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We obtain the zero distribution of sequences of classical orthogonal polynomials
associated with Jacobi, Laguerre, and Hermite weights. We show that the limit
measure is the extremal measure associated with the corresponding weight.

1. Introduction

In this paper, we study the zero distribution of sequences of Jacobi, Laguerre, and
Hermite polynomials. Our approach is based on identifying these orthogonal
polynomials with certain Fekete polynomials defined below, and using mono-
tonicity properties of the zeros of the polynomials.

Let E ⊂ R be a closed set that consists of finitely many intervals. Let w : E→
[0,∞) be a weight function such that w(x) > 0, x ∈ Int(E), and |x|w(x)→ 0 as
|x| →∞, x ∈ E, if E is unbounded. Consider the function

Vn
(
x1, . . . ,xn

)
:=

∏
1≤i< j≤n

[
w
(
xi
)
w
(
xj
)∣∣xj − xi

∣∣], (1.1)

{xi}ni=1 ⊂ E. It can be shown that Vn attains its maximum for some set �n =
{xi}ni=1 ⊂ E called nth weighted Fekete set or simply Fekete set.

We introduce the following notation: if µ is a measure, its logarithmic poten-
tial Uµ(z) is defined by

Uµ(z) :=
∫

log
1

|z− t|dµ(t), (1.2)

and if w is a weight as defined above, µw denotes the corresponding extre-
mal measure [4], which is the unique measure that minimizes the weighted
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logarithmic energy

Iw(µ) :=
∫∫

log
1

w(z)w(t)|z− t|dµ(z)dµ(t) (1.3)

over all probability Borel measures supported on E. The support of the measure
µw will be denoted by Sw.

The asymptotic distribution of Fekete points is known (see [4, Chapter III,
Theorem 1.3]).

Theorem 1.1. Let ν�n be the discrete measure that has mass 1/n at each Fekete
point xi ∈�n. Then,

ν�n

w∗−−→ µw, n−→∞, (1.4)

that is, limn→∞ ν�n = µw in the weak-star topology of measures. Furthermore, if Fn
is the nth degree monic polynomial with zero set �n,

lim
n→∞

∣∣Fn(z)
∣∣1/n = exp

(−Uµw (z)
)

(1.5)

uniformly on compact subsets of C \ Sw.

We will assume that w(x)= 0 when x ∈ E \ Int(E) and x is finite. This condi-
tion implies that every Fekete set �n ⊂ Int(E). Consequently, the partial deriva-
tives of log(V 2

n ) vanish at the Fekete points:

d

dxi

(
logV 2

n

)= 2(n− 1)
w′
(
xi
)

w
(
xi
) + 2

∑
k �=i

1
xi− xk

= 2(n− 1)
w′
(
xi
)

w
(
xi
) +

F′′n
(
xi
)

F′n
(
xi
) = 0, i= 1, . . . ,n.

(1.6)

In Section 2, we study the zero distribution of Jacobi polynomials P
(αn,βn)
n with

parameters αn > 0 and βn > 0 that satisfy limn→∞αn/n=2α>0 and limn→∞βn/n=
2β > 0.

In Section 3, we consider Laguerre polynomials L(αn)
n with parameters αn > 0

that satisfy limn→∞αn = 2α > 0.
In Section 4, we obtain the zero distribution of the Hermite polynomials Hn.
Asymptotics and zero distribution of classical orthogonal polynomials have

been studied in [1, 2, 3, 5]. Here, we extend these results using a simple method
that works for all classical orthogonal polynomials.

2. Zero distribution of Jacobi polynomials

The Jacobi weight wα,β(x) is defined by

wα,β(x)= (1− x)α(1 + x)β, x ∈ [−1,1], (2.1)
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with positive α and β. The corresponding extremal measure is given by [4, Chap-
ter IV, Section 5]

dµwα,β(t)= 1
π

(1 +α+β)
1− t2

(
(t− a)(b− t)

)1/2
dt, t ∈ Swα,β , (2.2)

with support [4, Chapter IV, Section 1]

Swα,β = [a,b]= [θ2
2 − θ2

1 −	1/2,θ2
2 − θ2

1 +	1/2], (2.3)

where θ1 = α/(1 + α+ β), θ2 = β/(1 + α+ β), and 	= (1− (θ1 + θ2)2)(1− (θ1−
θ2)2).

