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The paper is devoted to general elliptic operators in Hölder spaces in bounded
or unbounded domains. We discuss the Fredholm property of linear operators
and properness of nonlinear operators. We construct a topological degree for
Fredholm and proper operators of index zero.

1. Introduction

In this paper, we study elliptic operators in Hölder spaces: the Fredholm prop-
erty for linear operators, properness and topological degree for nonlinear op-
erators. The construction of the degree uses both the Fredholm property and
the properness. In this section we briefly discuss main ideas underlying normal
solvability, properness and topological degree for elliptic operators.

1.1. Normal solvability. Consider a linear operator L acting from a Banach
space E0(Ω) to another space E(Ω). Here Ω denotes a domain in Rn, and the
notation E(Ω) is used for a Banach space of functions defined in Ω. We are
basically interested in the case where the domain Ω is unbounded though all
results remain applicable and in many cases even simpler for bounded domains.
Suppose that E0(G) is compactly embedded in a space E′(G) for any bounded
domain G and that the estimate

‖u‖E0(Ω) ≤ K
(‖Lu‖E(Ω) +‖u‖E′(Ω)

)
(1.1)

holds with a constant K independent of u.
As an example, we can take the spaces

E0(Ω)= {u∈ C2+α(Ω), u|∂Ω = 0
}
, E(Ω)= Cα(Ω), E′(Ω)= C2(Ω)

(1.2)
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and the operator

−Lu=
n∑

i, j=1

ai j(x)
∂2u

∂xi∂xj
+

n∑
j=1

aj(x)
∂u

∂xj
+ c(x)u. (1.3)

Then estimate (1.1) follows from the Schauder estimate. It holds under certain
conditions on the domain Ω and on the coefficients of the operator (see [1, 2]).
If we use known estimate for Hölder spaces

‖u‖E′(Ω) ≤ ε‖u‖E0(Ω) + cε‖u‖C(Ω) (1.4)

with a small ε and a constant cε depending on ε, then (1.1) becomes equivalent
to the Schauder estimate.

Assume that the operator L satisfies the following condition: if fn → f0 in
E(Ω), Lun = fn, ‖un‖E0(Ω) ≤M, and un → u0 in E′(Ω), then u0 ∈ E0(Ω) and
Lu0 = f0. For the example considered above this property is satisfied.

It is known that if this condition is satisfied and (1.1) holds, then the operator
is normally solvable, that is, its image is closed, and has a finite-dimensional ker-
nel (see [19]). This is a simple though an important result valid in the case if the
domain Ω is bounded. If it is unbounded, we should add one more condition.
To formulate it we define limiting problems. In the simplest case where Ω=R1,

−Lu= a(x)u′′ + b(x)u′ + c(x)u, (1.5)

and the functions a,b, and c have limits at infinity

a± = lim
x→±∞a(x), b± = lim

x→±∞b(x), c± = lim
x→±∞c(x), (1.6)

the limiting operators are

−L±u= a±u′′ + b±u′ + c±u. (1.7)

If in addition to the previous two conditions we require that the limiting
problems

L±u= 0 (1.8)

have only zero solutions in E0(Ω), then the operator L is normally solvable with
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a finite-dimensional kernel. The values λ such that the equation

L±u= λu (1.9)

has a nonzero solution, belongs to the essential spectrum of the operator L.
Limiting problems and the normal solvability for linear elliptic operators in

unbounded domains were studied in a number of works for Rn, and for do-
mains with cylindrical and conical ends (see [3, 21, 25, 26, 33] and the references
therein).

In this paper, we consider general elliptic operators in the Doulgis-Nirenberg
sense [7]. Since the domain Ω is also generic, we define in Section 2 limiting
problems, which includes limiting domains and limiting operators. To define
limiting domains for an unbounded domain Ω, consider a sequence xm ∈ Ω,
|xm| →∞. Let χ(x) be the characteristic function ofΩ. Consider the shifted func-
tions χ(x+ xm) and the corresponding domains Ωm. Thus we have a sequence of
domains. If their boundaries ∂Ωm are uniformly Hölder continuous, then from
the sequence Ωm we can choose a subsequence Ωmk converging to some limiting
function Ω∗ in any ball B ⊂Rn, that is,

Ωmk ∩B −→Ω∗ ∩B. (1.10)

If we take an increasing sequence of balls, we can extend the limiting domain
Ω∗ to the whole Rn. It can depend on the choice of the sequence xm and of
converging subsequences Ωmk.

To define limiting operators, we consider the shifted coefficients and choose
subsequences converging to a limiting function on any bounded set. Limiting
operators are operators with the limiting coefficients. Thus we define limiting
problems.

We prove in Section 2 that the operator is normally solvable with a finite-
dimensional kernel if and only if the limiting problems do not have nonzero
solutions (we will call it Condition NS). If we require that it is Fredholm, that
is, the codimension of its image is also finite, then the limiting operators are
invertible.

This result gives a useful property for the class of operators, which coin-
cide with their limiting operators: their spectrum consists only of the essen-
tial spectrum, that is, there are no points of the spectrum where the operator
is Fredholm. In particular, this property applies for operators with periodic or
quasiperiodic coefficients in cylindrical domains.

1.2. Index. In what follows we are mostly interested in Fredholm operators of
index zero for which the topological degree will be constructed. The index of
elliptic operators in unbounded domains is computed only for some particular
cases (see [5, 15, 22] and the references therein). However we do not need here
an explicit computation of the index. We can use the stability of the index for
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semi-Fredholm operators. Consider the operator Lλ = L+ λI and assume that
Condition NS is satisfied for all λ≥ 0. Then it is semi-Fredholm. If it is invertible
for large λ, which is the case for elliptic operators, then the operator L has a zero
index.

The condition that the operator Lλ satisfies Condition NS is much more re-
strictive than the same condition just for the operator L. We will see however
that it is exactly the same condition, which is used for the degree construction.

It is interesting to note that there are different homotopy classes of Fredholm
operators of index zero. For example, if we consider the operator (1.5), then its
essential spectrum is given by two parabolas

−λ=−a±ξ2 + b±iξ + c±, ξ ∈R
1. (1.11)

In both cases, if c+ and c− are negative and if they are positive, the index equals 0
[5]. However, they are not homotope in this class of operators and they are dif-
ferent from the point of view of the degree construction (see Section 1.3 below).
If they are both positive, Condition NS for the operator Lλ is not satisfied for
some λ > 0.

1.3. Properness. Everywhere below we will say that an operator A(u) : E0 → E is
proper if the intersection of an inverse image of a compact set with any bounded
closed ball B ⊂ E0 is compact. We recall that a linear operator is proper if and
only if it is normally solvable with a finite-dimensional kernel.

Assume that a nonlinear operatorA(u) is differentiable in the following sense:
for each u0 ∈ E0 there exists a linear operator A′(u0) such that

A(u)−A(u0
)= A′(u0

)(
u−u0

)
+φ

(
u,u0

)
, (1.12)

where ∥∥φ(u,u0
)∥∥

E ≤ K
(
u,u0

)∥∥u−u0
∥∥
E′ (1.13)

and K(u,u0)→ 0 as u→ u0 in E′.
We note that this condition is more restrictive than the Fréchet differentiabil-

ity because the norm ‖u− u0‖E0 in the right-hand side of (1.13) is replaced by
‖u−u0‖E′ .

Similar to linear operator discussed above, we assume that the operator A(u)
satisfies the following condition: if fn→ f0 in E,

A
(
un
)= fn, (1.14)

un ∈ B, un→ u0 in E′, then u0 ∈ E0 and

A
(
u0
)= f0. (1.15)
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If these conditions are satisfied and the domain Ω is bounded, then the oper-
ator A(u) is proper. Indeed, from (1.14) and the compact embedding E0(Ω) in
E′(Ω) follows (1.15). From the differentiability

A′
(
u0
)(
un−u0

)= fn− f0−φ
(
un,u0

)
, (1.16)

and from (1.1), un→ u0 in E(Ω).
We call a nonlinear operator A(u) elliptic if a linearized operator A′(u0) is

elliptic. A precise definition of ellipticity used in this paper is given in Section 3.
Nonlinear elliptic operators satisfy all the conditions above. Their properness

is known for scalar equations in bounded domains [34].
If the domain Ω is unbounded, then elliptic operators are not generically

proper. Consider the following example:

A(u)= u′′ +F(u), A : C2+α(R)−→ Cα(R). (1.17)

Here F(u) is a sufficiently smooth function such that

F(0)= 0, F(u) < 0 for 0 < u < u0, F(u) > 0 for u > u0,∫ 1

0
F(u)du= 0.

(1.18)

Then there exists a solution u(x) of the equation A(u)= 0 such that u(x)→ 0 as
x→±∞. Obviously, all functions u(x+h), h∈R, are also solutions of this prob-
lem, and this family of solutions is not compact. Therefore, the inverse image of
the set {0} is not compact. The choice of Hölder spaces is not essential here. The
same problem arises in Sobolev spaces: u(x) decays exponentially at infinity if
F′(0) �= 0, and the solution is integrable with its derivatives.

