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We study the topology of a subspace of the function space of continuous self-
mappings of a given manifold: the subspace determined by maps having the least
number of fixed points in its homotopy class. In the case that the manifold is a
closed disk of finite dimension, we prove that this subspace is both globally and
locally path connected. We also prove this result when the manifold is a sphere
of dimension 1, 3, or 7.

1. Introduction

Let X be a topological space and let C(X) denote the space of continuous self-
maps of X with the compact-open topology. The purpose of this paper is to
study the topological properties of the subspace of C(X) where membership is
characterized by having the least number of fixed points in a given homotopy
class. That is, given f : X → X , we consider the subspace

Cmin(X, f )= {g ∼ f | #Fix(g)=MF[ f ]
}
, (1.1)

where MF[·] denotes the least number of fixed points possible among all maps
in the given homotopy class.

It is of interest to understand the topology of such spaces. In this paper, we
only consider the elementary connectedness properties of Cmin(X, f ): path con-
nectedness and local path connectedness.

Path connectedness can be reformulated as a 1-parameter problem in fixed-
point theory. That is, given two homotopic maps each having the minimal num-
ber of fixed points, we ask about the existence of a homotopy such that each level
map has the same property. For local path connectedness, we ask for small ho-
motopies joining two sufficiently close maps.
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Questions and related obstructions for the 1-parameter problem have been
studied by a number of authors. Examples of the nonexistence of such homo-
topies are found in [9]. In [3, 4], obstructions are given to deforming a given
homotopy to one with fewer fixed points. In particular, to determine when a
given circle of fixed points can be removed. The similar problem for coincidence
points of homotopies between two pairs of maps is considered in [7]. A number
of papers have appeared dealing with the study of the topology of a variation of
Cmin which is comprised of the orientation-preserving homeomorphisms of the
plane, either having one fixed point (see [2, 14]) or are fixed point free [1, 11, 12].

In [5, 6], the authors study the 1-parameter problem of finding minimal ho-
motopies joining a given pair of minimal surface mappings. One of the results
obtained in these works is a connectivity result for the 2-dimensional torus, de-
noted by T . From [6, Theorems 1.3 and 3.3], we have the following theorem.

Theorem 1.1. The space Cmin(T, f ) is path connected if and only if the Lefschetz
number of f is nonzero.

Moreover, we can check the arguments given in that paper and see that the
same characterization holds when we replace path connected with local path
connected. The work in this paper is motivated by a result in [5], that for the 2-
sphere there is a countable family of examples of homotopic maps, each having
one fixed point, but any homotopy between the maps must increase the number
of fixed points.

In this paper, we consider the two path connectivity problems in a simply-
connected setting. In particular, for the space X being either a disk or a sphere.
Moreover, due to the simple nature of the topology of these spaces, we will ad-
dress dimensions other than two. In Section 2, we study homotopies between
maps of the k-dimensional disk D which have exactly one fixed point. We estab-
lish the result that Cmin(D,c) is both path connected and locally path connected
(Corollary 2.2). In Section 3, we study the path connected properties in the case
of spheres. Using multiplicative structures, we obtain affirmative results in the
dimensions 1, 3, and 7.

2. Connectivity properties for disks

The purpose of this section is to give a proof of the two connectedness properties
for Cmin(X, f ) in the case when X is the closed disk of dimension k. The result
is stated as Corollary 2.2. For the following proposition, and throughout this
paper, we use the term Wecken homotopy to mean a homotopy ht, 0 ≤ t ≤ 1,
which has the property that ht is in Cmin(X,h0) for each value of t. That is, a path
in Cmin joining h0 to h1.

Proposition 2.1. Let f : D→D be a continuous map of the closed k-dimensional
disk D which has only one fixed point. Then

(A) there is a Wecken homotopy which connects f to the constant map c(x)= 0;
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(B) given ε > 0, there is a δ > 0 such that for any g having exactly one fixed point
and such that the distance between f and g is less than δ, there is a Wecken
homotopy such that the map at each level of the homotopy is distance less
than ε from f .

Proof. To prove part (A), we consider two cases depending on whether the fixed
point of f is in the interior of D or on the boundary of D.