Let P
(α,β)
n and qn,α,β denote the orthonormal polynomial of degree n and the

monic orthogonal polynomial of degree n, respectively, with respect to the
weight wα,β. Let

νn,α,β := 1
n

∑
x:P

(α,β)
n (x)=0

δ(x) (2.4)

denote the discrete probability measure with mass 1/n at each zero of P
(α,β)
n .

Here, δ(x) denotes the discrete probability measure with support x (the point
mass at x).

We first show that the Fekete polynomials for Jacobi weights wα,β with α > 0
and β > 0 are, in fact, Jacobi polynomials.

Let α > 0 and β > 0 be fixed and set w = w1/(n−1)
α,β in the function Vn defined

with (1.1). Since

w′(x)
w(x)

= 1
(n− 1)

w′α,β(x)

wα,β(x)
= 1

(n− 1)
β−α− (α+β)x(

1− x2
) , x ∈ (−1,1), (2.5)

equations (1.6) yield

2
(
β−α− (α+β)xi

)
F′n
(
xi
)

+
(
1− x2

i

)
F′′n
(
xi
)= 0, i= 1, . . . ,n. (2.6)

Thus, the polynomial (1− x2)F′′n (x) + 2(β−α− (α+ β)x)F′n(x) of degree n with
leading coefficient −n(n+ 2α+ 2β− 1) has zeros at x1, . . . ,xn, and therefore

(
1− x2)F′′n (x) + 2

(
β−α− (α+β)x

)
F′n(x) +n(n+ 2α+ 2β− 1)Fn(x)= 0.

(2.7)

By [6, Theorem 4.2.1], the polynomial qn,2α−1,2β−1 satisfies (2.7) as well. How-
ever, (2.7) has a unique monic polynomial solution of degree n. Indeed, the
polynomial

r := Fn− qn,2α−1,2β−1 =
n−1∑
j=0

cjq j,2α−1,2β−1 (2.8)
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satisfies (2.7). Substituting r in (2.7), we obtain

0= (1− x2)r′′(x) + 2
(
β−α− (α+β)x

)
r′(x) +n(n+ 2α+ 2β− 1)r(x)

=
n−1∑
j=0

cj
[(

1− x2)q′′j,2α−1,2β−1(x) + 2
(
β−α− (α+β)x

)
q′j,2α−1,2β−1(x)

+n(n+ 2α+ 2β− 1)qj,2α−1,2β−1(x)
]

=
n−1∑
j=0

cj
(− j2 +n2 + (n− j)(2α+ 2β− 1)

)
qj,2α−1,2β−1(x),

(2.9)

where (2.7) was applied to qj,2α−1,2β−1, j = 0, . . . ,n− 1. Since (n− j)(n+ j + 2α+
2β − 1) > 0 for j = 0, . . . ,n− 1, (2.9) implies cj = 0, j = 0, . . . ,n− 1, and the
uniqueness of the polynomial solution of (2.7) follows.

We have shown that for positive α and β, the nth Fekete polynomial Fn,α,β asso-
ciated with the Jacobi weight wα,β is the Jacoby polynomial qn,2(n−1)α−1,2(n−1)β−1.

Theorem 2.1. Let {αn} and {βn} be sequences of positive numbers satisfying

αn
n
−→ 2α > 0,

βn
n
−→ 2β > 0, n−→∞. (2.10)

If α and β are finite, then

νn,αn,βn
w∗−−→ µα,β, n−→∞. (2.11)

If α=∞ and β is finite, the limit of the measures νn,αn,βn is the point mass at −1.
If α is finite and β =∞, the limit of the measures νn,αn,βn is the point mass at 1.
If α= β =∞ and αn/βn → λ > 0 as n→∞, the limit measure is the point mass

at (1− λ)/(1 + λ).