To avoid this problem we introduce weighted spaces. In the example above, it
is the weighted Hölder spaces C2+α

µ (R) and Cαµ(R) with the norms

‖u‖C2+α
µ (R) = ‖uµ‖C2+α(R), ‖u‖Cαµ (R) = ‖uµ‖Cα(R), (1.19)

respectively. The weight function µ(x) can be taken for example 1 + x2. The pre-
cise conditions on it will be given in Section 2.1. Here we note that the weight
should be weaker than the exponential one in order not to lose solutions decay-
ing exponentially at infinity.

If we consider now the operator A(u) in the weighted spaces, then the family
of functions u(x + h) is still a solution of the problem A(u) = 0. However the
norm ‖u(x + h)µ(x)‖ tends to infinity as h→ ±∞. So in every bounded ball
B ⊂ C2+α

µ (R), the inverse image of {0} is compact.
This example explains the situation with the properness of elliptic operators

in unbounded domains. We will see in Section 3 that weighted spaces allow the
convergence un→ u0 in E′(Ω). The strong convergence in E(Ω) will follow from
Condition NS.
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We note that various particular cases of properness for nonlinear elliptic op-
erators in weighted Hölder spaces are considered in [3, 33]. Weighted Sobolev
spaces are considered in [30, 31, 32] where some estimates of semilinear elliptic
operators from below are obtained. Fredholm property and properness follow
from these estimates, and the degree is constructed using the approach devel-
oped in [27]. It is also possible to consider spaces without weight. However, in
this case it is necessary to impose some additional conditions on the operators
[25].

In Section 3, we prove properness of general elliptic problems. We consider
weighted Hölder spaces with an infinitely differentiable, positive weight func-
tion µ(x) such that µ(x) →∞ and |Dβµ(x)/µ(x)| → 0 as |x| → ∞. Here β is a
multi-index, |β| > 0. The conditions on the weight function mean in particu-
lar that its growth at infinity is slower than exponential. Therefore, it does not
change the limiting operators and the location of the essential spectrum. Con-
dition NS, which is a necessary and sufficient condition of properness of linear
elliptic operators, is also sufficient for properness of nonlinear operators.

1.4. Topological degree. One of the approaches to define the topological degree
is based on the theory of Fredholm operators [4, 8, 9, 10, 11, 23]. Consider an
operator A : E0 → E assuming that it is Fredholm, proper, and that it has a zero
index. Let � ⊂ E0 be a bounded domain, A(u) �= 0 for u ∈ ∂�. Let a ∈ E be a
regular value with a sufficiently small norm. Its existence is known (see [24, 28]).
Then there exists a finite number of solutions u1, . . . ,uN ∈� of the equation

A(u)= a, (1.20)

and there is no solutions of this equation at the boundary ∂�.
For each solution uj , j = 1, . . . ,N , we can associate a value

o
(
uj
)= 1 or o

(
uj
)=−1 (1.21)

called orientation. The topological degree γ(A,�) can be defined as

γ(A,�)=
N∑
j=1

o
(
uj
)
. (1.22)

It should be shown that it does not depend on the choice of a regular value a,
and that it is a homotopy invariant.

This scheme has been realized in a number of works under different con-
ditions on spaces, operators, and with different definitions of the orientation
[4, 10, 11, 23].

Let U(uj) be a small neighbourhood of the point uj in E0, which does not
contain other solutions of (1.20). Then by the definition of the index ind(A,uj)
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of a stationary point uj , we have

γ
(
A,U

(
uj
))= ind

(
A,uj

)
. (1.23)

On the other hand, if we define the topological degree through the orientation,
we obtain

γ
(
A,U

(
uj
))= o(uj). (1.24)

For finite-dimensional mappings, for the Leray-Schauder degree, and for some
of its generalizations

o
(
uj
)= (−1)ν, (1.25)

where ν is a number of negative eigenvalues of the operator A′(uj) together with
their multiplicities (see also [16, 27], where the index of stationary points is also
calculated in terms of sum of multiplicities of eigenvalues of some operators). If
this definition of orientation is applicable, any other definition should be equiv-
alent if the degree is unique [33].

The relation between the orientation and the eigenvalues of the linearized
operator imposes some condition on the spectrum. Indeed, the homotopy in-
variance of the degree implies that γ(Aτ,Uτ(uτj )) remains constant for the op-
erator Aτ depending on parameter τ if the linearized operator A′τ(uτj ) does not
have zero eigenvalues. Therefore, the number of negative eigenvalues modulus 2
should not change either. Generally speaking, this condition can be guaranteed
only if the essential spectrum does not intersect the negative half-axis. Thus, not
only the operator A′(uj) should be Fredholm but also A′(uj) + σI for all σ ≥ 0.

The topological degree for Fredholm, proper operators of index zero satisfy-
ing the condition above was constructed in [10] in the case of bounded opera-
tors acting in the same space. However, elliptic operators can be considered as
bounded if acting in different spaces, or unbounded if acting in the same space.

Suppose that A : E0 → E is a bounded operator, and E0 �= E. Then the con-
struction of the degree should be modified. First of all, instead of the eigenvalues
of the linearized operator we can consider negative solutions of the equation

A′
(
uj
)
u− λJu= 0, (1.26)

where J is a normalization operator. If it is invertible, we can consider the oper-
ator

Ã= J−1A : E0 −→ E0 (1.27)

acting in the space E0. The degree γ̃ for it can be defined through the degree for
the operator A

γ̃(Ã,�)= γ(A,�). (1.28)



136 Properness and topological degree for general elliptic operators

If the operator Ã′ + σI is Fredholm for all σ ≥ 0, then the operator A′ + σJ is
Fredholm for all σ ≥ 0.

An important class of linear elliptic operators are operators whose essential
spectrum does not intersect the real positive half-axis, that is, A′ − λI is Fred-
holm for all λ ≤ 0. For some particular cases these two classes of operators are
equivalent [3, 6].

In the general case, a priori we cannot expect that these two classes of Fred-
holm operators coincide. Denote Jku = ∆u− ku the normalization operator to
show its dependence on k. Let Φk be the class of linear elliptic operators L such
that L+ σJk is Fredholm for any σ ≥ 0. Then

··· ⊂Φk ⊂Φk+1 ⊂ ··· . (1.29)

Put

Φ=
∞⋃
k=1

Φk. (1.30)

We show in [33] that for second order elliptic operators in unbounded cylinders
under some additional conditions, the classΦ coincides with all operators L such
that L− λI is Fredholm for all λ≤ 0. As above, it allows to consider the operators
acting in the same space. For each Φk we define the degree γk and prove that the
degree is unique. Therefore the degree is defined for the whole class Φ.

For general elliptic operators this construction becomes complicated, and it
is not quite clear what class of operators it allows to consider. So in this paper we
construct the degree for bounded operators acting in different spaces directly,
without reduction to the same space (Section 4). The class of operators we con-
sider here consists of all Fredhom and proper operators A(u) such that the op-
erator A′ − λI is Fredholm for all λ≤ 0 and it is invertible for λ sufficiently large.
In fact, we consider a pair (A(u),B(u)) of operators acting from a space E0(Ω)
to a product of spaces E(Ω) = E1(Ω)× E2(∂Ω). Here B(u) corresponds to the
boundary operator. The nonlinear boundary conditions change the degree con-
struction. Indeed, after linearization we obtain the operator A′, and include the
set of functions u satisfying the condition B′u= 0 in the domain of the operator
A′. Therefore, during homotopies not only the operators but also the spaces are
changed. In this case the previous degree constructions cannot be used.