We first consider the case where the fixed point x0 of f is in the interior. Here
we identify D with the unit ball in Rk with ‖ · ‖ denoting the standard norm. If
x0 �= 0, let ht be an isotopy of the identity such that h1 takes x0 to the origin. The
composite h−1

t ◦ f ◦ ht gives a Wecken homotopy between f and a map which
has the origin as fixed point. So, without loss of generality, we may assume that
the fixed point is the origin 0. Also, by a small Wecken deformation, we can
assume that f is inward on the boundary, that is, ‖ f (x)‖ < ‖x‖ for all x in the
boundary of D. Consider the family of functions φt(s)= st indexed by t ∈ (0,1]
and each is defined in the closed interval [0,1]. Define φ0 to be the limiting
function φ0(s)= 1 when s �= 0, and φ0(0)= 0.

Define a homotopy H : D× I →D by the formula

H(x, t)= ‖x‖
φt
(‖x‖) f

(
xφt

(‖x‖)
‖x‖

)
(2.1)

for x �= 0, and H(0, t)= 0 otherwise. This is well defined because the modulus of
xφt(‖x‖)/‖x‖ is at most ‖φt(‖x‖)‖. The map H is continuous. This can be seen
by noting that the modulus of H(x, t) is bounded above by ‖x‖1−t when t �= 1,
and by ‖ f (x)‖ in the case t = 1. Also, for t fixed the level map H(x, t) has only
one fixed point for every t. This follows from the equality

H(x, t)= x− ‖x‖
φt
(‖x‖)

(
xφt

(‖x‖)
‖x‖ − f

(
x‖x‖

φt
(‖x‖)

))
(2.2)

for each t. Clearly, H(·,1) is just the map f , while for t = 0 we have that H(·,0)=
‖x‖ f (x/‖x‖). Thus, H(·,0) is inward mapping for all x �= 0. So we can connect
H(·,0) to the constant map at zero.

The second case, where the fixed point is on the boundary, is proven in a
similar manner. In this case, we identify D with the half disk in Rk. That is the
intersection of the unit ball with those points having first coordinate greater than
or equal to zero.

The proof of part (B) will be divided into two cases in the same way. Consider
first the case where the fixed point of f is in the interior of D which as before is
the unit ball. Without loss of generality, we can assume that fix( f )= 0.

Choose δ1 so that the distance between f and any g less than δ1 implies that
the fixed point of g lies in the ball of radius ε/2. Now given g, if it does not have
the origin as fixed point, we can deform g by a Wecken homotopy to a function
g′ which has distance from g less than ε/2, and such that g′ has the origin as the
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fixed point. Hence, consider an isotopy ht of the disk of radius ε/2 relative to the
boundary which starts with the identity and ends in a homeomorphism h1 which
send the fixed point of g to the origin. Take g′ as the composite h1 ◦ g ◦h−1

1 .
Now, we assume that both f and g have the origin as the fixed point. Con-

sider the functions s f , sg : (D− 0) → (Rk − 0) defined by s f (x) = f (x)− x and
sg(x) = g(x)− x. The homotopy class for each of these maps is determined by
the degree Sk−1 → Sk−1 (see, e.g., [13, Theorem 7.4.6]). But s f (and similarly for
sg) is homotopic to the map x 	→ ( f (x)− x)/(| f (x)− x|). The degree of this map
is +1 which is the index of the single fixed point. Hence, s f and sg are homotopic.
Moreover, the homotopy extends to 0× I by mapping to 0. Now, by adding x to
this homotopy, we get a homotopy between f and g. We note that in this con-
struction there exists a δ2 such that if the distance from g to f is less than δ2,
then each level of the homotopy is within ε of f .

The remaining problem is that the image of the homotopy may not lie in
D. A natural way to resolve this is by radially retracting points outside of D to
the boundary of D. But in doing so, it is possible that we have introduced fixed
points on the boundary of D. We choose a δ3 dependent on how f acts on the
boundary of D. In particular, δ3 is chosen so that for any map h within δ3 of f ,
the image h(x) is never radially outwards from x for each x in the boundary of
D. Thus, if our homotopy stays within δ3 of f , then our above construction has
not created any fixed points.

Finally, choosing δ as the minimum among δ1, δ2, and δ3 completes the proof
in this case. We leave the case where the fixed point is in the boundary to the
reader. �

As a consequence, we obtain the following corollary. We take, as our defi-
nition of locally path connected, that at each point there exists arbitrarily small
path connected open sets about the point. So, for completeness, we give
Proposition 2.3 and its proof to obtain local connectivity from Proposition 2.1.

Corollary 2.2. The space Cmin(D,c) is both path connected and locally path con-
nected.

Proposition 2.3. Let X be a topological space with the property that for each
x ∈ X and each open set U containing x, there is an open set V containing x such
that each pair of points in V can be joined by a path in U . Then, X is locally path
connected.