Proof. For fixed α > 0 and β > 0, let {x(α,β)
i,n }ni=1 be the nth Fekete set, and let νn,α,β

denote the discrete probability measure having mass 1/n at each Fekete point

x
(α,β)
i,n . By Theorem 1.1,

νn,α,β
w∗−−→ µwα,β , n−→∞. (2.12)

From (2.10), it follows that

α̃n := αn + 1
2(n− 1)

−→ α, β̃n := βn + 1
2(n− 1)

−→ β, n−→∞. (2.13)

Furthermore,

Fn,α̃n,β̃n = qn,αn,βn . (2.14)

Assume first that α and β are both finite. Let ε > 0 be fixed and let N(ε) be
such that α− ε ≤ α̃n ≤ α+ ε and β− ε ≤ β̃n ≤ β + ε for n ≥ N(ε). We will use
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a certain monotonicity property of the zeros of the Jacobi polynomials. For 0 <
α1 < α2 and 0 < β1 < β2,

wα1,β(x)

wα2,β(x)
= (1− x)α1−α2 ,

wα,β2 (x)

wa,β1 (x)
= (1 + x)β2−β1 (2.15)

are increasing functions on (−1,1). By [6, Theorem 6.12.2],

x
(α2,β)
j,n < x

(α1,β)
j,n , x

(α,β1)
j,n < x

(α,β2)
j,n , j = 1, . . . ,n. (2.16)

Therefore,

x
(α+ε,β−ε)
j,n < x

(α̃n,β̃n)
j,n < x

(α−ε,β+ε)
j,n , j = 1, . . . ,n. (2.17)

Let A⊂ Swα,β be an interval. We have

∣∣∣νn,α̃n,β̃n(A)−µwα,β(A)
∣∣∣≤ ∣∣∣νn,α̃n,β̃n(A)− νn,α,β(A)

∣∣∣+
∣∣∣νn,α,β(A)−µwα,β(A)

∣∣∣.
(2.18)

In view of (2.12), it is enough to estimate the first term in (2.18). For any mea-
surable set B and fixed α0 > 0 and β0 > 0, from (2.2) and (2.12), it follows that

∣∣∣νn,α′,β′(B)− νn,α0,β0 (B)
∣∣∣

≤
∣∣∣νn,α′,β′(B)−µwα′ ,β′ (B)

∣∣∣+
∣∣∣µwα′ ,β′ (B)−µwα0 ,β0

(B)
∣∣∣

+
∣∣∣νn,α0,β0 (B)−µwα0 ,β0

(B)
∣∣∣−→ 0

(2.19)

if we let n→∞ first, and then α′ → α0 and β′ → β0.
Next, define

JLn,α,β(a) :=max
{
j : x

(α,β)
j,n < a

}
, JRn,α,β(a) :=min

{
j : x

(α,β)
j,n > a

}
. (2.20)

Let A= [c,d]. By (2.19),

n−1
∣∣∣JLn,α±ε,β±ε(c)− JLn,α,β(c)

∣∣∣= ∣∣(νn,α±ε,β±ε − νn,α,β
)(

(−∞, c)
)∣∣−→ 0 (2.21)

as n→∞ first, and then ε→ 0. Similarly,

n−1
∣∣∣JRn,α±ε,β±ε(d)− JRn,α,β(d)

∣∣∣−→ 0, n−→∞, ε −→ 0. (2.22)

Furthermore, (2.17) implies

JLn,α−ε,β+ε(c)≤ JL
n,α̃n,β̃n

(c)≤ JLn,α+ε,β−ε(c),

JRn,α−ε,β+ε(d)≤ JR
n,α̃n,β̃n

(d)≤ JRn,α+ε,β−ε(d).
(2.23)
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From (2.21), (2.22), and (2.23) it follows that

∣∣∣νn,α̃n,β̃n(A)− νn,α,β(A)
∣∣∣−→ 0, n−→∞, (2.24)

and this completes the proof for finite α and β.
If α is finite and β =∞, β is finite and α=∞, or α and β are both infinite, and

