtA(t,m,X) is the set-valued map whose image at (t,m,X) consists of extreme
points of A(t,m,X).

Lemma 3.5. For the set-valued force A(t,m,X) mentioned above, the multimap
ExtA(t,m,X) is lsc.
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Lemma 3.5 is a well-known fact of set-valued analysis. See, for example, [7,
Lemma 2.1.1] and [2, Proposition 6.2]. Notice that ExtA(t,m,X) is bounded
and definitely may not have convex images.

Consider a bounded Hausdorff continuous force field A(t,m,X) with convex
closed images on M as above. We say that a trajectory m(t) of the mechanical
system with force A(t,m,X) is governed by extreme values of controlling force if
a.e. (D/dt)ṁ(t) belongs to ExtA(t,m(t), ṁ(t)) (see Definition 3.4).

Theorem 3.6. If m1 is not conjugate to m0 along at least one geodesic, there exists
a trajectory of the mechanical system with force A(t,m,X), joining m0 and m1, that
is governed by extreme values of the controlling force.

Proof. Consider the differential inclusion

D

dt
ṁ(t)∈ ExtA

(
t,m(t), ṁ(t)

)
. (3.12)

From boundedness of A(t,m,X), it follows that ExtA(t,m,X) is bounded. Since,
by Lemma 3.5, ExtA(t,m(t), ṁ(t)) is lsc, Theorem 3.6 follows from Theorem 3.1.

�

Theorem 3.6 is a criterion for controllability under the extreme values of con-
trolling force.

Theorem 3.1 can be subjected to a certain generalization.

Definition 3.7. Let I = [0, l] ⊂ R. The set-valued force field F : I × TM → TM
is called almost lsc if there exists a countable sequence of disjoint compact sets
{In}, In ⊂ I such that (i) the measure of I\ ∪n In is equal to zero and (ii) the
restriction of F on each In×TM is lsc.

Now consider (1.2) where F is almost lsc and bounded.

Corollary 3.8. The assertion of Theorem 3.1 remains true for F almost lsc and
bounded.

Corollary 3.8 follows from the fact that the set of measurable selections

PΓF
(
t,S
(
v(t)

)
,
d

dt
S
(
v(t)

))=
{
y : y(t)∈ ΓF

(
t,S
(
v(t)

)
,
d

dt
S
(
v(t)

))}
(3.13)

for almost lsc F is lsc (see details in [6]).

Remark 3.9. If M is a Euclidean linear space, any couple of points m0 �=m1 are
not conjugate along the straight line joining them and we can easily see that
the number L(m0,m1,k,a) > 0 from Theorem 2.3 is equal to ∞ (see, e.g., [3, 5]
for details). Hence the number L(m0,m1,a) from Theorem 3.1 is also equal to∞,
and so Theorem 3.1 and Corollary 3.8 are valid for any couple of points m0 �=m1

and any 0 < t0 <∞.
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