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The aim of this paper is to work with the measure of nonhyperconvexity in a
similar way as J. Cano (1990) does with the index of nonconvexity. We apply
this measure to obtain different extensions of the famous Schauder fixed-point
theorem in hyperconvex spaces.

1. Introduction

In this paper, we work with the notion of the measure of nonhyperconvexity in-
troduced by Cianciaruso and De Pascale [6] in order to obtain new fixed-point
theorems in hyperconvex metric spaces. This class of metric spaces was intro-
duced by Aronszajn and Panitchpakdi [1] in 1956 to study problems on exten-
sion of uniformly continuous mappings. Several and interesting properties of
these spaces were shown in Aronszajn and Panitchpakdi’s original paper, some
of these properties turned out to be crucial in the successful searching for fixed-
point theorems in hyperconvex metric spaces. More precisely, this research be-
gan when Sine [13] and Soardi [14] independently proved in 1979 that bounded
hyperconvex metric spaces have the fixed-point property for nonexpansive map-
pings. Since then, authors like J. B. Baillon, M. A. Khamsi, W. A. Kirk, S. Park,
G. Yuan, and many others, including both authors of this paper, have been at-
tracted by this subject and have contributed to a wide development of it (for a
recent survey see [11, Chapter 13]).

Hyperconvex metric spaces can be defined as follows: given two metric spaces
(Y,d) and (X,ρ), we say that a mapping T : Y → X is nonexpansive if ρ(Tx,T y)≤
d(x, y) for any x and y in Y . The pair (Y,X) is said to have the extension prop-
erty for nonexpansive mappings, if every nonexpansive mapping from an arbi-
trary subset S of Y into X can be extended as a nonexpansive mapping to the
whole Y into X . A metric space X is said to be hyperconvex if the pair (Y,X)
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enjoys the extension property for nonexpansive mappings for any metric space
Y .

Hyperconvex spaces have a good number of properties that is, for instance,
any hyperconvex metric space is complete. The simplest example of hyperconvex
spaces are the finite-dimensional real spaces endowed with the maximum norm.
Other simple examples of hyperconvex metric spaces are provided by closed balls
and intersection of closed balls of the above spaces endowed with the induced
metric. For a complete treatment of these and other results on hyperconvexity,
as well as for a more general study of hyperconvex metric spaces, the reader may
consult the recent overview on hyperconvexity and fixed-point theory developed
in [11, Chapter 13].

Cano [5] stated a new version of the well-known Schauder fixed-point the-
orem relaxing the condition on the convexity of the set by using the so-called
measure of nonconvexity introduced by Eisenfeld and Lakshmikantham [7] in
1976. The aim of this paper is to work with a similar concept which measures
the lack of hyperconvexity of a metric space, in order to sharpen, among others,
Schauder and Darbo-Sadovski’s fixed-point theorems in hyperconvex spaces. In
Section 2, the authors give an equivalent definition for the measure of nonhyper-
convexity, introduced by Cianciaruso and De Pascale in [6], which will turn out
to be more convenient for the kind of problems we are concerned with. Section 3
is devoted to obtain new fixed-point theorems under certain hyperconvex hy-
pothesis regarding different compactness conditions on the mapping which are
closely related to recent results on hyperconvex spaces.

2. Measure of nonhyperconvexity

Hyperconvex hulls of metric spaces are needed to define the measure of non-
hyperconvexity. Isbell introduced the concept of a hyperconvex hull in his very
celebrated paper [10] in the following way. Let X be a metric space. The pair
(E,e), where E is a hyperconvex space and e is an isometric embedding of X in
E, is called a hyperconvex hull of the metric space X if no hyperconvex proper
subset of E contains e(X).

In particular, Isbell proved that for any metric space X there exists a natural
hyperconvex hull which we will denote by (ε(X), e), and that, although a hyper-
convex hull need not be uniquely determined, any two hyperconvex hulls are
isometric. This concept has been of great importance in order to obtain topo-
logical fixed-point theorems in hyperconvex spaces (see, e.g., [4, 9, 8, 11]). The
following definition was given by Cianciaruso and De Pascale in [6].

Definition 2.1. Let X be a metric space and (ε(X), e) its natural hyperconvex hull.
Then, the measure of nonhyperconvexity of X is given by

µ(X)=H
(
e(X), ε(X)

)
, (2.1)

where H(·,·) stands for the Hausdorff distance between subsets of a metric
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space, that is, in this case H(e(X), ε(X)) = sup{d(y,e(X)) : y ∈ ε(X)}, where
d(·,·) is a distance between a point and a set.