Another remark concerns the orientation of Fredholm operators. It is well
known that topological degree cannot be constructed in the class of all proper
C1 Fredholm mappings of index zero. The class of mappings should be also ori-
entable (see [4, 12]). Therefore, the problem is how to describe the class of ori-
entable mappings. For example, consider the class of all elliptic operators which
are Fredholm with the zero index, proper and sufficiently smooth. The ques-
tion whether this class of operators is orientable remains open. In this paper,
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we introduce a class of nonlinear elliptic operators which is orientable. The ori-
entation is defined through the number of negative eigenvalues under the as-
sumption that the essential spectrum does not intersect the real positive half-
axis (Section 4). The condition on the essential spectrum allows to prove that it
is a homotopy invariant and to construct the topological degree.

2. Linear operators

2.1. Operators and spaces. Let β = (β1, . . . ,βn) be a multi-index, βi nonnega-

tive integers, |β| = β1 + ···+ βn, Dβ = D
β1

1 ···Dβn
n , Di = ∂/∂xi. We consider the

following operators:

Aiu=
p∑

k=1

∑
|β|≤βik

a
β
ik(x)Dβuk (i= 1, . . . , p), x ∈Ω,

Biu=
p∑

k=1

∑
|β|≤γik

b
β
ik(x)Dβuk (i= 1, . . . , r), x ∈ ∂Ω.

(2.1)

Following [2] we consider integers s1, . . . , sp; t1, . . . , tp; σ1, . . . ,σr such that

βi j≤si + t j , i, j = i, . . . , p; γi j ≤ σi + t j , i= 1, . . . , r, j = 1, . . . , p; si ≤ 0.
(2.2)

We suppose that the number m=∑p
i=1(si + ti) is even and put r =m/2.

We assume that the problem is elliptic [1, 7, 29], that is, the ellipticity condi-
tion

det

( ∑
|β|=βik

a
β
ik(x)ξβ

)p

ik=1

�= 0, βik = si + tk, (2.3)

is satisfied for any ξ ∈Rn, ξ �= 0, x ∈ Ω̄, as well as the condition of proper ellip-
ticity and the Shapiro-Lopatinskii conditions (or the complementing boundary
condition in [1]). Here ξ = (ξ, . . . , ξn), ξβ = ξβ1 ···ξβn . The system is uniformly el-
liptic if the last determinant is bounded from below by a positive constant for all
|ξ| = 1 and x ∈ Ω̄.

Everywhere below Ck+α(Ω) denotes the standard Hölder space of functions
bounded in Ω together with their derivatives up to the order k, and the latter
satisfies the Hölder condition uniformly in x.

Denote by E0 a space of vector-valued functions u(x) = (u1(x), . . . ,up(x)),
uj ∈ Cl+t j+α(Ω), j = 1, . . . , p, where l and α are given numbers, l ≥ max(0,σi),
0 < α < 1. Therefore,

E0 = Cl+t1+α(Ω)×···×Cl+tp+α(Ω). (2.4)
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The domain Ω is supposed to be of the class Cl+λ+α, where λ = max(−si,
−σi, t j), and the coefficients of the operator satisfy the following regularity con-
ditions:

a
β
i j ∈ Cl−si+α(Ω), b

β
i j ∈ Cl−σi+α(∂Ω). (2.5)

The operator Ai acts from E0 to Cl−si+α(Ω), and Bi from E0 to Cl−σi+α(∂Ω).
Denote A= (A1, . . . ,Ap), B = (B1, . . . ,Br). Then

A : E0 −→ E1, B : E0 −→ E2, (A,B) : E0 −→ E, (2.6)

where E = E1×E2,

E1 = Cl−s1+α(Ω)×···×Cl−sp+α(Ω),

E2 = Cl−σ1+α(∂Ω)×···×Cl−σr+α(∂Ω).
(2.7)

We will consider weighted Hölder spaces E0,µ and Eµ with the norms

‖u‖E0,µ = ‖uµ‖E0 , ‖u‖Eµ = ‖uµ‖E. (2.8)

We use also the notationCk+α
µ for a weighted Hölder space with the norm ‖u‖Ck+α

µ

= ‖uµ‖Ck+α .
We suppose that the weight function µ is a positive infinitely differentiable

function defined for all x ∈Rn, µ(x)→∞ as |x| →∞, x ∈Ω, and∣∣∣∣ 1
µ(x)

Dβµ(x)
∣∣∣∣−→ 0, |x| −→∞, x ∈Ω (2.9)

for any multi-index β, |β| > 0. In fact, we will use its derivative only up to a
certain order (see Sections 2.6 and 3.2).

Operator (A,B) considered in weighted Hölder spaces acts from E0,µ into Eµ.

2.2. Limiting domains. In this section, we define limiting domains for un-
bounded domains in Rn, show their existence, and study some of their prop-
erties. We consider an unbounded domain Ω⊂Rn, which satisfies the following
condition.

Condition D. For each x0 ∈ ∂Ω, there exists a neighbourhood U(x0) such that

(1) U(x0) contains a sphere with the radius δ and the center x0, where δ is
independent of x0,

(2) there exists a homeomorphism ψ(x;x0) of the neighbourhood U(x0) on
the unit sphere B = {y : |y| < 1} in Rn such that the images of Ω∩U(x0)
and ∂Ω∩U(x0) coincide with B+ = {y : yn > 0, |y| < 1} and B0 = {y :
yn = 0, |y| < 1}, respectively,
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(3) the function ψ(x;x0) and its inverse belong to the Hölder space Ck+α, with
k =max(1, l+ λ). Their ‖ · ‖k+α-norms are bounded uniformly in x0.

For definiteness we suppose that δ < 1.

Remark 2.1. In what follows, we suppose that ψ is extended such that ψ ∈
Ck+α(Rn) and ‖ψ‖Ck+α(Rn) ≤M with M independent of x0.

It is easy to see that δ and ψ in Condition D can be chosen such that this
requirement can be satisfied. Indeed, denote by Vδ the sphere with the center at
x0 and the radius δ and let Wδ = ψ(Vδ).

Obviously, there exists a sphere Qε with the center at y0 = ψ(x0;x0) and the
radius ε such thatQε ⊂Wδ and ε does not depend on x0. Indeed, denote ϕ= ψ−1

and let y1 be an arbitrary point on the boundary of Wδ . We have δ = |ϕ(y1)−
ϕ(y0)| ≤ K|y1 − y0|, where K is the Lipschitz constant which does not depend
on x0. Let ε < δ/K . We have |y1− y0| > εwhich proves the existence of the desired
sphere Qε.

Let Ũ(x0)= ϕ(Qε). There exists a sphere Swith the center at x0 and the radius

δ̃ such that S ⊂ Ũ(x0) and δ̃ does not depend on x0. Indeed, let x1 be an arbi-
trary point of the boundary of Ũ(x0). Then we have ε = |ψ(x0;x0)−ψ(x1;x0)| ≤
K1|x0− x1|, where K1 is the Lipschitz constant of ψ, which does not depend on

x0. So for δ̃ < ε/K1 we have |x0− x1| > δ̃, which proves the existence of the men-
tioned sphere S.

We can take Ũ(x0) as a new neighborhood of x0 and ψ̃(x;x0)= (1/ε)(ψ(x;x0)
−ψ(x0;x0)) as a new function ψ. Since ψ̃(x;x0) is defined in the sphere Vδ it can
be extended on Rn.

To define convergence of domains we use the following Hausdorff metric
space. Let M and N denote two nonempty closed sets in Rn. Denote

σ(M,N)= sup
a∈M

ρ(a,N), σ(N,M)= sup
b∈N

ρ(b,M), (2.10)

where ρ(a,N) denotes the distance from a point a to a set N , and let

ρ(M,N)=max
(
σ(M,N),σ(N,M)

)
. (2.11)

We denote Ξ a metric space of bounded closed nonempty sets in Rn with the
distance given by (2.11). We say that a sequence of domains Ωm converges to a
domain Ω in Ξloc if

ρ
(
Ω̄m∩ B̄R,Ω̄∩ B̄R

)−→ 0, m−→∞ (2.12)

for anyR > 0 and BR = {x : |x| < R}. Here the bar denotes the closure of domains.