αn/βn → λ≥ 0 as n→∞, it immediately follows from (2.3) that the supports of
the extremal measures Swαn,βn

shrink to the single point 1, −1, or (1− λ)/(1 + λ),
respectively, which establishes the proof in these cases. �

3. Zero distribution of Laguerre polynomials

Let L(α)
n (x) denote the monic Laguerre polynomials that are orthogonal with

respect to the Laguerre weight wα(x)= xαe−x on [0,∞), when α >−1. Further-

more, y = L(α)
n is the unique polynomial solution of degree n of the differential

equation

xy′′ + (α+ 1− x)y′ +ny = 0. (3.1)

When α > 0, the extremal measure µwα is given by (see [4, Chapter IV, Section 5])

dµwα(t)= 1
πt

((
t− aα

)(
bα− t

))1/2
dt, t ∈ Swα , (3.2)

where (see [4, Chapter IV, Section 1])

Swα =
[
aα,bα

]= [α+ 1− (2α+ 1)1/2,α+ 1 + (2α+ 1)1/2]. (3.3)

To show that the Fekete polynomials for Laguerre weights wα with α > 0 are
Laguerre polynomials, we set w = wα in (1.1). Since w′(x)/w(x) = (α/x − 1),
(1.6) takes the form

xiF
′′
n

(
xi
)

+ 2(n− 1)
(
α− xi

)
F′n
(
xi
)= 0, i= 1, . . . ,n, (3.4)

where Fn = Fn,α is the nth Fekete polynomial for the weight wα. Since 2(n−
1)(α− x)F′n(x) + xF′′n (x) is a polynomial of degree n with leading coefficient
−2n(n− 1), the above equations imply that z = Fn satisfies the differential equa-
tion

tz′′ + 2(n− 1)(α− t)z′ + 2n(n− 1)z = 0. (3.5)

Setting z(t)= y(x) with x = λt, we get dkz/dtk = λkdk y/dxk for every k ≥ 0, and
(3.5) becomes

λxy′′ + 2(n− 1)(λα− x)y′ + 2n(n− 1)y = 0. (3.6)
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Choosing λ= 2(n− 1), we obtain

xy′′ +
(
2(n− 1)α− x

)
y′ +ny = 0. (3.7)

From (3.1) and (3.7) it follows that y(x)= L(2(n−1)α−1)
n (x). Since Fn(t)= z(t)=

y(2(n− 1)t) we obtain

Fn,α(x)= L(2(n−1)α−1)
n

(
2(n− 1)x

)
. (3.8)

Equation (3.8) shows that for every n ≥ 1 there is a unique nth Fekete set

{x(α)
i,n }ni=1, and if {z(γ)

i,n }ni=1 denotes the zero set of the Laguerre polynomial L
(γ)
n

with γ > 0, then

x(α)
i,n =

z(2(n−1)α−1)
i,n

2(n− 1)
, i= 1, . . . ,n, (3.9)

where both the zeros of the Laguerre polynomial and the Fekete points are ar-
ranged in increasing order.

Next, we show that the Fekete sets for a weight wγ with γ > 0 are contained in
a compact set. By [4, Chapter I, Theorem 1.3],

Uµwγ (x)− logwγ(x)= Fwγ , x ∈ Swγ , (3.10)

where Fwγ is a constant. Furthermore, by [7, Theorem A], Uµwγ (x)− logwγ(x)≥
Fwγ , x /∈ Swγ . This function is then continuously differentiable on (0,∞) \ {aγ,
bγ}, its first derivative vanishes on (aγ,bγ), and

d2

dx2

(
Uµwγ (x)− logwγ(x)

)=
∫ bγ

aγ

1
(x− t)2

dµwγ (t) +
γ

x2
> 0, x > bγ. (3.11)

Thus, the first derivative of Uµwγ (x)− logwγ(x) is positive for x > bγ, and so
Uµwγ (x)− logwγ(x) > Fwγ for x > bγ. Therefore,

S∗wγ
:= {x : Uµwγ (x)− logwγ(x)≤ Fwγ

}⊂ [0,bγ]. (3.12)

By [4, Chapter III, Theorem 1.2], {x(γ)
i,n}ni=1⊂S∗wγ

. Thus, we conclude that {x(γ)
i,n }ni=1

⊂ [0,bγ] for every n.

