
PERIODIC SOLUTIONS OF NONLINEAR
VIBRATING BEAMS

J. BERKOVITS, H. LEINFELDER, AND V. MUSTONEN

Received 1 October 2002

The aim of this paper is to prove new existence and multiplicity results for peri-
odic semilinear beam equation with a nonlinear time-independent perturbation
in case the period is not prescribed. Since the spectrum of the linear part varies
with the period, the solvability of the equation depends crucially on the period
which can be chosen as a free parameter. Since the period of the external forc-
ing is generally unknown a priori, we consider the following natural problem.
For a given time-independent nonlinearity, find periods T for which the equa-
tion is solvable for any T-periodic forcing. We will also deal with the existence
of multiple solutions when the nonlinearity interacts with the spectrum of the
linear part. We show that under certain conditions multiple solutions do exist
for any small forcing term with suitable period T . The results are obtained via
generalized Leray-Schauder degree and reductions to invariant subspaces.

1. Introduction

We consider beam equation of the form

∂2
t u+α2

0∂
4
xu− g(x,u)= h(x, t),

u(0, t)= u(L,t)= ∂2
xu(0, t)= ∂2

xu(L,t)= 0
(
x ∈ ]0,L[, t ∈R

)
,

u(x, t)= u(x, t+T),

(1.1)

where h is the forcing term being T-periodic in t, and α0 > 0 is a constant. The
function g(x,s) from [0,L]×R to R is measurable in x for each s∈R and con-
tinuous in s for a.a. x ∈ [0,L]. Moreover, we assume that g(x,·) has utmost linear
growth. Essential to our considerations is that g is time independent. Hence we
will look for periodic solutions where the period T is determined by the forcing
term h alone.
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824 Periodic solutions of nonlinear vibrating beams

With suitable nonlinearity g, (1.1) provides a reasonable model for the road
bed of a suspension bridge, where the road bed is being treated as a vibrating
beam.

After rescaling, denoting ω = 2π/T and renaming α2
0(π4/L4) again by α2

0, we
obtain the equivalent equation

ω2∂2
t u+α2

0∂
4
xu− g(x,u)= hω(x, t),

u(0, t)= u(π,t)= ∂2
xu(0, t)= ∂2

xu(π,t)= 0
(
x ∈ ]0,π[, t ∈R

)
,

u(x, t)= u(x, t+ 2π),

(1.2)

where hω(x, t) = h(x,ω−1t). Note that with these notations the case ω = α0 = 1
corresponds to the standard situation with period T = 2π being widely studied
in the literature.

We will study the existence of weak solutions of (1.2), that is, solutions of the
operator equation

Lωu−N(u)= hω, u∈D
(
Lω
)

(1.3)

in H = L2(Ω;R) for Ω= ]0,π[× ]0,2π[, where N is the Nemytskii operator gen-
erated by g, and Lω : D(Lω)⊂H →H is the abstract realization of the beam op-
erator. We will apply the extension of the Leray-Schauder degree introduced by
Berkovits and Mustonen [3] for a class of mappings related to our model prob-
lem. Basically, homotopy arguments are used to obtain existence results for (1.3).
Moreover, for certain nonlinearities, we can apply the Banach fixed-point theo-
rem to obtain unique solutions.

By using suitable reductions to invariant subspaces, we find solutions for (1.3)
provided that N and h satisfy some auxiliary symmetry conditions. Indeed, if the
beam operator Lω is reduced by a closed linear subspace V and N(V)⊂ V , any
solution of the reduced equation

Lω
∣∣
Vu−N

∣∣
V (u)= hω, u∈D

(
Lω
)∩V, hω ∈V, (1.4)

is also a solution for the original operator equation (1.3). In case of the wave
equation, the method of reduction to suitable subspaces was already used by Ve-
jvoda et al. [12] and Coron [7] (see also [4, 5]). The same idea was employed
earlier in the study of periodic solutions for ordinary differential equations (see,
e.g., [9]). The reader may observe that the reductions yield restrictions for the
nonlinear operatorN , leaving the treatment of the problem with generalN open.
From a purely abstract point of view, we may replace Lω by −Lω in our consid-
erations. Hence, our results have a counterpart now concerning the equation

Lωu+N(u)= hω, u∈D
(
Lω
)
. (1.5)

Note however that due to the asymmetry of the spectrum of the beam operator,
the conditions are different for the solvability for (1.3) and (1.5), respectively.
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Semilinear wave and beam equations with fixed period are widely studied in
the literature. We would like to mention here [1, 6, 8, 10, 11] and the references
therein.

The paper is organized as follows. In Section 2, we define the operator equa-
tion and show how the spectrum of the linear part depends on the period T =
2π/ω (see Lemma 2.1). Some appropriate subspaces for the reduction method
are collected in Lemmas 2.2 and 2.3. Section 3 is devoted to nonresonance. We
obtain sufficient conditions for the time-independent nonlinearity g = g(x,u)
and the period T of the forcing term such that (1.1) admits a weak solution
for any T-periodic forcing term h. Finally, in Section 4, we are looking for the
existence of multiple solutions. We show that under certain conditions on the
interaction between the nonlinearity and the spectrum of the beam operator,
multiple solutions do exist for any small forcing term h with suitable period T .
The methods and the results are illuminated by several examples.