Definition 2.2. Let Ω⊂Rn be an unbounded domain, xm ∈Ω, |xm| →∞ as m→
∞, let χ(x) be a characteristic function of Ω, and let Ωm be a shifted domain
defined by the characteristic function χm(x) = χ(x + xm). We say that Ω∗ is a
limiting domain of the domain Ω if Ωm→Ω∗ in Ξloc as m→∞.
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We denote Λ(Ω) the set of all limiting domains of the domain Ω (for all se-
quences xm). We will show below that if Condition D is satisfied, then the limit-
ing domains exist and also satisfy this condition.

Theorem 2.3. If a domain Ω satisfies Condition D, then there exists a function
f (x) defined in Rn such that

(1) f (x)∈ Ck+α(Rn),
(2) f (x) > 0 if and only if x ∈Ω,
(3) |∇ f (x)| ≥ 1 for x ∈ ∂Ω,
(4) min(d(x),1)≤ | f (x)|, where d(x) is the distance from x to ∂Ω.

Proof. There exists a number N such that from the covering U(x0) of ∂D we
can choose a countable subcovering Ui such that the following conditions are
satisfied:

(i)
⋃
i Ui cover the δ/2-neighborhood of ∂Ω,

(ii) any N distinct sets Ui have an empty intersection.

Indeed, denote by V the δ/2-neighborhood of ∂Ω. Obviously for any point
x0 ∈ V there exists a point x′0 ∈ ∂Ω such that Bδ/2(x0) ⊂ Bδ(x′0) ⊂ U(x′0). Here
and in what follows Br(x) denotes a ball in Rn with the center at x and with
radius r. So we have a covering U ′(x0) = U(x′0) of V such that the centers of
balls are at the boundary of the domain. Denote Γ=⋃U ′.

Consider an ε-mesh in Rn. We denote by K the union of all n-dimensional ε-
intervals of this mesh which have a nonempty intersection with V . For any Qi ∈
K , we take a point xi ∈ Qi ∩V (i = 1,2, . . .) and consider the neighbourhood
Ui ∈ Γ, which contains the point xi. We suppose that ε is taken such that the
diameter of Qi is less than δ/2. Then Qi ⊂Ui and

V ⊂ Γ0 =
⋃
i

Ui. (2.13)

Therefore the covering Γ0 satisfies condition (i).
To eachQi ∈ K corresponds no more than one neighbourhoodUi ∈ Γ0. From

Condition D it follows that the diameter ofUi is less than a constant independent
of i. Hence (ii) is also satisfied.

Let ωi ∈ Ck+α(Rn) be a partition of unity subordinate to the covering Γ0, that
is, suppωi ⊂ Ui. Denote by ψi the vector-valued function ψ(x,x0) which corre-
sponds to Ui in Condition D and

f0(x)= cΣiψin(x)ωi(x), (2.14)

where ψin(x) is the last component of ψi(x) and the constant c will be chosen
later. We note that this sum contains no more than N terms.
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For any points x ∈Ui and x1 ∈ ∂Ω∩Ui we have |x− x1| ≤M|y− y1|, where
y = ψi(x), y1 = ψi(x1) and the constant M does not depend on i. So

d(x)≤M inf
y1
n=0

∣∣y− y1
∣∣=M∣∣ψin(x)

∣∣. (2.15)

It follows that for all x ∈ V we have d(x) ≤M| f0(x)|/c. We have used the fact
that ψin(x) have the same sign for all i. We take c ≥M and then

min
(
d(x),1

)≤ ∣∣ f0(x)
∣∣. (2.16)

Therefore (4) is proved for f0(x).
We prove (3). Denote ϕi = ψ−1

i and by ϕ′i and ψ′i the Jacobian matrices of ϕi
and ψi, respectively. Then for any x ∈ Ui we have ψ′i (x) ·ϕ′i (ψ(x))= I (identity
matrix). Let ai be the kth row of ψ′i and bi be the kth column of ϕ′i , then |ai||bi| ≥
1. From Condition D, |bi| ≤M1, where M1 is a constant independent of i. So
|ai| ≥ 1/M1. In particular,

∣∣∇ψin(x)
∣∣≥ 1

M1
. (2.17)

From (2.14) for x ∈ ∂D we have

∇ f0(x)= c
∑
i

∇ψin(x)ωi(x). (2.18)

Let ν be the unit inward normal to ∂D. Then(∇ f0(x),ν(x)
)= (∇ f0(x),∇ f0(x)/

∣∣∇ f0(x)
∣∣)= ∣∣∇ f0(x)

∣∣. (2.19)

For x ∈ ∂Ω∩Ui we have similarly(∇ψin(x),ν(x)
)= ∣∣∇ψin(x)

∣∣. (2.20)

Multiplying (2.18) by ν(x) we get

∣∣∇ f0(x)
∣∣= c∑

i

∣∣∇ψin(x)
∣∣ωi(x). (2.21)

From (2.17), taking c ≥M1 we obtain |∇ f0(x)| ≥ 1, x ∈ ∂Ω and (3) is proved for
f0(x).

We have defined the function f0(x) in a neighbourhood of the boundary ∂Ω.
We can easily extend it on the whole Rn in such a way that its regularity is pre-
served, it is greater than a positive constant inside the domain Ω and less than a
negative constant outside the domain. Multiplying it by a large positive number,
we will have the last two assertions of the theorem also satisfied. The theorem is
proved. �
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Let Ω be an unbounded domain satisfying Condition D and f (x) be the
function satisfying conditions of Theorem 2.3. Consider a sequence xm ∈ Ω,
|xm| →∞. Denote

fm(x)= f
(
x+ xm

)
. (2.22)

Theorem 2.4. Let fm(x)→ f∗(x) in Ckloc(Rn), where k is not greater than that in
Theorem 2.3. Denote

Ω∗ =
{
x : x ∈R

n, f∗(x) > 0
}
. (2.23)

Then

(1) f∗(x)∈ Ck+α(Rn),
(2) Ω∗ is a nonempty open set.

If Ω∗ �=Rn, then

(3) |∇ f∗(x)|∂Ω∗ ≥ 1,
(4) min(d∗(x),1)≤ | f∗(x)|, where d∗(x) is the distance from x to ∂Ω∗.

Proof. The first assertion of the theorem is obvious. To prove the second asser-
tion, we note that the origin O belongs to all domains Ωm. Denote by dm the
distance from O to the boundary ∂Ωm. If dm → 0, then from the properties of
the functions fm(x) it follows that

f∗(O)= 0,
∣∣∇ f∗(O)

∣∣≥ 1. (2.24)

Hence there are points in a neighbourhood of the origin where the function
f∗(x) is positive. Consequently Ω∗ is nonempty.

If dm does not converge to zero, then dmi ≥ a > 0 for some positive a. From
Theorem 2.3 we conclude that

fmi(O)≥min(a,1). (2.25)

Therefore

f∗(O)≥min(a,1) > 0, (2.26)

and we obtain again that the set Ω∗ is not empty. The fact that it is open is
obvious.

We verify now the third assertion of the theorem. Let f∗(x0) = 0 for some
x0. Then fm(x0)→ 0. From (4) of Theorem 2.3 it follows that dm(x0)→ 0, where
dm(x0) is the distance of x0 to ∂Ωm. So there exists zm ∈ ∂Dm such that |zm −
x0| → 0. Since |∇ fm(zm)| ≥ 1 by (3) of Theorem 2.3, then passing to limit we get
|∇ f∗(x0)| ≥ 1.
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We prove finally the last assertion of the theorem. For any x0 ∈Rn we have

min
(
dm
(
x0
)
,1
)≤ ∣∣ fm(x0

)∣∣. (2.27)

So we should verify that dm(x0) converges to d∗(x0) as m→∞.
Suppose that x0 belongs to a ball BR. Denote

Γm =
{
x : fm(x)= 0, x ∈ BR

}
, Γ∗ =

{
x : f∗(x)= 0, x ∈ BR

}
. (2.28)

It is sufficient to prove that

ρ
(
Γm,Γ∗

)−→ 0, m−→∞. (2.29)

Let Γεm, Γε∗ be ε-neighbourhoods of these sets, respectively. From convergence
fm(x)→ f∗(x) inCk(BR) it follows that Γm ⊂ Γε∗ form sufficiently large. We show
that Γ∗ ⊂ Γεm for m large. Indeed,∣∣ fm(x)− f∗(x)

∣∣ < ε, x ∈ BR (2.30)

for m ≥mε and some mε. If x ∈ Γ∗, then f∗(x) = 0 and | fm(x)| < ε. From the
last assertion of Theorem 2.3 it follows that dm(x) < ε, and x ∈ Γεm. Convergence
(2.29) follows from this. The theorem is proved. �

Remark 2.5. The limiting set Ω∗ is not necessarily connected even if the domain
Ω is connected.