Theorem 3.1. Let {αn} ⊂ (0,∞) be a sequence satisfying αn/n→ 2α > 0 as n→∞.
Then,

νn,αn := 1
n

n∑
i=1

δ

(
z(αn)
i,n

2(n− 1)

)
w∗−−→ µwα , n−→∞. (3.13)
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Proof. We have α̃n := (αn + 1)/(2(n− 1))→ α > 0 as n→∞. By (3.9), z(αn)
i,n /(2(n−

1))= x(α̃n)
i,n , i= 1, . . . ,n, and by [4, Chapter III, Theorem 1.3],

1
n

n∑
i=1

δ
(
x(α)
i,n

)
w∗−−→ µwα , n−→∞. (3.14)

The rest of the proof follows the argument used in the proof of Theorem 2.1. In

this case, the zeros of the Laguerre polynomials L(α)
n are monotone in the sense

that if α1 > α2 >−1, then z(α2)
i,n < z(α1)

i,n , i= 1, . . . ,n. This follows from the fact that
wα1 (x)/wα2 (x)= xα1−α2 is an increasing function on [0,∞), and a variation of [6,
Theorem 6.12.2] for unbounded intervals. �

4. Zero distribution of the Hermite polynomials

The monic Hermite polynomials Hn are orthogonal with respect to the weight
w(x)= e−x2

, x ∈R. Furthermore, y =Hn satisfies the differential equation

y′′ − 2xy′ + 2ny = 0, n≥ 0. (4.1)

The corresponding extremal measure µw is given by (see [4, Chapter IV, Theo-
rem 5.1]),

dµw(t)= 2
π

√
1− t2dt, t ∈ [−1,1]. (4.2)

To determine the relationship between the zeros of the Hermite polynomials
and the Fekete sets for the weight w(x)= e−x2

, we set w(x)= e−x2
in (1.1). Since

w′(x)/w(x)=−2x, (1.6) yields

4(n− 1)xiF′n
(
xi
)−F′′n

(
xi
)= 0, i= 1, . . . ,n. (4.3)

These equations imply that the nth degree polynomial 4(n− 1)xF′n(x)− F′′n (x)
with leading coefficient 4n(n− 1) has the same zero set as Fn(x). Therefore, Fn(x)
is the polynomial solution of the differential equation

z′′ − 4(n− 1)xz′ + 4n(n− 1)z = 0. (4.4)

For λ > 0, we set y(x)= z(λx). From (4.4), it follows that

y′′ − 4(n− 1)λ2xy′ + 4λ2n(n− 1)y = 0, (4.5)

and in particular y(x)= Fn(x/
√

2(n− 1)) satisfies (4.1). Since (4.1) has a unique
polynomial solution of degree n, we obtain Fn(x/

√
2(n− 1)) = Hn(x). Then, if

{xi,n}ni=1 and {zi,n}ni=1 denote the zeros of Fn and Hn, respectively, we have

xi,n = zi,n√
2(n− 1)

, i= 1, . . . ,n. (4.6)
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From [4, Chapter IV, equation (5.5)], it follows that S∗w = [−1,1], and then by
[4, Chapter III, Theorem 1.2], {xi,n}ni=1 ⊂ [−1,1] for every n ≥ 1. Using the ar-
gument employed in the previous sections, we establish the following theorem.

Theorem 4.1. For every n≥ 1, let νn denote the discrete probability measure hav-
ing mass 1/n at each zero zi,n of the Hermite polynomial Hn. Then,

νn := 1
n

n∑
i=1

δ

(
zi,n√

2(n− 1)

)
w∗−−→ µw, n−→∞. (4.7)
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