2. Prerequisites

We recall first the basic properties of the linear operators involved. Denote H =
L2(Ω;R), HC =H + iH = L2(Ω;C), and φj,k(x, t)= (1/π)sin( jx)exp(ikt), where
(x, t)∈Ω, j ∈ Z+, and k ∈ Z. The set {φj,k} forms an orthonormal basis in HC.
We will use the notations 〈·,·〉 and ‖ · ‖ for the inner product and norm in any
real Hilbert space and the subscript “C” whenever the product is complex. The
beam operator ω2∂2

t + α2
0∂

4
x with periodic Dirichlet boundary conditions has in

H the abstract realization

Lωu=
∑
j,k

λωj,k
〈
u,φj,k

〉
C
φj,k, (2.1)

with λωj,k = α2
0 j

4−ω2k2, j ∈ Z+, k ∈ Z and

D
(
Lω
)=

{
u∈ L2(Ω) |

∑
j,k

∣∣λωj,k∣∣2
∣∣∣〈u,φj,k

〉
C

∣∣∣2
<∞

}
. (2.2)

Clearly, each λωj,k is an eigenvalue of Lω with corresponding eigenvector φj,k. We
will always assume that ω ∈ α0Q, that is, α0/ω is rational. Otherwise, we en-
counter the hard problem of “small divisors,” see [5], for instance. Clearly, Lω
is selfadjoint and has a compact partial inverse on ImLω. For more details on
abstract operators like beam operators, we refer to [2].

We consider more closely the spectrum σ(Lω) of the operator Lω. For any ω ∈
α0Q+, it is easy to see that KerLω is infinite dimensional and Lω has pure point
spectrum σ(Lω) = {λωj,k | j ∈ Z+, k ∈ Z}. The eigenvalues are isolated and all
nonzero eigenvalues have finite geometric multiplicity. Note that the spectrum
is unbounded from below and from above.

For the readers convenience, we recall here some basic facts about the topo-
logical degree theory introduced in [3]. Let H be a real separable Hilbert space
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and L : D(L) ⊂ H → H a linear densely defined normal operator with ImL =
(KerL)⊥. The inverse K of the restriction of L to ImL∩D(L) is a bounded linear
operator on ImL. We will further assume that the inverse K is compact. Denote
by P and Q = I − P the orthogonal projections to KerL and ImL = (KerL)⊥,
respectively. For any map N : H →H , the equation

Lu±N(u)= 0, u∈D(L), (2.3)

can be written equivalently as

Q
(
u±KQN(u)

)
+PN(u)= 0, u∈H. (2.4)

Above we have used the fact that KQ± P is the right inverse of L± P. If N is
bounded, demicontinuous, and of class (S+), then there exists a topological de-
gree for mappings of the form F =Q(I +C) +PN , where C is compact (see [3]).
We recall that N is of class (S+) if for any sequence with uj ⇀ u, limsup〈N(uj),
uj −u〉 ≤ 0, it follows that uj → u.

The degree theory in [3] is a unique extension of the classical Leray-Schauder
degree. It is single valued and has the usual properties of degree, such as additiv-
ity of domains and invariance under homotopies. We denote the corresponding
degree function by dH . In order to simplify our notations, we define a further
degree function “deg” by setting

deg
(
L±N,G,0

)≡ dH
(
Q(I ±KQN) +PN,G,0

)
(2.5)

for any open set G ⊂ H such that 0 �∈ (L±N)(∂G∩D(L)). In the sequel, the
term “admissible map” refers to any map for which the degree is well defined.
Similarly, we use the term “admissible homotopy.” We will employ the fact that

deg(L−N,G,0) �= 0 (2.6)

for any linear admissible injection such that 0∈ (L−N)(G) (see [3]). Note that
if N is strongly monotone, then it is of class (S+). If N is only monotone, then
it is pseudomonotone and we can replace N by N + εI , ε > 0, which is of class
(S+), and then let ε→ 0.

We start with some results on the distribution of the spectrum of Lω in com-
pact intervals depending on the parameter ω.

Lemma 2.1. Let [a,b] be a given compact interval in R. Then

(i) there exist arbitrarily small and arbitrarily large values of ω ∈ α0Q+ such
that [a,b]∩ σ(Lω) �= ∅;

(ii) there exists a limit value ω̃ > 0 such that [a,b]∩ σ(Lω) �= ∅ for all ω ≤ ω̃
satisfying ω ∈ α0Q+;

(iii) if ω ∈ α0Z+ satisfies α0ω ≥max{|a|,|b|}, then

[a,b]∩ (σ(Lω) \ {0})= {α2
0 j

4 | a≤ α2
0 j

4 ≤ b, j ∈ Z+
}
. (2.7)
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Proof. Assume that k > 0. Denote c2
j = j4 − b/α2

0 and d2
j = j4 − a/α2

0, where j ≥
j0 and j0 =min{ j ∈ Z+ | j4 > b/α2

0}. Then a ≤ λωj,k ≤ b if and only if kω/α0 ∈
[cj ,dj] for any j ≥ j0. Take some r j ∈ [cj ,dj]∩Q and denote ωj,k = α0r j /k. Then

a ≤ λ
ωj,k

j,k ≤ b for all j ≥ j0. By taking k = 1 and k = j3, respectively, one can see
that there are arbitrarily small and arbitrarily large values of ω ∈ α0Q+ such that
[a,b]∩ σ(Lω) �= ∅. If ω̃ ≤ α0(dj0 − cj0 ), then, it is easy to see that for any ω ≤ ω̃,
kω/α0 ∈ [cj0 ,dj0 ] for some k ∈ Z+. Due to the special status of the eigenvalues
λ= 0 and λωj,0, j ∈ Z+, it is sufficient to consider eigenvalues λωj,k, j ∈ Z+, k ∈ Z+,
to prove (iii). Indeed, if ωq = α0q, where q ∈ Z+, then

∣∣λωq

j,k

∣∣= α2
0

∣∣ j2− qk
∣∣( j2 + qk

)≥ ∣∣ j2− qk
∣∣α2

0(1 + q). (2.8)

Hence, if λ
ωq

j,k �= 0, then |λωq

j,k| > max{|a|,|b|} and the conclusion follows. �

By Lemma 2.1, one can see that the eigenvalues λ = 0 and λ = λωj,0, j ∈ Z+,
play a special role. In order to deal with these exceptional eigenvalues, we will
look for solutions of (1.3) in suitable invariant subspaces in the sequel. If the
operator Lω is reduced by a closed subspace V ⊂ H , then σ(Lω) = σ(Lω|V )∪
σ(Lω|V⊥), implying that the spectrum of Lω in V is thinner than the spectrum
of Lω in H . The main problem is to find natural conditions ensuring N(V)⊂V .
For a given continuous function g : R→R, appropriate subspaces are provided
by the following lemmas. Therein, the function g has to satisfy the condition