Theorem 2.6. If fm(x)→ f∗(x) in Ckloc as m→∞, then ∂Ωm→ ∂Ω∗ in Ξloc.

The proof of the theorem follows from convergence (2.29).

Theorem 2.7. If fm(x)→ f∗(x) in Ckloc as m→∞, then the limiting domain Ω∗
satisfies Condition D, or Ω∗ =Rn.

Proof. Suppose that Ω∗ �= Rn and x0 ∈ ∂Ω∗. Then there exists a sequence x̂m
such that

x̂m −→ x0, x̂m ∈ ∂Ωm, (2.31)

where Ωm are the domains where the functions fm(x) are positive. For each
point x̂m and domain Ωm, there exists a neighbourhood U(x̂m) and the func-
tion ψ(x; x̂m) defined in Condition D.

Since the domain Ω satisfies Condition D, the functions ψ(x; x̂m) are uni-
formly bounded in the Ck+α-norm with k ≥ 1. The domain of definition of each
of these functions is an inverse image of the unit sphere in Rn. Choosing a con-
verging subsequence of the inverse images and of the functions ψ(x; x̂m), we ob-
tain a limiting neighbourhood U(x0) and a limiting function ψ(x;x0) which sat-
isfy Condition D. The theorem is proved. �

From the previous theorems the main result of this section follows.
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Theorem 2.8. Let Ω be an unbounded domain satisfying Condition D, xm ∈Ω,
|xm| →∞, and f (x) be the function constructed in Theorem 2.3. Then there exists
a subsequence xmi and a function f∗(x) such that

fmi(x)≡ f
(
x+ xmi

)−→ f∗(x) (2.32)

in Ckloc(Rn), and the domain

Ω∗ =
{
x : f∗(x) > 0

}
(2.33)

satisfies Condition D, or Ω∗ =Rn.
Moreover

Ω̄mi −→ Ω̄∗ in Ξloc, (2.34)

where

Ωmi =
{
x : fmi(x) > 0

}
. (2.35)

2.3. Limiting problems. In the previous section we introduced limiting do-
mains. Here we will define the corresponding limiting problems.

Let Ω be a domain satisfying Condition D and χ(x) be its characteristic func-
tion. Consider a sequence xm ∈ Ω, |xm| → ∞ and the shifted domains Ωm de-
fined by the shifted characteristic functions χm(x)= χ(x+ xm). We suppose that
the sequence of domains Ωm converge in Ξloc to some limiting domain Ω∗. In
this section we suppose that 0≤ k ≤ l+ λ.

Definition 2.9. Let um(x)∈ Ck(Ωm),m= 1,2, . . . .We say that um(x) converges to
a limiting function u∗(x) ∈ Ck(Ω∗) in Ckloc(Ωm →Ω∗) if there exists an exten-
sion vm(x)∈ Ck(Rn) of um(x), m= 1,2, . . . and an extension v∗(x)∈ Ck(Rn) of
u∗(x) such that

vm −→ v∗ in Ckloc

(
R
n
)
. (2.36)

Definition 2.10. Let um(x)∈ Ck(∂Ωm), m= 1,2, . . . . We say that um(x) converges
to a limiting function u∗(x) ∈ Ck(∂Ω∗) in Ckloc(∂Ωm → ∂Ω∗) if there exists an
extension vm(x) ∈ Ck(Rn) of um(x), m = 1,2, . . . and an extension v∗(x) ∈
Ck(Rn) of u∗(x) such that

vm→ v∗ in Ckloc

(
R
n
)
. (2.37)

Remark 2.11. In these definitions u∗(x) does not depend on the choice of the
extensions vm(x) and v∗(x). Indeed, in Definition 2.9 for any point x ∈ Ω̄∗ there
exists a sequence x̂m ∈ Ω̄m such that x̂m→ x. Therefore

u∗(x)= v∗(x)= lim
m→∞vm

(
x̂m
)= lim

m→∞um
(
x̂m
)
. (2.38)
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Similarly it can be checked for Definition 2.10.

Theorem 2.12. Let um ∈ Ck+α(Ωm), ‖um‖Ck+α ≤M, where the constant M is in-
dependent of m. Then there exists a function u∗ ∈ Ck+α(Ω∗) and a subsequence
umk such that umk → u∗ in Ckloc(Ωmk →Ω∗).

Let um ∈ Ck+α(∂Ωm), ‖um‖Ck+α ≤ M. Then there exists a function u∗ ∈
Ck+α(∂Ω∗) and a subsequence umk such that umk → u∗ in Ckloc(∂Ωmk → ∂Ω∗).

Proof. Let um ∈ Ck+α(Ωm), ‖um‖Ck+α ≤M. It follows from Condition D that
there exists an extension vm(x) of um(x) on the whole space Rn such that

vm ∈ Ck+α(
R
n
)
,

∥∥vm∥∥Ck+α(Rn) ≤M0, vm(x)= um(x), x ∈Ωm, (2.39)

where M0 is independent of m.
Passing to a subsequence and retaining the same notation we can suppose

that there exists a function v∗(x)∈ Ck+α(Rn) such that ‖v∗‖Ck+α(Rn) ≤M0 and

vm −→ v∗ in Ckloc

(
R
n
)
. (2.40)

So

um −→ u∗ in Ckloc

(
Ωm→Ω∗

)
(2.41)

in the sense of Definition 2.9. Here u∗(x) is the restriction of v∗(x) on Ω∗.
The second part of the theorem for um ∈ Ck+α(∂Ωm) is proved similarly. The

theorem is proved. �

The operator L consists of a pair of operators, L= (L1,L2) where the operator
L1 acts inside the domain and L2 is a boundary operator. So we can represent the
boundary problem as

L1u= f1, L2u= f2, (2.42)

where u ∈ E0(Ω), f1 ∈ E1(Ω), f2 ∈ E2(∂Ω), E = E1 ×E2. The coefficients ai j(x)
of the operator L1 are defined in Ω̄ and the coefficients bi j(x) of L2 in ∂Ω. We
recall that

ai j(x)∈ Cl−si+α(Ω), bi j(x)∈ Cl−σi+α(∂Ω) (2.43)

(see Section 2.1). Then obviously the shifted coefficients ai j(x+ xm) and bi j(x+
xm) satisfy conditions of Theorem 2.12. Therefore we can define the limiting
problem

L̂1u= f , L̂2u= g, (2.44)
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where u ∈ E0(Ω∗), f1 ∈ E1(Ω∗), f2 ∈ E2(∂Ω∗), L̂1 and L̂2 are operators with
limiting coefficients a∗i j(x)∈ Cl−si+α(Ω∗), b∗i j(x)∈ Cl−σi+α(∂Ω∗).

We note that for a given problem (2.42) there can exist a set of limiting prob-
lems corresponding to different sequences xm and to different converging subse-
quences of coefficients of the operators.

2.4. Normal solvability. We consider the operator L : E0(Ω)→ E(Ω) and intro-
duce limiting domains and limiting operators defined above.

In what follows we will use also the spaces E′0 and E′, which are obtained from
E0 and E, respectively, if we put α= 0.

From Theorem 2.12 it follows that for any sequences um ∈ E0(Ωm), fm ∈
E(Ωm) with uniformly bounded norms there exist subsequences umk and fmk

converging to some limiting functions u∗ ∈ E0(Ω∗) and f∗ ∈ E(Ω∗) in
E′0,loc(Ωmk →Ω∗) and E′loc(Ωmk →Ω∗), respectively.

If Lm is a sequence of operators with shifted coefficients and Lmum = fm, then
there exists a limiting operator L̂ such that L̂u∗ = f∗.