Proof. Fix x ∈U as in the proposition. Let W denote the set {y ∈U | there is a
path in U from x to y}. First, we show that W is an open set. Let w ∈W . By
hypothesis there is an open set V with w ∈ V ⊂ U such that any v ∈ V can be
joined to w by a path in U . By composing, we have a path from v to x in U and
so, v ∈W . Now take w1,w2 ∈W and let γ be a path in U which joins the two.
Then, for any z ∈ γ we can join to x in U by using part of γ and a path from w1

to x in U . Thus, γ ⊂W which completes the proof. �
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We can also apply Proposition 2.1 to get a result for spheres in the case that
the map has degree zero.

Corollary 2.4. Let f : Sk → Sk be a map of the k-sphere Sk which is minimal and
has distance from the constant map at the south pole less than π/2. Then there is a
Wecken homotopy which connects f to the constant map c(x)= sp.

Proof. Consider the restriction of the map f to the closed southern hemisphere.
Since the southern hemisphere is homeomorphic to the closed disk, we can ap-
ply Proposition 2.1. So it suffices to extend this homotopy to the northern hemi-
sphere. Since the image of the northern part is contained inside of the southern
hemisphere, we can extend so that the image lies inside the southern hemisphere.
Hence, we have not created any new fixed points and the result follows. �

We remark that there is a slightly different version of Corollary 2 which ap-
pears in [5, Section 3]. In that result, the maps f1 and f2 each has degree one.
We assume that each of the two maps has distance less than π to the identity.
The proof given there is independent of Proposition 2.1. These two results give
evidence that the space Cmin(Sk, f ) may be locally path connected.

3. Connectedness properties for spheres

In this section, we present similar results concerning path connectedness for the
space Cmin(Sk, f ) where Sk is the sphere of dimension k. The result given in
Section 2 was only for maps of degree zero. Another special case occurs when
the degree is (−1)k+1, that is, when f is fixed point free. Using the geometry of
the sphere, it is a direct argument to verify both path connectedness and local
path connectedness. For example, the unique geodesic path in Sk joining f (x)
to −x can be used to construct a Wecken homotopy between the fixed point free
map f and the antipodal map.

For the results in this section, there will be no dependence on the degree of
the map, but our considerations will be restricted to dimensions 1, 3, and 7. Due
to the existence of a multiplication structure, these problems can be addressed.
We first prove the following theorem.

Theorem 3.1. If k = 1,3 or 7, then Cmin(Sk, f ) is path connected.

We remark here that the number of fixed points for minimal maps on spheres
is given by the Nielsen number. In particular, when k > 1 this is 1 if the map is
not homotopic to the antipodal map and is 0, otherwise. For k = 1, this reduces
to |1−d| where d is the degree of the map (see [8, Theorem 6.3]).

To prove this theorem, we first need a preliminary result given in Proposition
3.2. This was proved in [5, Propositon 1.4] in the case of the 2-sphere. That
proof easily adapts to spheres of higher dimension. Recall that a root of a map
f : X → Y , where the space Y has a base point y0, is an element of f −1(y0), that
is, an element of the preimage of y0 by f .
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Proposition 3.2. Let f1, f2 : Sk → Sk, k ≥ 2, be two homotopic maps with
deg( f1)= deg( f2) �= 0 and suppose each map has exactly one root. Then, there is a
homotopy connecting them, where the homotopy has one root at each stage. More-
over, if p is the root for each fi, then we can arrange that p is the root for each level
of the homotopy.

Proof. We give an outline of the proof from [5]. Using an isotopy of the identity,
we first arrange that the maps have the same point as the root denoted by p. Since
they have the same degree, we can make the two maps coincident in a small open
neighborhood of p. On the complimentary k-ball, the two maps are homotopic
as maps relative to the boundary with image in Sk − p. Any such homotopy gives
the desired result. �

Proof of Theorem 3.1. We first suppose that k is either 3 or 7. Let g1, g2 : Sk →
Sk be two homotopic minimal maps. Consider the maps f1 and f2 defined by
multiplication fi(x) = gi(x)(x−1). This multiplication is well defined and each
element has a unique inverse [15, page 108].

If gi is not homotopic to the antipodal map, then each has exactly one fixed
point. In this case, each fi has exactly one root at the identity of the multiplica-
tion. By Proposition 3.2, we have a homotopy { ft}, 1≤ t ≤ 2, such that each ft
has one root at 1. It follows immediately that the map gt is well defined and that
it has exactly one fixed point. In the case that each gi is fixed point free, we get
that each fi(Sk) does not intersect the identity for the multiplication. Thus, the
image lies in a ball and so we have a homotopy ft missing the identity.