∣∣g(s)
∣∣≤ c1 + c2|s| (s∈R) (2.9)

with suitable nonnegative constants c1 and c2. The corresponding nonlinear op-
erator N is then given by

N(u)(x, t)= g
(
u(x, t)

) (
(x, t)∈Ω, u∈H

)
. (2.10)

Lemma 2.2. Assume that g satisfying (2.9) is odd, and that for r ∈ Z+, r ≥ 2, the
subspace V is given by

V =Vr :=
{
u∈H | u

(
x+

2π
r
, t
)
= u(x, t) for a.a. t ∈ ]0,2π[, x ∈

]
0,π− 2π

r

[
,

u
(

2π
r
− x, t

)
=−u(x, t) for a.a. t ∈ ]0,2π[, x ∈

]
0,

2π
r

[}

= sp
C

{
φj,k | j ∈ rZ+, k ∈ Z

}∩H.
(2.11)

Then N(V)⊂V and the operator Lω is reduced by V .
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Lemma 2.3. Assume that g satisfies (2.9), k0 ∈ Z+, and the subspace V is defined
by one of the following cases:

V =W := {u∈H | u(π− x, t)= u(x, t) for a.a. x ∈ ]0,π[, t ∈ ]0,2π[
}

= sp
C

{
φj,k | j ∈ Z+, j is odd, k ∈ Z

}∩H,

V=Zk0 :=
{
u∈H | u

(
π− x, t+

π

k0

)
=u(x, t) for a.a. x∈]0,π[, t∈

]
0,2π− π

k0

[}

= sp
C

{
φj,k | j ∈ Z+, k = k0l, l ∈ Z, j + l is odd

}∩H, k0 is odd,

V = Ek0 :=
{
u∈H | u

(
x, t+

2π
k0

)
= u(x, t) for a.a. x ∈ ]0,π[, t ∈

]
0,2π− 2π

k0

[}

= sp
C

{
φj,k | j ∈ Z+, k ∈ k0Z

}∩H.
(2.12)

Then N(V)⊂V and the operator Lω is reduced by V .

Proof. To prove the lemmas above, one only has to show the validity of the
claimed characterizations of the subspaces Vr , W , Zk0 , and Ek0 . We start with
the subspace V = Vr . Obviously it suffices to show that 〈u,φj,k〉 = 0 if u ∈ Vr

and j �∈ rZ+. But this is clear since for fixed t ∈ [0,2π], the Fourier coefficients
1/
√
π〈û(·, t),sin j(·)〉 vanish if j �∈ rZ+ because the odd 2π-periodic extension

û(·, t) of u(·, t) is actually 2π/r-periodic. By similar arguments, one can show
the characterizations of the spaces W and Ek0 above. In case V =W , one has to
remember that, for u ∈W and for fixed t ∈ [0,2π], the function û(·, t) is even
with respect to π/2 and in case V = Ek0 , one argues that, for u ∈ Ek0 and for
fixed x ∈ [0,π], the 2π-periodic extension û(·, t) of u(·, t) is 2π/k0-periodic in
x. The characterization of the subspace Zk0 cannot be obtained in a similar way
since now the underlying symmetries concern both variables x and t. Since only
the case k0 = 1 is actually used in this paper (see Theorem 3.6), we will give a
proof just for this case (being really the crucial one). To do so, let Q1 = (0,π)2

and Q2 = (0,π)× (π,2π) so that Q = Q1 ∪Q2 and let S(x, t) = (π − x, t + π) if
(x, t)∈Q1. We like to show that 〈u,φj,k〉 = 0 if u∈ Z1 and j + k even. Clearly,

〈
u,φj,k

〉= 〈u,φj,k
〉
L2(Q1) +

〈
u,φj,k

〉
L2(Q2). (2.13)

Since S, and thus also S−1, is measure preserving and u ◦ S = u|Q1 for u ∈ Z1 as
well as φj,k ◦ S= (−1) j+k+1φj,k|Q1 , we get

〈
u,φj,k

〉
L2(Q2) =

〈
u◦ S,φj,k ◦ S

〉
L2(Q1) = (−1) j+k+1〈u,φj,k

〉
L2(Q1). (2.14)

This yields 〈u,φj,k〉 = (1 + (−1) j+k+1)〈u,φj,k〉L2(Q1) = 0 if j + k is even. �

We have formulated the definitions of the subspaces in Lemmas 2.2 and 2.3 in
such a way that the necessity of the oddness assumption on g is clear whenever
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needed. This fact might appear not so obvious if the definitions were made by
using odd 2π-periodic extensions in x, which is the easiest way. For instance, the
space Vr in Lemma 2.2 consists of all functions u such that its odd 2π-periodic
extension in x is also 2π/r-periodic. Note also that in case V = Ek0 , we can allow
g to be x-dependent.

3. Nonresonance: existence and surjectivity results

By nonresonance we generally refer to the surjectivity of the corresponding map-
ping. However, if we restrict the operator to some invariant subspace, the non-
resonance in that space implies that the subspace is included in the range of the
mapping. Hence, there is a minor ambiguity in the use of the term “nonreso-
nance.” As before, we assume that the function g(x,s) from [0,π]×R to R is
measurable in x for each s∈R and continuous in s for a.a. x ∈ [0,π]. Moreover,
we assume that g(x,·) has utmost linear growth, that is,

∣∣g(x,s)
∣∣≤ c0|s|+ k0(x) (3.1)

for all s ∈ R, a.a. (x, t) ∈Ω, and with some constant c0 ≥ 0 and k0 ∈ L2(]0,π[).
We denote by N the Nemytskii operator given by

N(u)(x, t)= g
(
x,u(x, t)

) (
(x, t)∈Ω, u∈H

)
. (3.2)

Our first result is based on the standard use of the Banach fixed-point theorem.