This is true in particular for the case where Ωm =Ω for all m and Lm = L.
It is known that for a domain Ω satisfying Condition D and an operator L the

following estimate

‖u‖E0 ≤ K
(‖Lu‖E +‖u‖C

)
(2.45)

holds, where the constant K is independent of the function u∈ E0(Ω) and ‖ · ‖C
is the norm in C(Ω).

Condition NS. For any limiting domain Ω∗ and any limiting operator L̂ the
problem

L̂u= 0, u∈ E0
(
Ω∗
)

(2.46)

has only zero solution.

Theorem 2.13. Let Condition NS be satisfied. Then the operator L is normally
solvable and its kernel is finite dimensional.

Proof. Let the limiting problems have only zero solution. It is sufficient to prove
that the operator L is proper. Consider the equation

Lun = fn, (2.47)

where fn ∈ E(Ω) and fn → f0. Suppose that ‖un‖E0(Ω) ≤M. We will prove that
there exists a function u0 ∈ E0(Ω) and a subsequence unk such that

∥∥unk −u0
∥∥
E0(Ω) −→ 0. (2.48)



V. Volpert and A. Volpert 147

There exists a function u0 ∈ E0(Ω) such that unk → u0 in E′0,loc(Ω) and Lu0 = f0.
Without loss of generality we can assume, here as well as below, that it is the
same sequence. We prove first that

∥∥un−u0
∥∥
C(Ω) −→ 0. (2.49)

Suppose that this convergence does not take place. Since un → u0 in Cloc(Ω), we
conclude that there exists a sequence xm, |xm| →∞ and a subsequence unm of un
such that

∥∥unm(xm)−u0
(
xm
)∥∥≥ ε > 0. (2.50)

Consider the shifted domains Ωn with characteristic functions χ(x+ xm), the op-
erators with shifted coefficients and the functions vnm(x)= unm(x+ xm)−u0(x+
xm). Passing to a subsequence we conclude that there exists a limiting domain
Ω∗, a limiting operator L̂, and a nonzero limiting function v0 ∈ E0(Ω∗) such
that

L̂v0 = 0. (2.51)

This contradiction proves (2.49).
From this convergence, from the convergence fn → f0 in E(Ω), and estimate

(2.45) it follows that un→ u0 in E0(Ω). The theorem is proved. �

The next theorem will provide a necessary condition of normal solvability.
In fact, it is the same Condition NS. However we need now more restrictive
conditions on the coefficients of the operator and on the domain Ω.

We suppose here that

a
β
ik ∈ Cl−si+δ(Ω), b

β
ik ∈ Cl−σi+δ(∂Ω), the domain Ω is of class Cl+λ+δ (2.52)

with α < δ < 1.

Lemma 2.14. Let as above Ωm and Ω∗ be shifted and limiting domains, respec-
tively. Then for any N there exists m0 such that for m>m0 there exists a diffeomor-
phism

hm(x) : Ω̄m∩BN −→ Ω̄∗ ∩BN (2.53)

satisfying the condition

∥∥hm(x)− x∥∥Cl+λ+α(Ω̄m∩BN ) −→ 0 (2.54)

as m→∞.
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Proof. Consider a domain G such that Ḡ⊂Ωm∩Ω∗ for all m sufficiently large.
Let x0 ∈ ∂Ω∗. Denote by n(x0) the normal to ∂Ω∗ at x = x0. If m is sufficiently
large, then in a neighbourhood of x0, n(x0) intersects ∂Ωm only at one point.
The domain G can be chosen such that it satisfies the same property.

We put hm(x)= x for x ∈G. We define then hm(x) along each normal n(x0) by
mapping the interval, which belongs to Ωm on the interval in Ω∗. It can be done
in such a way that we have the required regularity. The lemma is proved. �

Theorem 2.15. Suppose that problem (2.46) has a nonzero solution u0 for some
limiting operator L̂ and limiting domain Ω∗. Then the operator L is not proper.

Proof. Let ϕ(x) be an infinitely differentiable function of x ∈ Rn such that 0 ≤
ϕ(x) ≤ 1, ϕ(x) = 1 for |x| < 1, ϕ(x) = 0 for |x| > 2. If {xm} is the sequence for
which the limiting operator L̂ is defined, denote

ϕm(x)= ϕ
(
x

rm

)
, (2.55)

where rm →∞ and rm ≤ |xm|/3. Some other conditions on the sequence rm will
be formulated below.

Let Vj = {y : y ∈ Rn, |y| < j}, j = 1,2, . . . . Denote by nj a number such that
form≥ nj the diffeomorphism hm defined in Lemma 2.14 can be constructed in
Ωm∩Vj+1 and

∥∥hm(y)− y
∥∥
Cl+λ+α(Ωm∩Vj+1) < 1. (2.56)

For arbitrary mj ≥ nj we take rmj =min( j/2,|xmj |/3).
Let

vmj (y)= ϕmj (y)u0
(
hmj (y)

)
for y ∈Ωmj ∩Vj+1,

vmj (y)= 0 for y ∈Ωmj , |y| ≥ j + 1.
(2.57)

Denote

umj (x)= vmj

(
x− xmj

)
, x ∈Ω. (2.58)

It is easy to see that umj ∈ E0(Ω) and

∥∥umj

∥∥
E0(Ω) ≤M, (2.59)

where M does not depend on mj . Indeed, obviously

ϕmj (y)= 0 (2.60)
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for y outside Vj . So to prove (2.59) it is sufficient to show that∥∥vmj

∥∥
E0(Ωmj∩Vj+1) ≤M1, (2.61)

or ∥∥u0
(
hmj (y)

)∥∥
E0(Ωmj∩Vj+1) ≤M2, (2.62)

where M1 and M2 do not depend on mj . This follows from (2.56) and the fact
that u0 ∈ E0(Ω∗).

We will prove that choice of mj in (2.58) can be specified so that

(i) Lumj → 0 in E(Ω) as mj →∞,
(ii) the sequence {umj} is not compact in E0(Ω).

The assertion of the theorem will follow from this.
(i) We consider operator Ai. The operator Bi is treated similarly. For any j

and m≥ nj we have

Aium = A1
i um +A2

i um, (2.63)

where

A1
i um(x)= ϕm

(
x− xm

) p∑
k=1

∑
|β|≤βik

a
β
ik(x)Dβu0k

(
hm
(
x− xm

))
, x ∈Ω, (2.64)

u0 = (u01, . . . ,u0p) and A2
i contains derivatives of ϕm. Obviously∥∥A2

i um
∥∥
Cl−si+α(Ω) −→ 0 (2.65)

as m→∞.
Denote y = x− xm. From (2.64) we obtain

A1
i um

(
y + xm

)= ϕm(y)Tim(y), y ∈Ωm, (2.66)

where

Tim(y)=
p∑

k=1

∑
|β|≤βik

a
β
ik,m(y)Dβu0k

(
hm(y)

)
, y ∈Ωm, (2.67)

a
β
ik,m(y)= aβik(y + xm).

We will prove that for any j fixed∥∥Tim∥∥Cl−si+α(Ωm∩Vj+1) −→ 0 (2.68)

as m→∞.
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By definition of u0 the following equality holds:

p∑
k=1

∑
|β|≤βik

â
β
ik(x)D

β
xu0k(x)= 0, x ∈Ω∗. (2.69)

Here â
β
ik(x) are the limiting coefficients. So

Tim(y)=
p∑

k=1

∑
|β|≤βik

[
S
β
ik,m(y) +P

β
ik,m(y)

]
, (2.70)

where

S
β
ik,m(y)= aβik,m(y)

[
D
β
yu0k

(
hm(y)

)−Dβ
xu0k

(
hm(y)

)]
, (2.71)

P
β
ik,m(y)= [aβik,m(y)− âβik

(
hm(y)

)]
D
β
xu0k

(
hm(y)

)
. (2.72)

The first factor on the right in (2.71) is bounded since

∥∥aβik,m∥∥Cl−si+α(Ωm) =
∥∥aβik∥∥Cl−si+α(Ω). (2.73)

From Lemma 2.14 it follows that the second factor tends to 0 in the norm
Cl−si+α(Ωm∩Vj+1) as m→∞. So

∥∥Sβik,m∥∥Cl−si+α(Ωm∩Vj+1) −→ 0 (2.74)

as m→∞.
Consider (2.72). Using Lemma 2.14 we easily prove that

∥∥Dβ
xu0k

(
hm(y)

)∥∥
Cl−si+α(Ωm∩Vj+1) ≤M3 (2.75)

with M3 independent of m.
To prove (2.68) it remains to show that, for any subsequence of m, Tim has a

convergent to zero subsequence. If mν is a subsequence of m, then assumption
(2.52) and Lemma 2.14 imply that

∥∥aβik,m(·)− âβik
(
hm(·))∥∥Cl−si+α(Ωm∩Vj+1) −→ 0 (2.76)

as m→∞ by some subsequence of mν. So (2.68) is proved.
Now we specify the choice of mj in (2.58). According to (2.68) for any j we

can take pj such that

∥∥Tim∥∥Cl−si+α(Ωm∩Vj+1) <
1
j

(2.77)
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for m≥ pj . We take mj =max(nj , p j). Then obviously

∥∥ϕmjTimj

∥∥
Cl−si+α(Ωmj )

−→ 0 (2.78)

as mj →∞.
It is easy to see that mj can be chosen by the same manner in such a way that

(2.78) is true for all i= 1, . . . , p and also for operators Bi.
Thus the assertion (i) is proved.
(ii) We will prove that sequence (2.58) does not have convergent subsequence.

