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We discuss the operator transforming the argument of a function in the L2-
setting. Here this operator is unbounded and closed. For the approximate so-
lution of ill-posed equations with closed operators, we present a new view on
the Tikhonov regularization.

1. Introduction

In theory and applications, many kinds of equations occur with transformed
argument, that is, with a transformation operator Tρ, defined on function spaces
by Tρx = x ◦ ρ. Examples are differential or integral equations with delay, the
algebraic approach of Przeworska-Rolewicz [6] with involutions, reflections or
rotations, control problems, and so forth.

In the spaces C(K) of continuous functions on a compact set K , the transfor-
mation operator Tρ is completely discussed (see [10]). Here we will consider the
question of (approximate) solvability of an equation

Tρx = y (1.1)

in the Hilbert space L2(K). The transformation operator in general is not con-
tinuous and the range is not closed. Equations of type (1.1) are ill posed. We will
use Tikhonov regularization for the approximate solution of (1.1). For this, we
have to develop a theory of Tikhonov regularization for unbounded operators
in Hilbert spaces.

2. The transformation operator

Let K ⊂Rn be a compact subset and X = L2(K). Let ρ : K → K be a continuous
surjective mapping with the property

(P) the image and the preimage of sets of measure zero are of measure zero.
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Remark 2.1. If ρ is continuously differentiable and the set Sρ of critical points of ρ
is of measure zero, then ρ has property (P). If ρ is continuously differentiable (or
Lipschitzian), it maps zero sets into zero sets. In every connecting component of
K \ Sρ, the map ρ is a diffeomorphism and ρ−1 maps zero sets into zero sets.

Let Tρ be the following transformation operator: for x ∈D(Tρ), we define

(
Tρx

)
(t)= x

(
ρ(t)

)
, (2.1)

where the domain of Tρ is

D
(
Tρ
)=

{
x ∈ L2(K) :

∫
K

∣∣x(ρ(t)
)∣∣2

<∞
}
. (2.2)

Then Tρ is a linear not necessarily bounded operator.

Theorem 2.2. If ρ satisfies property (P), then the operator Tρ : D(Tρ)→ L2(K) is
well defined, injective, and closed.

Proof. If two functions x, y differ by a function of measure zero, then

Tρx−Tρy = Tρ(x− y)= 0 (2.3)

by property (P), thus Tρ is well defined. If Tρx = 0, then x is equivalent to a zero
function, hence x = 0 and Tρ is injective.

Let (xn) be a sequence in D(Tρ) with limn→∞ xn = x and limn→∞Txn = y.
Then, there exists a subsequence (xnk ) with the property

limxnk (t)= x(t) a.e., limxnk
(
ρ(t)

)= y(t) a.e. (2.4)

The set M := {t ∈ K : limxnk (ρ(t)) �= x(ρ(t))} is of measure zero since M =
ρ−1(M′) with M′ := {s∈ K : limxnk (s) �= x(s)}. Since M′ is of measure zero and
ρ has property (P), the set M is of measure zero; hence

limxnk
(
ρ(t)

)= x
(
ρ(t)

)
a.e., x

(
ρ(t)

)= y(t) a.e. (2.5)

So we see that x ∈D(Tρ) and Tρx = y. �

It is easy to see that the characteristic functions of measurable subsets of K
belong to D(Tρ), hence the set of step functions is dense in D(Tρ). Now we
will show that the transformation operator is symmetric only in the trivial case
ρ = id, and in opposite to the case of C(K) the transformation operator is not
isometric except for ρ = id.

Theorem 2.3. Let Tρ : D(Tρ)→ X be a transformation operator with property (P).
Then,

(a) Tρ is symmetric if and only if ρ = id;
(b) Tρ is isometric if and only if ρ = id.
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Proof. If Tρ is symmetric, then for every x, y ∈ D(Tρ) we have 〈Tρx, y〉 =
〈x,Tρ y〉. Since the unit function x = 1∈D(Tρ), we get with Tρx = x

∫
K
y(t)dt =

∫
K
y
(
ρ(t)

)
dt. (2.6)

If there exists a t0 ∈ K with ρ(t0) �= t0, then there is a nonzero step function y
with the value one in an open cube C containing t0, such that C∩ ρ(C) =∅,
and the value zero outside of C. Then,

∫
K
y(t)dt =meas(K ∩C) �= 0,

∫
K
y(ρ(t))dt = 0. (2.7)

Hence ρ(t) = t for all t ∈ K . If Tρ is isometric, then for every x, y ∈ D(Tρ) we
have 〈Tρx,Tρ y〉 = 〈x, y〉. If we again use the unit function x and the step func-
tion y, then we have the desired result. �

3. Tikhonov regularization of equations with closed operators

Here we discuss the convergence and the speed of convergence for equations in
Hilbert spaces

Tx = y, (3.1)

where T : D(T)→ X2 is a densely defined closed operator with D(T) ⊂ X1. We
will see that the results and the proofs are very similar to the case of continuous
operators in Hilbert spaces, especially we will choose a different method as in
[9]. Our investigations strongly depend on the following result of von Neumann
[11].