Theorem 3.1. Assume that 0 �∈ [a,b], { j ∈ Z+ | a ≤ α2
0 j

4 ≤ b} = ∅, and g =
g(x,s) satisfies

a≤ g(x,s)− g(x, ŝ)
s− ŝ

≤ b ∀s �= ŝ. (3.3)

Then, for all ω ∈ α0Z+ such that α0ω ≥max{|a|,|b|}, the equation

Lωu−N(u)= hω, u∈D
(
Lω
)
, (3.4)

admits a unique solution for any 2π/ω-periodic forcing h term such that hω ∈H .

Proof. Let ω ∈ α0Z+ such that α0ω ≥ max{|a|,|b|}. Then, in view of Lemma
2.1(iii), we know that [a,b]∩ σ(Lω) =∅. First we notice that u is a solution of
(3.4) if and only if

u=G(u) := (Lω− c0I
)−1(

N(u)− c0u
)
, (3.5)

where c0 is the midpoint of the interval [a,b]. Due to our assumptions on g(x,s),

∣∣g(x,s)− g(x, ŝ)− c0(s− ŝ)
∣∣≤ b− a

2
|s− ŝ| (

x ∈ ]0,π[, s, ŝ∈R
)
, (3.6)
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which yields

∥∥N(u)−N(v)− c0(u− v)
∥∥≤ b− a

2
‖u− v‖ (u,v ∈H), (3.7)

and thus

∥∥G(u)−G(v)
∥∥≤ ∥∥∥(Lω− c0I

)−1
∥∥∥ (b− a)

2
‖u− v‖ (u,v ∈H). (3.8)

Since ‖(Lω − c0I)−1‖ = dist(c0,σ(Lω))−1 and dist(c0,σ(Lω)) > (b− a)/2 in view
of [a,b]∩ σ(Lω)=∅, the operator G turns out to be a contraction. Hence, the
proof is complete due to the Banach fixed-point theorem. �

We prove the following more general result using the degree theory con-
structed in [3].

Theorem 3.2. Assume that 0 �∈ [a,b] and { j ∈ Z+ | a≤ α2
0 j

4 ≤ b} =∅. Suppose
g(x,·) is nondecreasing and satisfies

a≤ g(x,s)
s

≤ b ∀s �= 0. (3.9)

Then, for all ω ∈ α0Z+ such that α0ω > max{|a|,|b|}, (3.4) admits at least one
solution for any 2π/ω-periodic forcing h term such that hω ∈H . In the special case
h= 0, (3.4) has the unique trivial solution u= 0.

Proof. Note that b > a > 0 by the assumptions of the theorem. Assume first that
N is strongly monotone. By Lemma 2.1(iii) and due to our assumptions, we can
take ω ∈ α0Q+ such that [a,b]∩ σ(Lω) =∅. Let h be a 2π/ω-periodic forcing
term such that hω ∈H and consider the admissible homotopy equation

Lωu− c0u= µ
(
N(u)− c0u−hω

)
, u∈D

(
Lω
)
, 0≤ µ≤ 1, (3.10)

where c0 is the midpoint of the interval [a,b]. Then it is easy to see that

∥∥N(u)− c0u
∥∥≤ b− a

2
‖u‖, u∈H, (3.11)

and consequently, for any solution u of the homotopy equation

‖u‖ ≤
∥∥∥(Lω− c0I

)−1
∥∥∥ (b− a)

2

(‖u‖+
∥∥hω∥∥). (3.12)

Since ‖(Lω − c0I)−1‖ = dist(c0,σ(Lω))−1 and dist(c0,σ(Lω)) > (b− a)/2, the so-
lution set of the homotopy equation remains bounded (in case h= 0 we have 0).
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Hence, there exists R > 0 such that

deg
(
Lω−N,BR(0),hω

)= deg
(
Lω− c0I,BR(0),0

) �= 0. (3.13)

Consequently, a solution exists and the first part of the proof is complete.
If g is nondecreasing and hence N not necessarily strongly monotone, we

follow the standard procedure, that is, replace N by N + εI in the above proof
and then let ε→ 0. Indeed, it is easy to see that there exists ε0 > 0 such that the
assumptions of the theorem remain valid for all 0 < ε < ε0 if we replace a and b
by a+ ε and b+ ε, respectively. Consequently,

Lωu−
(
N(u) + εu

)= hω, u∈D
(
Lω
)
, (3.14)

admits a solution uε and it is not hard to see that ‖uε‖ < R for all 0 < ε < ε0

with R independent of ε. Take any sequence (ε j) such that ε j → 0+ and denote
vj = uε j . At least for a subsequence, we can assume that vj ⇀ v ∈ BR(0). By the
compactness of the partial inverse of Lω, we get

lim
〈
N
(
vj
)
,v j − v

〉= 0, (3.15)

and since N is monotone, hence pseudomonotone, we have N(vj)⇀N(v). Thus
Lωv−N(v)= hω completing the proof. �

Remark 3.3. Due to the asymmetry of the spectrum, the equation

Lωu+N(u)= hω, u∈D
(
Lω
)
, (3.16)

where g(x,·) is nondecreasing and satisfies (3.9) with 0 �∈ [a,b] admitting at least
one solution for any 2π/ω-periodic forcing h term such that hω ∈H , provided
ω ∈ α0Z+ is such that α0ω ≥max{|a|,|b|}. Indeed, if we replace Lω by −Lω, the
condition { j ∈ Z+ | a≤−α2

0 j
4 ≤ b} =∅ is trivially satisfied.