The goal of this section is to attract the attention to the fact that the measure
of nonhyperconvexity of a metric space can be defined in a less rigid way. This is
provided by the following theorem.

Theorem 2.2. Let X be a metric space such that (E, id), where id stands for the
identity map on X , is a hyperconvex hull of X , then

µ(X)=H(X,E). (2.2)

Proof. We only need to prove that H(X,E) = H(e(X), ε(X)), where (ε(X), e) is
the natural hyperconvex hull of X . However, this immediately follows from the
fact, proved by Isbell in [10], that there exists an isometry i : E→ ε(X) such that
i(X)= e(X). �

Now, if X is a metric space, then there exists a hyperconvex space M such that
X ⊆M. It is not hard to observe (see [11, Chapter 13] for details) that there exists
such a hyperconvex hull (h(X), id) of X as in the statement of the theorem. From
now on, given a metric space X and A ⊆ X , h(A) will stand for a hyperconvex
hull of A as above. Notice that, in this way we avoid to explicitly deal with the
hyperconvex space M. Notice also that, in particular, µ(A)=H(A,h(A)).

The following proposition states a very important property of the measure of
nonhyperconvexity. The proof of this fact, as well as further properties of this
measure, can be found in [6].

Proposition 2.3. Let X be a complete metric space. Then µ(X)= 0 if and only if
X is hyperconvex.

3. Fixed-point theorems

In this section, we deal with topological fixed-point theorems (i.e., Schauder
and Darbo-Sadovski type theorems). Our aim is to relax some of the hypothesis
given in some hyperconvex versions of these theorems by using the measure of
nonhyperconvexity. As a beginning, we introduce some notions.

Definition 3.1. Let X be a metric space. Then a mapping f : X → X is said to be
µ-contractive if

liminf
n→∞ µ

(
f n(X)

)= 0, (3.1)

where f n stands for the nth iterate of f .

The following definitions have been widely studied, the reader may consult
[2] or [11, Chapter 8] for recent treatments on them.
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Definition 3.2. Let A be a subset of a metric space X . Then the Kuratowski mea-
sure of noncompactness of A, α(A), is defined as

α(A)= inf

{
ε : A⊂

n(ε)⋃
i=1

Ai with diamAi ≤ ε

}
. (3.2)

Definition 3.3. Let X be a metric space. A mapping f : X → X is α-contractive if

inf
{
α
(
f n(X)

)
: n∈N

}= 0. (3.3)

Theorem 3.4 is a version of the Schauder fixed-point theorem under hyper-
convex hypothesis.

Theorem 3.4. Let C be a nonempty compact metric space and let f : C→ C be a
continuous and µ-contractive mapping. Then f has a fixed-point in C.

Proof. Consider the set A=⋂∞n=1 f
n(C). Obviously, A is a nonempty and com-

pact subset of C such that f (A)⊂ A. Furthermore, we have H(A,h(A))≤H(A,
h( f n(C))) for any n ∈ N. But H(A,h( f n(C))) ≤ H(A, f n(C)) + H( f n(C),
h( f n(C))) for every n, so, passing to a subsequence if necessary and applying
the fact that f n(C) is compact for every n, we deduce that H(A,h(A))= 0. Since
A is closed, it is hyperconvex. Hence, f has a fixed-point in A. �

In connection with this theorem, we also have the following one.

Theorem 3.5. Let C be a nonempty compact metric space and let f : C→ C be a
continuous mapping such that µ( f n0 (C)) = 0 for a certain n0 ∈ N. Then f has a
fixed-point in C.

Proof. If for some n0 ∈ N, µ( f n0 (C)) = 0, then, by Proposition 2.3, f n0 (C) is
hyperconvex as well as, in this case, compact. Hence, by the Schauder fixed-point
in hyperconvex spaces, f has a fixed-point in f n0 (C). �

The following lemma leads to an extension of Theorem 3.4.