Obviously umj (x)= 0 for |x| < rmj and so

umj (x)−→ 0 (2.79)

as mj →∞ for any x ∈Ω fixed.
For any subsequence si of mj , there exists N such that

sup
x∈Ω

∣∣usi(x)
∣∣ > 0 for si > N. (2.80)

Indeed, denote y = x− xsi . Then

sup
x∈Ω

∣∣usi(x)
∣∣≥ sup

y∈Ωsi

⋂
Vj+1

∣∣ϕsi(y)u0
(
hsi(y)

)∣∣. (2.81)

Let x0 ∈ Ω∗ be a point such that |u0(x0)| > 0. Denote ysi = h−1
si (x0), ysi ∈ Ωsi .

From Lemma 2.14 it follows that |ysi| is bounded. So there exists N such that
|ysi| < rsi , |ysi| < j + 1 for si > N .

From (2.81), supx∈Ω |usi(x)| ≥ |u0(x0)| and (2.80) follows.
We have obtained ‖usi‖C(Ω) > 0. This and (2.79) imply that umj is not compact

in E0(Ω). The theorem is proved. �

2.5. Dual spaces: invertibility of limiting operators. We consider now the
space E = E(Ω) defined in Section 2.1 and the space E0, which consists of func-
tions u∈ E converging to 0 at infinity in the norm E, that is,

‖u‖E(Ω∩{|x|≥N}) −→ 0 (2.82)

asN →∞. We say that un→ u0 in Eloc(Ω) if this convergence holds in Ω∩{|x| ≤
N} for any N .

Lemma 2.16. Let φ be a functional in the dual space (E0)∗, u ∈ E and u �∈ E0,
un ∈ E0, ‖un‖E ≤ 1, and un→ u in Eloc. Then there exists a limit

φ̂ = lim
n→∞φ

(
un
)
. (2.83)



152 Properness and topological degree for general elliptic operators

Proof. Since φ is a bounded functional, then∣∣φ(un)∣∣≤ K∥∥un∥∥E ≤ K (2.84)

with some positive constant K . Suppose that the limit (2.83) does not exist. We
will construct a sequence zn ∈ E0 uniformly bounded in the norm E such that
φ(zn)→∞.

We can choose two subsequences ûn and ūn such that

φ
(
ûn
)−→ K1, φ

(
ūn
)−→ K2, K1 �= K2. (2.85)

Without loss of generality, we can assume that K1 > K2 and that for all n≥ 1

φ
(
ûn
)≥ K1− δ > K2 + δ ≥ φ(ūn) (2.86)

for some positive δ. We put v1 = ûn1 − ūn1 . Then

φ
(
v1
)≥ K1−K2− 2δ > 0. (2.87)

For any given ball and any ε > 0 we can choose n1 sufficiently large such that
the E-norm of v1 in this ball is less than ε/2. On the other hand, v1 converges
to 0 at infinity in the sense of definition of the space E0. Therefore there exists a
function ω1 ∈ E0, ‖ω1‖E ≤ ε such that w1 = v1 +ω1 has a finite support.

We choose ε such that∣∣φ(ω1
)∣∣≤ K∥∥ω1

∥∥
E ≤ Kε < K1−K2− 2δ. (2.88)

Then

φ
(
w1
)
> K1−K2− 2δ−Kε > 0. (2.89)

We choose the functions ûn2 , ūn2 such that v2 = ûn2 − ūn2 is sufficiently small in
the support of w1. Then there exists ω2 such that ‖ω2‖E ≤ ε and

suppw1∩ suppw2 =∅,
φ
(
w2
)
> K1−K2− 2δ−Kε > 0.

(2.90)

In the same manner we construct other functions of the sequence wn. We put

zn =
n∑
i=1

wi. (2.91)

Then the functions zn are uniformly bounded in the E norm and φ(zn)→∞.
The lemma is proved. �
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Lemma 2.17. The limit (2.83) does not depend on the sequence un.

Proof. Suppose that there are two sequences ûn and ūn such that

ûn −→ u, ūn→ u (2.92)

in Eloc and

lim
n→∞φ

(
ûn
) �= lim

n→∞φ
(
ūn
)
. (2.93)

Then we proceed as in the proof of the previous lemma. The lemma is proved.
�

Corollary 2.18. If un→ 0 in Eloc, then φ(un)→ 0.

We can extend now the functional φ to the space E(Ω). For any u∈ E(Ω) we
put φ̂(u)= φ(u) if u∈ E0(Ω) and

φ̂(u)= lim
n→∞φ

(
un
)
, (2.94)

where un ∈ E0(Ω) is an arbitrary sequence converging to u in Eloc. This is a linear
bounded functional on E(Ω).

Denote all such functionals Ê. It is a linear subspace in E∗. Suppose that
Ê �= E∗. We take a functional ψ ∈ E∗, which does not belong to Ê. Let ψ0 be
a restriction of ψ on E0. Then ψ0 ∈ (E0)∗. As above we can define the functional
ψ̂0 ∈ (E)∗. By assumption ψ �= ψ̂0. Denote ψ̃ = ψ− ψ̂0. Then

ψ̃ = 0, ∀u∈ E0. (2.95)

Thus we have proved the following theorem.

Theorem 2.19. The dual space E∗ is a direct sum of the extension Ê of (E0)∗ on E
and of the subspace Ẽ consisting of all functionals satisfying (2.95).

Remark 2.20. For any function v ∈ L1(Ω), we can define the functional φ ∈ Ê as

φ(u)=
∫
Ω
v(x)u(x)dx. (2.96)

We do not know whether Ê = (Cα(Ω))∗. However, if instead of the space
Cα(Ω) we take, for example, the space of functions from Cα(Ω) having limits
at infinity, then all constructions above remain applicable and Ê �= (Cα(Ω))∗.
Indeed, the functional

ψ(u)= lim
|x|→∞

u(x) (2.97)

does not belong to Ê. However the following lemma shows that the normal solv-
ability is determined completely by the subspace Ê.
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Lemma 2.21. Suppose that the operator L : E0 → E is normally solvable with a
finite-dimensional kernel, and the problem

Lu= f , f ∈ E (2.98)

is solvable if and only if

ψi( f )= 0, i= 1, . . . ,N, (2.99)

where ψi are linearly independent functionals in E∗. Then ψi ∈ Ê.

Proof. Suppose that the assertion of the lemma does not hold and

ψ1 �∈ Ê, ψ2, . . . ,ψN ∈ Ê. (2.100)

We suppose first that ψ1 ∈ Ẽ. We consider the functionals ψi, i = 2, . . . ,N , as
functionals on E0. They are linearly independent. There exist functions f j ∈ E0,
j = 2, . . . ,N , such that

ψi
(
f j
)= δi j , i, j = 2, . . . ,N, (2.101)

where δi j is the Kronecker symbol.
Let f (n) ∈ E0, the norms ‖ f (n)‖E be uniformly bounded and f (n) → f in Eloc.