Example 3.4. Assume that α0 = 1 and define

g(x,s)= a(x)s+d(x)
(
(s+ 1)1/3− 1

)
, s∈R, (3.17)

where a,d ∈ L∞(]0,π[), a(x)≥ a > 1, d(x)≥ 0, and ‖a‖∞ + (4/3)‖d‖∞ < 16. It is
easy to see that N is monotone and

a≤ g(x,s)
s

≤ b ∀s �= 0, (3.18)

with b = ‖a‖∞ + (4/3)‖d‖∞. By Theorem 3.2, (3.4) admits a solution for any
2π/ω-periodic forcing h term such that hω ∈ H , provided that ω ∈ Z+ and
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ω ≥ b =max{|a|,|b|}. Note that

sup
s �=ŝ

g(x,s)− g(x, ŝ)
s− ŝ

=∞ (3.19)

and thus Theorem 3.1 does not apply.

We would like to mention a slightly more abstract version of Theorems 3.1
and 3.2 which will be used later on.

Proposition 3.5. Suppose A is a selfadjoint operator in a real separable Hilbert
space V . Assume that the spectrum of A consists only of isolated eigenvalues λ and
that their multiplicities are finite for all λ �= 0. Suppose σ(A)∩ [a,b]=∅ and the
nonlinear operator N : V →V is demicontinuous.

(1) If N is monotone and satisfies condition (3.11), then the equation

Au−N(u)= h (3.20)

admits at least one solution u∈D(A) for any right-hand side h∈ V . Moreover, if
the multiplicity of λ= 0 is finite, then no monotonicity of N is needed.

(2) If N satisfies condition (3.7), then (3.20) admits a unique solution u for any
right-hand side h∈V .

(3) If N satisfies condition (3.11), then the homogeneous equation

Au−N(u)= 0 (3.21)

has only the trivial solution u= 0.

Proof. Proposition 3.5 follows immediately by inspecting and adapting the
proofs of Theorems 3.1 and 3.2. �

We note that if N is given by g = g(x,s), condition (3.9) implies (3.11), and
(3.7) follows directly from condition (3.3).

The existence results in Theorems 3.1 and 3.2 were obtained in the case where
σ(Lω)∩ [a,b] =∅. If, on the other hand, σ(Lω)∩ [a,b] �= ∅, then in view of
Proposition 3.5 and Lemmas 2.2 and 2.3, we can still look for possible invariant
subspaces V of H to eliminate that part of the spectrum of Lω belonging to [a,b].
Hence, in some cases, we can find an invariant subspace such that σ(Lω|V )∩
[a,b]=∅. In the following two theorems, we will deal separately with the cases
where 0∈ [a,b] or { j ∈ Z+ | a≤ α2

0 j
4 ≤ b} �=∅.

Theorem 3.6. Assume 0 ∈ [a,b] and { j ∈ Z+ | a ≤ α2
0 j

4 ≤ b} =∅. Choose ω ∈
α0Q+ such that σ(Lω)∩ [a,b]= {0} and write α0ω−1 = p/q with p and q relatively
prime. Suppose g satisfies

a≤ g(s)
s
≤ b ∀s �= 0. (3.22)
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Then, for any 2π/ω-periodic forcing term h such that hω ∈W ∩E2n+1 (see Lemma
2.3), the equation

∂2
t u+α2

0∂
4
xu− g(u)= h(x, t),

u(0, t)= u(π,t)= ∂2
xu(0, t)= ∂2

xu(π,t)= 0
(
x ∈ ]0,π[, t ∈R

)
,

u(x, t)= u(x, t+T) with T = 2πω−1,

(3.23)

admits a weak solution u with uω ∈W ∩E2n+1 . Here n is the power of the integer 2
in the decomposition of p into prime numbers.

Moreover, if both p and q are odd and if h is such that hω ∈ Z1, then (3.23)
admits a weak solution u with uω ∈ Z1.

Proof. According to Proposition 3.5 and Lemmas 2.2 and 2.3, it suffices to find
a reducing subspace V such that 0 �∈ σ(Lω|V ). We will take V =W ∩ E2n+1 and
show that the eigenvalue λ= 0 of Lω is “dropped” by reducing Lω to the subspace
V . Indeed, using α0ω−1 = p/q, the identity

0= λ= α2
0 j

4−ω2k2 = α2
0

p2

(
p j2− qk

)(
p j2 + qk

) (
j ∈ Z+, k ∈ Z

)
(3.24)

holds true if and only if

p j2 = qk with j,k ∈ Z+. (3.25)

If we assume that λ= 0 is an eigenvalue of Lω|V , then the integer j would be odd
and k ∈ 2n+1Z+ in identity (3.25). Moreover, in view of (3.25), the integer 2n+1

would divide p j2. Hence, due to the definition of n, the prime number 2 would
divide j contradicting the oddness of j. If, moreover, both p and q are odd, then
we conclude from identity (3.25) that j and k are either both odd or both even.
In any case, j + k turns out to be even. It is now clear that one only needs to take
V = Z1 from Lemma 2.3 to see that 0 cannot be an eigenvalue of Lω|V . �

Theorem 3.7. Assume that 0 �∈ [a,b] and J = { j ∈ Z+ | a ≤ α2
0 j

4 ≤ b} �= ∅ and
denote jm =max{ j | j ∈ J}. Suppose g is odd, nondecreasing, and satisfying

a≤ g(s)
s
≤ b ∀s �= 0. (3.26)

Let ω ∈ α0Q+ be such that σ(Lω)∩ [a,b]= {α2
0 j

4 | j ∈ J}.
Then, given r > jm, (3.23) admits a weak solution u satisfying uω ∈ Vr for any

2π/ω-periodic forcing term h such that hω ∈Vr .