Lemma 3.6. Let {Ki}∞i=1 be a sequence of nonempty bounded and closed subsets
of a metric space X such that Ki+1 ⊂ Ki for i ∈ N and liminf i→∞µ(Ki) = 0. Then⋂∞

i=1Ki is hyperconvex and

∞⋂
i=1

Ki =
∞⋂
i=1

h
(
Ki
) �= ∅ (3.4)

for any possible option of the hyperconvex hulls h(Ki).
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Proof. In order to prove that
⋂∞

i=1Ki is nonempty and hyperconvex, it is enough,
by Baillon’s intersecting theorem [3], to prove that it coincides with the intersec-
tion of a decreasing family of nonempty bounded hyperconvex sets. However, it
is not hard to see that the sequence of hyperconvex hulls (h(Ki)) may be cho-
sen, so it is also a descending sequence of sets (see [11, Chapter 13] for details).
Hence, to complete this part of the proof, it suffices to prove that

∞⋂
i=1

Ki =
∞⋂
i=1

h
(
Ki
)
, (3.5)

where the sequence of hyperconvex hulls has been fixed as above.
The inclusion “⊆” is trivial. In order to prove the other inclusion, let ε > 0

and x ∈⋂∞i=1h(Ki). Then B(x,ε)∩Ki �= ∅ for every i such that µ(Ki) < ε, where
B(x,ε) stands for the closed ball of center x and radius ε. Moreover, since Ki+1 ⊂
Ki, B(x,ε) contains points of each set Ki. Thus, since Ki is closed, x ∈ Ki for every
i∈N. Hence, x ∈⋂∞i=1Ki and the claim is proved.

To finish the proof, it suffices to prove the equality between the intersections
for the case when the sequence of hyperconvex hulls is not a decreasing one.
But, since

⋂∞
i=1Ki �= ∅, we also have that

⋂∞
i=1h(Ki) �= ∅. The proof follows just

as above. �

The following theorem improves Theorem 3.4 as it is not required for the
metric space to be compact. Notice also that any mapping, under the hypothesis
of Theorem 3.4, must also satisfy the hypothesis of the next theorem.

Theorem 3.7. Let A be a nonempty bounded and complete metric space, and let
f : A→ A be a continuous and both α- and µ-contractive. Then f has a fixed-point.

Proof. Since f is µ-contractive, we may apply Lemma 3.6 to deduce that the set
L =⋂∞n=0 f n(A) is a nonempty hyperconvex set. Moreover, from the α-contra-
ctiveness of f and the very well-known property that the Kuratowski measure
of noncompactness is monotone (see [11, Chapter 8] for details), L is compact.
Hence, L is an f -invariant compact hyperconvex set and so f has a fixed-point
in L. �

In what follows, we state different variants of Theorem 3.7. The next is related
to the theory of limit compact mappings. These mappings were introduced by
Sadovskiı̆ in [12], in order to obtain new versions of Schauder’s theorem. The
hyperconvex version of those mappings was first studied in [8], see also [11,
Chapter 13].

Definition 3.8. Let X be a metric space and f : X → X a mapping. The γ-
transfinite iterates of X through f are defined as

f
(
f γ−1(X)

)
if γ is an ordinal with antecedent (3.6)
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or

⋂
β<γ

f β(X) if γ is a limit ordinal. (3.7)

Definition 3.9. Let X be a metric space. Then a mapping f : X → X is said to be
an extended µ-contractive mapping if

liminf
γ

µ
(
f γ(X)

)= 0. (3.8)

(We understand here that µ(∅)= +∞.)
The mapping f is said to be an extended α-contractive mapping if

inf
{
α
(
f γ(X)

)
: γ is ordinal number with f γ(X) �= ∅}= 0. (3.9)

Note that the transfinite sequence of the γ-iterates of X through f is eventu-
ally constant (either as the empty set or as a nonempty set) from a certain ordinal
number on. The following lemma is analogous to Lemma 3.6 in this transfinite
setting. We omit the proof since the argument to follow is not very different from
that of Lemma 3.6.

Lemma 3.10. Let {Kγ} be a descending transfinite sequence of nonempty bounded
closed subsets of a metric space X such that liminfγ µ(Kγ)= 0. Then

⋂
Kγ is hyper-

convex and

⋂
Kγ =

⋂
h
(
Kγ
) �= ∅. (3.10)

This lemma allows us to give an analogous theorem to Theorem 3.7 for ex-
tended contractive mappings.

Theorem 3.11. Let A be a nonempty bounded and complete metric space, and
let f : A→ A be a continuous and both extended α-contractive and extended µ-
contractive mapping. Then f has a fixed-point.