Theorem 3.1. Let T : D(T) → X be a closed and densely defined operator in a
Hilbert space X . Then the operators

B = (I +T∗T
)−1

, C = T
(
I +T∗T

)−1
,

A= T∗T
(
I +T∗T

)−1 (3.2)

are continuous and bounded by

‖B‖ ≤ 1, ‖C‖ ≤ 1
2
, ‖A‖ ≤ 1. (3.3)

Proof. The continuity and the bound of B is shown by von Neumann, also the
continuity of C, see also [8]. The equation A+B = I is easy to verify. Since B is
positive definite, ‖B‖ ≤ 1, we get

0≤A= I −B ≤ I, (3.4)
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hence ‖A‖ ≤ 1. Finally from

C∗C = BA= B−B2, (3.5)

we obtain, with 0≤ B ≤ I ,

‖BA‖ = sup
0≤β≤1

(
β−β2)= 1

4
, ‖C‖ ≤ 1

2
. (3.6)

�

By easy calculations, we can show the following corollary.

Corollary 3.2. LetAα = T∗T(αI +T∗T)−1, Bα = (αI +T∗T)−1, andCα = T(αI
+T∗T)−1. Then for all positive reals α, the operators Aα, Bα, and Cα are continuous
with

∥∥Aα

∥∥≤ 1,
∥∥Bα

∥∥≤ 1
α
,

∥∥Cα

∥∥≤ 1
2
√
α
. (3.7)

If T is not surjective, then equation

Tx = y (3.8)

is ill posed, also in the case when y ∈ RangeT . In this case, Tikhonov regulariza-
tion is a widely used method for a stable approximation of the solution of (1.1)
(see, e.g., [2]).

For every α > 0, we determine the approximation xα of the solution x̂ of (3.8)
using the equation

(
αI +T∗T

)
xα = T∗y. (3.9)

In the next theorem, we show that xα converge to x̂.

Theorem 3.3. Let T be injective, densely defined, and closed. Then for every y ∈
RangeT , the elements xα defined by

xα = T∗
(
αI +TT∗

)−1
y (3.10)

converge to the solution x̂ of (3.8) if α tends to zero.

Proof. With the notation of Corollary 3.2, we have

xα = C∗α y = C∗α Tx̂ = Aαx̂, xα− x̂ = αBαx̂. (3.11)

The family of continuous operators αBα, α > 0, is uniformly bounded by one.
Since A is injective, RangeAν is dense in X for 0 < ν ≤ 1. For x̂ ∈ RangeAν, we
obtain

xα− x̂ = αBαA
νû. (3.12)
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Now we estimate

xα− x̂ = αBαA
νû= αν

(
T∗T
α

)ν(
I +

T∗T
α

)−1

Bνû (3.13)

and (if ν < 1)

∥∥xα− x̂
∥∥≤ αννν(1− ν)1−ν

∥∥Bνû
∥∥

≤ αννν(1− ν)1−ν‖û‖ (3.14)

(resp., ‖xα − x̂‖ ≤ αν‖û‖ = α‖û‖ if ν = 1). Therefore, we have convergence on
a dense set, by the uniform boundedness principle we have convergence for all
x̂ ∈ X . �

Checking this proof, we see the following corollary.

Corollary 3.4. If x̂ ∈ RangeAν, 0≤ ν≤ 1, then the speed of convergence

∥∥xα− x̂
∥∥= �

(
αν
)
. (3.15)

In the ill-posed cases, that is, if T is not surjective, then (3.8) is not solvable
for a set of second category. Let {yδ,δ > 0} be a family of elements in X2 with
‖y− yδ‖ ≤ δ. Then, we have to discuss the behaviour of xα,δ defined by

xα,δ = T∗
(
αI +TT∗

)−1
yδ. (3.16)

Theorem 3.5. Let y ∈ Range(T), yδ ∈D(T∗), and ‖y− yδ‖ ≤ δ. Then,

∥∥xα− xα,δ
∥∥≤ δ

2
√
α
. (3.17)

Proof. We have

∥∥xα− xα,δ
∥∥= ∥∥C∗α (y− yδ

)∥∥≤ ∥∥C∗α ∥∥ · δ ≤ δ

2
√
α
. (3.18)

�

If we additionally assume x̂∈ RangeAν, then we have the following corollary.

Corollary 3.6. Let x̂ ∈ RangeAν, 0 < ν≤ 1, then

∥∥x̂− xα,δ
∥∥= �

(
δ2ν/(2ν+1)). (3.19)
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Remark 3.7. This speed of convergence is the optimal speed with a priori in-
formation. Of course this information is in general not available. But about the
choice of the parameter α in the Tikhonov regularization with perturbed data
for equations with unbounded operators, some results exist, for example, Cheng
and Yamamoto [1], Hegland [3], Ivanov et al. [4], Liskovets [5], and Ramm [7].

4. Computational remarks

SinceD(Tρ) is dense in L2(K), the adjoint operatorT∗ρ is well defined, but only in
the case where ρ is a (simple) diffeomorphism of K , T∗ρ can be given explicitly.
But if in the case when one solves (1.1) by the Galerkin method, this is not a
disadvantage: the Galerkin method consists in solving the equation

(
αI +PnT

∗
ρ TρPn

)
xGα = PnT

∗
ρ y, (4.1)

where xGα is contained in a finite-dimensional subspace Xn of X with an or-
thoprojection Pn : X → Xn. If u1, . . . ,un is an orthonormal basis of Xn, then the
Fourier coefficients ξj of xGα can be determined by the equations

αξj +
∑

ξk
〈
Tρuk,Tρuj

〉= 〈y,Tρuj
〉

(4.2)

for j = 1,2, . . . ,n. So the form of the operator T∗ρ is not necessary.
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