Proof. To “drop” the eigenvalues λωj,0 = α2
0 j

4 from the spectrum of Lω, we choose,
according to Lemma 2.2, the reducing subspace V = Vr with r > jm. Then
σ(Lω|Vr )∩ [a,b]=∅ and Proposition 3.5 applies. �

We close this section by an example related to the Fučı́k spectrum of the beam
operator.
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Example 3.8. Consider the equation

Lωu= νu+−µu− +hω, u∈D
(
Lω
)
. (3.27)

It is well known that the complete structure of the Fučı́k spectrum of the beam
operator is still unknown. We will deal only with some special choices of the
constants ν and µ in (3.27). For the following, it is convenient to introduce the
nonlinear function

g(s)= νs+−µs−, (3.28)

which satisfies the estimate

min(ν,µ)≤ g(s)− g(ŝ)
s− ŝ

≤max(ν,µ) ∀s �= ŝ. (3.29)

(a) Assume first that µ > ν > 0. If [ν,µ]∩{α2
0 j

4 | j ∈ Z+} =∅. Then, for any
ω ∈ α0Z+ such that α0ω ≥ µ=max(|ν|,|µ|), we have σ(Lω)∩ [ν,µ]=∅. Conse-
quently, (ν,µ) does not belong to the Fučı́k spectrum of Lω and, by Theorem 3.1,
(3.27) admits a unique solution for any 2π/ω-periodic forcing term h such that
hω ∈H . Similar result holds if ν > µ > 0.

(b) Assume that µ < ν < 0. Then, for all ω∈ α0Z+ such that α0ω ≥ |µ|, we have
σ(−Lω)∩ [µ,ν]=∅. Hence, (ν,µ) is not in the Fučı́k spectrum of Lω and (3.27)
admits a unique solution for any 2π/ω-periodic function h such that hω ∈ H .
Similar result holds if ν < µ < 0.

(c) Assume that µ= 0 and −ν= b > 0. Then (3.27) reduces to

Lωu+ bu+ = hω, u∈D
(
Lω
)
, (3.30)

with b > 0, being a good one-dimensional model for the main span of a suspen-
sion bridge, where the supporting cable stays are assumed not to exert restor-
ing forces whenever compressed. The constant b is determined by Hooke’s Law
and it represents the stiffness of the cables. We consider the problem in space
Z1. It is easy to see that there exists ω ∈ α0Z+ such that Ker(Lω|Z1 ) = {0} and
σ(−Lω|Z1 )∩ [0,b]=∅ (any ω = α0q,α0ω ≥ b,q odd will do). Hence, (3.30) ad-
mits a unique solution for any 2π/ω-periodic forcing term h such that hω ∈ Z1.

4. Interaction with the spectrum: multiple solutions

We will now study the existence of multiple weak solutions for the semilinear
beam equation

∂2
t u+α2

0∂
4
xu− g(x,u)= h(x, t),

u(0, t)= u(π,t)= ∂2
xu(0, t)= ∂2

xu(π,t)= 0
(
x ∈ ]0,π[, t ∈R

)
,

u(x, t)= u(x, t+T) with T = 2πω−1,

(4.1)
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whenever h is “small” and the nonlinearity interacts with the spectrum of the
linear part. Note however that

∥∥hω∥∥H =√ω‖h‖L2((0,π)×(0,T)). (4.2)

Let g(x,s) be a Carathéodory function from ]0,π[×R to R such that g(x,·) is
strictly increasing and, for a.a. x ∈ [0,π],

a≤ g(x,s)
s

≤ b, s �= 0, (4.3)

where b > a > 0 are constants. Then the Nemytskii operator N generated by g
from H = L2(Ω) to H is bounded continuous and N(0) = 0. Hence, we are in-
terested in the case where N interacts with the spectrum of Lω in the sense that a
finite number of eigenvalues with finite multiplicity are crossed by the function
g(x,s)/s when |s| runs from 0 to∞. We refer to the set

σ
(
Lω
)∩ [a,b] (4.4)

as the set of interacting or crossed eigenvalues. Put

r0(x)= liminf
s→0

g(x,s)
s

, r∞(x)= limsup
|s|→∞

g(x,s)
s

, (4.5)

and denote

Λ= [a,b]∩ {α2
0 j

4 | j ∈ Z+
}
. (4.6)

Assuming that Λ �= ∅, we can write Λ = {α2
0 j

4 | jL ≤ j ≤ jU}. We suppose that
there exist constants ā and b̄ such that for a.a. x ∈ [0,π],

a≤ r∞(x)≤ ā < λ < b̄ ≤ r0(x)≤ b (λ∈Λ). (4.7)

Moreover, assume that there exist further constants d > c > 0 such that for a.a.
x ∈ [0,π],

a≤ g(x,s)
s

≤ ā ∀|s| > d,

b̄ ≤ g(x,s)
s

≤ b ∀0 < |s| ≤ c.

(4.8)

Then, clearly, Λ⊂ σ(Lω)∩ [a,b] for any ω∈ α0Q+. Denote by m(λ) the geomet-
ric multiplicity of any eigenvalue λ. Note that an eigenvalue λ has odd multiplic-
ity if and only if λ∈ {α2

0 j
4 | j ∈ Z+}. By Lemma 2.1(iii), we can take ω ∈ α0Q+
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such that

σ
(
Lω
)∩ [a,b]=Λ, m(λ)= 1, λ∈Λ. (4.9)

We will study two different cases.
(A) First assume that Λ= {λ0}with m(λ0)= 1, that is, only one simple eigen-

value is crossed. Then we have the following result.

Theorem 4.1. Assume that (4.3), (4.7), and (4.8) hold and Λ = [a,b]∩{α2
0 j

4 |
j ∈ Z+} = {λ0}. Let ω ∈ α0Q+ be such that (4.9) holds with Λ= {λ0}. Then there
exists an ε > 0 such that (4.1) admits at least two solutions for any 2π/ω-periodic
forcing term h such that hω ∈H , provided that ‖hω‖ ≤ ε. If h= 0, then there exists
at least two nontrivial solutions.