Proof. The proof of this theorem follows introducing small changes in that of
Theorem 3.7. �

The next theorem takes place in the linear context since it is an extension
of those theorems treated by Cano in [5], where the author worked with the
concept of measure of nonconvexity. If A is a subset of a linear metric space,
then the measure of nonconvexity β(A) of A is given by

β(A)=H(A,convA), (3.11)

where H is again the Hausdorff distance and convA stands for the convex hull
of A.
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Definition 3.12. Let A be a subset of a linear metric space. Then a mapping f :
A→ A is said to be β-contractive if

liminf
n→∞ β

(
f n(A)

)= 0. (3.12)

Theorem 3.13. Let A be a nonempty and closed subset of a Banach space, and let
f : A→ A be a continuous and β-contractive mapping. If there exists a point x0 in
A such that the implication

(
V = conv f (V)

)
or

(
V = f (V)∪ {x0

})=⇒V is relatively compact (3.13)

holds for every subset V of A, then f has a fixed-point.

Proof. Arguing similarly as in [15], we infer that there exists a set Z ⊂ A such
that f (Z)= Z. Let D =⋂∞n=0 f n(A). Obviously, f (D)⊂D and Z ⊂D. By Cano’s
lemma from [5], D is convex. Let R(X)= conv f (X) for X ⊂ A and let Ω denote
the family of all subsets X of A such that Z ⊂ X and R(X) ⊂ X . Since Z ⊂ D
and conv f (D)⊂D, so Ω is nonempty. Denote by V the intersection of all sub-
sets of the family Ω. As Z ⊂ V , V is nonempty and Z = f (Z) ⊂ R(Z) ⊂ R(V).
Since R(V) ⊂ R(X) ⊂ X for all X ∈Ω, R(V) ⊂ V , and therefore V ∈Ω. More-
over, R(R(V)) ⊂ R(V), and therefore R(V) ∈Ω. Consequently, V = R(V), that
is, V = conv f (V). In view of (3.13), this implies that V is a compact subset of
D. Now the Schauder fixed-point theorem implies that f has a fixed-point in V .

�

Theorem 3.13 extends [15, Theorem 1]. Note that a mapping f satisfying
(3.13) does not have to be α-contractive as the following example shows.

Example 3.14. Let X = {x = (xn)∈ l∞ : 0≤ xn ≤ 1 for n∈N}. Define

f (x)= (0,√x1,
√
x2, . . .

)
, x ∈ X. (3.14)

It can be shown that f satisfies (3.13) but still α( f n(X))= 1 for each n∈N (see
[4, Example 4]).

We finish this paper with the following theorem which is an extension of [4,
Theorem 3].

Theorem 3.15. Let A be a nonempty complete metric space, and let f : A→ A be
a continuous and µ-contractive mapping. Suppose that there exists a point x0 in A
such that for V ⊂ A, the equality f (V)∪{x0} =V implies the relative compactness
of V , and that only relatively compact sets V can be equal to h( f (V)). Then f has
a fixed-point.
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Proof. Again let Z be a subset of A such that f (Z)= Z and let D =⋂∞n=0 f n(A).
Obviously, f (D)⊂D and Z ⊂D. By Lemma 3.6, it is hyperconvex. Denote by Ω
the family of all sets H ⊂ A such that Z ⊂H , H is hyperconvex and f (H)⊂H .
Obviously, the family Ω is nonempty because D ∈Ω. Further, we argue similarly
as in [4, Theorem 3]. �

Remark 3.16. Although Cano’s paper [5] is the actual motivation for this pa-
per, the definitions of β-contractive and µ-contractive mappings given here do
not quite fit that one of β-contractive mapping originally given by Cano. In
fact, as Cano defined it, a mapping f : X → X is said to be β-contractive if
inf{µ( f n(X)) : n∈N} = 0. Note that since the measure of nonconvexity, as well
as the measure of nonhyperconvexity, is nonmonotone, both definitions of β-
contractive mappings are different. Gaps in the proof of Theorem 2 in Cano’s
paper made us redefine the notion of β-contractive mapping. Notice also that
[5, Theorem 2] becomes doubtless true under this new definition.
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versidad de Sevilla, P.O. Box 1160, 41080 Sevilla, Spain

E-mail address: espinola@us.es

mailto:ddbb@main.amu.edu.pl
mailto:espinola@us.es