Finally, in the case k = 1, using fi just as above, we see that deg( fi)= deg(gi)−
1. Thus, fi has exactly |deg( fi)| roots at 1. Apply Proposition 3.3 given below to
obtain the desired homotopy. �

Proposition 3.3. Let f0, f1 : S1 → S1 be maps each of degree d and each has exactly
|d| roots at 1. Then, there is a homotopy between f0 and f1 such that each level map
has exactly |d| roots at 1.

Proof. If d = 0, this is straightforward, so we assume d �= 0. We define the homo-
topy ft as follows. First on S1×{0,1}, we have the maps f0 and f1. In S1× [0,1]
choose a family of pairwise disjoint arcs γ1, . . . ,γ|d| such that for each t ∈ [0,1],
each of the arcs meets S1×{t} in exactly one point; for t = 0, the union is exactly
f −1
0 (1) and for t = 1 it is f −1

1 (1).
Consider a component C of (S1× [0,1]) \ (∪γi). Let Ct = C∩ (S1×{t}). For

i= 0,1, the endpoints of Ci are mapped to 1 while the interior is sent to S1− 1.
Now, each fi, i = 0,1 has the minimal number of roots in the given homotopy
class (see [10, Example 3, page 127]). As a result, the two maps f0 restricted to
C0 and f1 restricted to C1 are homotopic. Thus, we can extend to C so that for
each t, the endpoints of the arc Ct are mapped to 1 and the interior to S1 − 1.
Applied to each of the components, C yields the desired homotopy. �

Now consider local connectivity for spheres in these dimensions.
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Proposition 3.4. Let k = 1,3, or 7 and let f : Sk → Sk be a map with exactly N( f )
fixed points. Given ε > 0, there exists δ > 0 such that for any map g homotopic to f
with N( f ) fixed points, and such that the distance between f and g is less that δ.
There is a Wecken homotopy such that each level map is distance less than ε from f .

Proof. As in the proof of Theorem 3.1, we first consider the corresponding root
problem. Its solution, then, translates via multiplication to the fixed point set-
ting. For the case k = 3 or 7, we first observe that Proposition 3.2 admits a local
version. Follow the proof of Proposition 2.1(B) to arrange that the maps have
the same root, then extend in the complement using a small homotopy. The rest
of the argument (following the proof of Theorem 3.1) is straightforward.

Now for the case of the 1-sphere and its local connectivity. As noted in the
proof of Proposition 3.3, for a self-map of S1 of degree r, the minimal number
of roots is given by |r|.

Let f ,g : S1 → S1 be two maps of degree r each having |r| roots at 1 and dis-
tance apart less than ε. Let N denote the open ε-neighborhood of 1 and set
S= S1 \N . Throughout the argument, we will deform the map g until the map
f is reached. At any time in the process, we let γx denote the geodesic arc joining
f (x) and g(x).

The first step is to deform g along each γx where x ∈ f −1(S) so that at the end,
we have g(x)= f (x) on f −1(S). Since each γx has length less than ε, this can be
done by an ε-homotopy. Also, this can be done without a change in the root set
for g.

Now consider an interval I in the compliment of f −1(S). Clearly, f maps the
endpoints of I into the endpoints of N . Thus, g does as well. With ε suitably
small (say π/4), it follows that g maps I into an interval containing N . In partic-
ular, if I contains a root for f (since f is minimal, there is at most one root in
I), then g has a root in I . So, we have |r| intervals each containing one root, each
for f and g.

First consider I without any roots. Thus, both f and g map I into one of the
intervals in N − 1, and so for each x ∈ I , γx does not meet 1. Deform g along the
geodesic to get f (x)= g(x) on I .

Finally, for I which has a root for each map deform g by the following three
steps:

(1) arrange that g is one-to-one on I ,
(2) by an isotopy of the interval I , arrange that g has the same root point in

I as does f ,
(3) for each x ∈ I − f −1(1), γx will miss 1. Finish by deforming g on each of

these two intervals.

Since in each of (1), (2), and (3) the image of the deformation is always in N ,
we preserve the property that distance is less than ε. Taking δ = ε, this completes
the proof of the case k = 1. �

Corollary 3.5. The space Cmin(Sk, f ) is locally path connected for k = 1,3,7.
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