Proof. First assume that h = 0. Then the proof is a variant of that given in [4].
Indeed, by [4, Theorem 2], there exist disjoint open bounded sets G1 and G2

such that 0 �∈G1∪G2 and

deg
(
Lω−N,Gi,0

) �= 0, i= 1,2. (4.10)

Since 0 belongs to an open component of the open setH \ (L−N)(∂Gi∩D(Lω)),
there exists ε > 0 such that

deg
(
Lω−N,Gi,hω

)= deg
(
Lω−N,Gi,0

) �= 0 ∀‖hω‖ < ε, i= 1,2. (4.11)

Hence, the conclusion follows by the basic properties of topological degree. �

(B) If the spectrum interacts with more than one eigenvalue, we can use suit-
able invariant subspaces to obtain the following variant of Theorem 4.1.

Theorem 4.2. Assume that g = g(s) is odd and (4.3), (4.7), and (4.8) are satisfied.
Let ω ∈ α0Q+ be such that (4.9) holds with Λ= [a,b]∩{α2

0 j
4 | jL ≤ j ≤ jU}. Then

there exists an ε > 0 such that (4.1) admits at least two solutions for each h such
that hω ∈Vr , r = jU =maxΛ, and ‖hω‖ ≤ ε. If h= 0, then there exist at least two
nontrivial solutions.

Note that if g is odd and h = 0, the pairs of solutions may be of the form
(u,−u) and be time independent. In a more specific situation, the results can
usually be improved by using other invariant subspaces. In order to illuminate
this, we close this section by two examples.

Example 4.3. Assume that α0 = 1 and g(s) = as + darctan(s), with a = 2 and
d = 10. Then g is odd and strongly monotone, and

2≤ g(x,s)
s

≤ 12 ∀s �= 0. (4.12)
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We consider now the equation

∂2
t u+ ∂4

xu+ au+darctan(u)= 0,

u(0, t)= u(π,t)= ∂2
xu(0, t)= ∂2

xu(π,t)= 0
(
x ∈ ]0,π[, t ∈R

)
,

u(x, t)= u(x, t+T) with T = 2πω−1.

(4.13)

Because of the sign of the nonlinearity, the set of interacting eigenvalues is now
σ(−Lω)∩ [2,12]. Theorems 4.1 and 4.2 cannot be applied directly. We take ω =
q ∈ Z+. It is not hard to see that σ(−L1)∩ [2,12] = {3,8,9}, where λ1

1,±2 = −3,
λ1

1,±3 =−8, and λ1
2,±5 =−9. Similarly σ(−L2)∩ [2,12]= {3}, σ(−L3)∩ [2,12]=

{8}, and σ(−L5)∩ [2,12] = {9}. Hence, in each case the multiplicity of the
crossed eigenvalue is 2. Moreover, σ(−Lω)∩ [2,12]=∅ for any ω = q ∈ Z+, q �=
1,2,3,5. As a consequence, we have the following result: equation (4.13) admits
at least six mutually different pairs of nontrivial 2π-periodic solutions.

To be more precise, the periods of the pairs of solutions are T = 2πq−1, q =
2,3,5, respectively.

To prove our assertion, we consider the problem in the subspace

Veven =
{
u∈H | u(x,2π− t)= u(x, t) for a.a. x ∈ ]0,π[, t ∈ ]0,2π[

}
= sp

{
φj,k +φj,−k | j ∈ Z+, k ∈ Z0

+

}
.

(4.14)

In each of the cases q = 2,3,5, the multiplicity of the crossed eigenvalue in V is
1, and thus, an obvious modification of Theorem 4.1 implies that the equation
admits a pair of nontrivial solutions with corresponding period T = 2πq−1, q =
2,3,5. To show that the solutions do not coincide, we use Proposition 3.5(iii).
Indeed, there are two possibilities. First, the solutions may be time independent.
But this is not possible, since the reduced equation in subspace

Vconst =
{
u∈H | u is constant in t

}= sp
{
φj,0 | j ∈ Z+

}
(4.15)

has only the trivial solution by Proposition 3.5(iii). The second possibility is that
two solutions with different periods, say T1 and T2, coincide. Then, necessarily,
T1 and T2 are multiples of some T0 and the solution is actually T0-periodic.
In our case, this is excluded by Proposition 3.5(iii) and the fact that σ(−Lω)∩
[2,12]=∅ for any ω = q ∈ Z+, q �= 1,2,3,5.

By a similar argument, we find three additional pairs of nontrivial solutions
by reducing the problem to the subspace

Vodd =
{
u∈H | u(x,2π− t)=−u(x, t) for a.a. x ∈ ]0,π[, t ∈ ]0,2π[

}
= sp

{
i
(
φj,k −φj,−k

) | j,k ∈ Z+
}
.

(4.16)

Since Veven∩Vodd = {0}, all the solutions are mutually disjoint.
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Example 4.4. Assume that α0 = 1 and g(s) = as+ darctan(s) with positive con-
stants a and d. Then g is odd, strongly monotone and

a≤ g(x,s)
s

≤ a+d ∀s �= 0. (4.17)

Assume that a= 2 and d = 34. We consider the equation

∂2
t u+ ∂4

xu− au−darctan(u)= 0,

u(0, t)= u(π,t)= ∂2
xu(0, t)= ∂2

xu(π,t)= 0
(
x ∈ ]0,π[, t ∈R

)
,

u(x, t)= u(x, t+T) with T = 2πω−1.

(4.18)

We will consider the existence of 2π-periodic solutions. By Theorem 4.2, the
existence of a pair of nontrivial solutions is achieved. However, a much better
result can be proved using appropriate invariant subspaces and Lemma 2.1(iii).
Indeed, we will show the following result.

Theorem 4.5. Equation (4.18) admits at least two disjoint pairs of nontrivial
time-independent solutions and at least 14 pairs of mutually disjoint pairs of time-
dependent 2π-periodic solutions.

We assume again that ω = q ∈ Z+ making any ω-periodic solution also 2π
periodic. For ω = 1, the set σ(Lω)∩ [2,83] of interacting eigenvalues is

{
λ1

2,0 = 16, λ1
2,1 = 15, λ1

2,2 = 12, λ1
2,3 = 7, λ1

3,0 = 80, λ1
3,1 = 80,

λ1
3,2 = 77, λ1

3,3 = 72, λ1
3,4 = 65, λ1

3,5 = 56, λ1
3,6 = 45, λ1

3,7 = 32,

λ1
3,8 = 17, λ1

4,14 = 60, λ1
4,15 = 31, λ1

5,24 = 49, λ1
6,35 = 71

}
.

(4.19)

The multiplicity of λ1
2,0 and λ1

3,0 is 1, all other crossed eigenvalues have multi-
plicity 2. Hence, the sum of multiplicities, which is the dimension of the space
spanned by the corresponding eigenvectors, is 32.

(1) First consider the existence of stationary solutions. Indeed, in the space
Vconst (u constant in t), the crossed eigenvalues are 24 and 34, both having mul-
tiplicity 1. The further restriction into the space V2 removes the eigenvalue 34.
Hence, there exists at least one pair of nontrivial solutions in Vconst ∩V2. Sim-
ilarly, the reduction to the space Vconst ∩V3 yields the existence of at least one
pair of nontrivial solutions. Note however that the solutions may coincide and
belong to V2∩V3. To avoid this, we take the subspace Vconst∩W(see Lemma 2.3
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for the definition of W). Since W ∩V2 = {0}, we find another (different) pair of
nontrivial solutions in Vconst∩W .

(2) In order to find time-dependent solutions, we first reduce the equation
to the space Vodd. In Vodd, all the crossed eigenvalues have multiplicity 1, the
eigenvalues 24,34 are removed, and Vodd∩Vconst =∅. From the list of interact-
ing eigenvalues, we conclude two lemmas giving necessary conditions for any
time-dependent nontrivial solution in Vodd.

Lemma 4.6. Assume that ω = q ∈ Z+. Then (4.18) has only trivial solution in Vodd

if q �∈ {1,2,3,4,5,6,7,8,12,14,15,24,35}.

Lemma 4.7. Assume thatω=q ∈ Z+, q ∈ {1,2,3,4,5,6,7,8,12,14,15,24,35}, and
r ∈ Z+. Then (4.18) has only trivial solution in Vodd∩Vr if r ≥ 7.

Considering different values of q and r, we can find a large number of non-
trivial solutions but most of them may coincide. One should carefully check
which of the solutions are mutually disjoint. Using Lemma 4.6, we obtain four
pairs of nontrivial solutions with periods 2π/35, 2π/24, 2π/15, and 2π/14, re-
spectively.

Next, assume that q = 8 and reduce the problem into Vodd ∩V3. It is easy
to see that the only interacting eigenvalue left is λ8

3,1 = 17. Hence, there exists a
pair of nontrivial solutions with period 2π/8. Since the restriction of L24 into
Vodd∩V3 has no interacting eigenvalues, these solutions are not 2π/24 periodic.

By using the subspace Vodd∩V3∩W and a similar reasoning, we find a pair
of nontrivial solutions with period 2π/7 which are neither 2π/14- nor 2π/35-
periodic.

For q = 6, we find a pair of nontrivial solutions by reducing the problem into
Vodd∩V3 (these solutions are not 2π/24-periodic).

If q = 5, a pair of nontrivial solutions exists in Vodd∩V3∩W . It is easy to see
that these solutions are neither 2π/15- nor 2π/35-periodic.

If q = 3, we will use the reducing subspace

Wr :=
{
u∈H | u

(
x+

π

r
, t
)
=−u(x, t) for a.a. t ∈ ]0,2π[, x ∈

]
0,π− π

r

[
,

u
(
π

r
− x, t

)
= u(x, t) for a.a. t ∈ ]0,2π[, x ∈

]
0,
π

r

[}

= sp
C

{
φj,k | j ∈ r

(
2Z+− 1

)
, k ∈ Z

}∩H,
(4.20)

where r ∈ Z+, r ≥ 2. A further pair of nontrivial solutions with period 2π/3 is
obtained by reduction to the space Vodd∩V2.

If q = 2, the reduction to Vodd∩V2 gives a pair of nontrivial solutions, which
do not have period T = 2π/2l for any l ≥ 2, l ∈ Z+.
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To improve the result, we reduce the problem to the subspace Veven intro-
duced in the previous example. Note that Veven∩Vodd = {0} but the reduction
into Veven does not remove the eigenvalues 24 and 34. A further reduction to the
space Vr will help. Using the subspaces Veven ∩V6, Veven ∩V5, and Veven ∩V4,
we obtain four further solutions with periods 2π/35, 2π/24, 2π/15, and 2π/14,
respectively. Since the equation in Veven∩Vr ∩Vconst has only the trivial solution
for r = 4,5,6, these solutions are time dependent.

Remark 4.8. From the physical point of view, part of the solutions in the previous
examples may be equivalent in the sense that they are related by a time shift.
Since the spaces Vodd and Veven are not invariant under the time shift t→ t + τ,
the number of pairs of nontrivial solutions, which are not physically equivalent,
is 3 in Example 4.3 and 12 in Example 4.4.
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tial Differential Equations: Time-Periodic Solutions, Martinus Nijhoff Publishers,
Netherlands, 1981.

J. Berkovits: Department of Mathematical Sciences, University of Oulu, P.O. Box 3000,
FIN-90014 Oulu, Finland

E-mail address: juha.berkovits@oulu.fi

H. Leinfelder: Laboratory of Applied Mathematics, Ohm Polytechnic Nuremberg, P.O.
Box 210320, D-90121 Nuremberg, Germany

E-mail address: herbert.leinfelder@fh-nuernberg.de

V. Mustonen: Department of Mathematical Sciences, University of Oulu, P.O. Box 3000,
FIN-90014 Oulu, Finland

E-mail address: vesa.mustonen@oulu.fi

mailto:juha.berkovits@oulu.fi
mailto:herbert.leinfelder@fh-nuernberg.de
mailto:vesa.mustonen@oulu.fi