Then the problem

Lu= g(n), (2.102)

where

g(n) = f (n)−
N∑
i=2

ψi
(
f (n)) fi, (2.103)

is solvable in E0 since

ψ1
(
f (n))= 0, ψ1

(
fi
)= 0, ψi

(
g(n))= 0, i= 2, . . . ,N. (2.104)

Denote by u(n) its solution and put u(n) = v(n) +w(n), where

v(n) ∈ KerL, w(n) ∈ (KerL)⊥, (2.105)

and (KerL)⊥ denotes the supplement to the kernel of the operator L in the space
E0. Then

Lw(n) = g(n) (2.106)
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and the E0 norms of the functions w(n) are uniformly bounded. Indeed, if
‖w(n)‖E0 →∞, then for the functions

w̃(n) = w(n)∥∥w(n)
∥∥
E0

, g̃(n) = g(n)∥∥w(n)
∥∥
E0

(2.107)

we have

Lw̃(n) = g̃(n),
∥∥g̃(n)

∥∥
E −→ 0. (2.108)

Since the operator L is proper, then there exists a function w0 such that w̃(nk) →
w0. Hencew0 ∈ (KerL)⊥. On the other hand, Lw0 = 0. This contradiction proves
the boundedness of the sequence w(n).

Therefore there exists a subsequence w(nk) converging in E′0,loc (see Section
2.4) to a limiting function ŵ ∈ E0. Passing to the limit in (2.106), we have

Lŵ = f −
N∑
i=2

ψi( f ) fi. (2.109)

Since this problem is solvable for any f , then

0= ψ1

(
f −

N∑
i=2

ψi( f ) fi

)
= ψ1( f ). (2.110)

This means that for any function f ∈ E, the value of the functional ψ1 equals
zero. This contradiction proves the lemma.

If ψ1 �∈ Ê and ψ1 �∈ Ẽ, then by virtue of Theorem 2.19, ψ1 = ψ̃1 + ψ̂1, where
ψ̃1 ∈ Ẽ, ψ̂1 ∈ Ê. If the functionals ψ̂1,ψ2, . . . ,ψN are linearly dependent, we can
take their linear combination and reduce this case to the case considered above. If
they are linearly independent, we repeat the same construction with all N func-
tionals, that is, the sum in the expression for g(n) contains the term ψ̂1( f (n)) f1.
The solvability condition

0= ψ1

(
f −

N∑
i=2

ψi( f ) fi− ψ̂1( f ) f1

)
= ψ̃1( f ) (2.111)

gives ψ1 ∈ Ê.
The proof remains the same, as we suppose that more than one functional

does not belong to Ê. The theorem is proved. �

In the following theorem it is supposed that conditions (2.52) are satisfied.

Theorem 2.22. If the operator L is Fredholm, then any of its limiting operator is
invertible.
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Proof. It is sufficient to prove that the problem

L̂u= f ∗ (2.112)

is solvable for any f ∗ ∈ E(Ω∗) where Ω∗ is the limiting domain.
The problem

Lu= f , u∈ E0(Ω), f ∈ E(Ω), (2.113)

is solvable if and only if

ψi( f )= 0, i= 1, . . . ,N, (2.114)

where ψi are linearly independent functionals in Ê (see Lemma 2.21). Let f j ∈
E0(Ω), j = 1, . . . ,N , be functions which form the biorthogonal system to these
functionals. For any f ∈ E(Ω) the problem

Lu= f −
N∑
i=1

ψi( f ) fi (2.115)

has a solution u∈ E0(Ω).
Let {xm} be the sequence for which the limiting operator L̂ is defined. Denote

Tm f (x)= f (x+ xm) and consider the shifted problem. Then from (2.115)

LmTmu= Tm f −
N∑
i=1

ψi( f )Tm fi, (2.116)

where Lm is the operator with shifted coefficients.
So for any f ∈ E(Ωm) the equation

Lmu= f −
N∑
i=1

ψi
(
T−1
m f

)
Tm fi (2.117)

has a solution u∈ E0(Ωm).
To prove the existence of solutions of (2.112), we use the construction given

in the proof of Theorem 2.15. Let ϕm,Vj , nj ,mj be the same as in Theorem 2.15.
Suppose that (2.52) is satisfied. Denote gmj (y)=ϕmj (y) f ∗(hmj (y)) for y∈Ω̄mj∩
Vj+1 and suppose gmj (y)= 0 for y ∈ Ω̄mj , |y| > j + 1.

Consider the equation

Lmjumj = gmj −
N∑
i=1

ψi
(
T−1
mj
gmj

)
Tmj fi, (2.118)

which has the type (2.117), and so it has a solution umj ∈ E0(Ωmj ).
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Since ‖gmj‖E(Ωmj ) is bounded, we obtain from (2.118) that ‖umj‖E0(Ωmj ) is
bounded. By Theorem 2.12 there exists a function u ∈ E0(Ω∗) and a subse-
quence umjk

→ u in E′0,loc(Ωmjk
→Ω∗). Moreover, the subsequence can be taken

so that gmjk
is convergent in E′loc(Ωmjk

→Ω∗,∂Ωmjk
→ ∂Ω∗). (The notation cor-

responds to that in Definitions 2.9 and 2.10 and to the fact that E = E1 × E2.)
Obviously the limit of gmjk

is f ∗.
Passing to the limit in (2.118) by this subsequence and taking into account

that Tmj fi→ 0, we obtain solvability of problem (2.112). The theorem is proved.
�

Corollary 2.23. If an operator L coincides with its limiting operator, and it is
Fredholm, then it is invertible.

The last result shows, in particular, that the spectrum of operators with con-
stant, periodic or quasiperiodic coefficients in unbounded cylinders does not
contain eigenvalues and consists only of points of the essential spectrum. We
understand here essential spectrum as points of the complex plane where the
operator L− λ is not Fredholm. By eigenvalues, the points where it is Fredholm
but its kernel is nonempty.

2.6. Weighted spaces. In this section, we discuss the Fredholm property in
weighted spaces. Consider the problem

Lu= f , (2.119)

where u∈ E0,µ, f ∈ Eµ (see Section 2.1). Denote v = uµ, g = f µ. We have

Lv+Ku= g, (2.120)

where

Ku= µLu−L(µu). (2.121)

Lemma 2.24. Suppose that the operator L : E0 → E is normally solvable and has a
finite-dimensional kernel, the operator

Ku≡ µLu−L(µu) : E0,µ −→ E (2.122)

is compact. Then the operator L : E0,µ → Eµ is normally solvable and has a finite-
dimensional kernel.

Proof. Let fk be a convergent sequence in Eµ, Luk = fk,

∥∥uk∥∥E0,µ
≤ 1. (2.123)
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We will show that the sequence uk is compact, and by this the operator L : E0,µ→
Eµ is proper. We have

Lvk +Kuk = gk, (2.124)

where

vk = µuk, gk = µ fk. (2.125)

Let wk = Kuk and let wkl be a subsequence converging in E. Then

Lvkl = gkl −wkl , (2.126)

and the sequence vkl is compact in E0 since the operator L : E0 → E is proper.
Therefore the sequence ukl is compact in E0,µ. The lemma is proved. �

Theorem 2.25. Suppose that the conditions of Theorem 2.13 are satisfied. Then
the operator L : E0,µ→ Eµ is normally solvable and has a finite-dimensional kernel.

Proof. We consider the operators Ai defined in Section 2.1. The boundary oper-
ators Bi are treated similarly. Denote

Kiu= µAiu−Ai(µu). (2.127)

According to Lemma 2.24, it is sufficient to prove that the operator Ki : E0,µ →
Cl−si+α(Ω) is compact. Obviously

Kiu=
p∑

k=1

∑
0<|σ|≤βik,|τ|<βik

cστ(x)DσµDτuk, (2.128)

where cστ is a linear combination of the coefficients a
β
ik(x) of the operator Ai. So

cστ(x)∈ Cl−si+α(Ω). (2.129)

Suppose we have a sequence {uν}, ν= 1,2, . . . ,

∥∥uν
∥∥
E0,µ
= ∥∥uνµ

∥∥
E0
≤M (2.130)

with M independent of ν. We will prove that from the sequence Kiuν we can find
a convergent subsequence in Cl−si+α(Ω).
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Indeed, denote vν = µuν. Then ‖vν‖E0 ≤M. So we can find a subsequence
wj = vν j convergent in Ê ≡ Cl+t1 (Ω)× ··· ×Cl+tp(Ω) locally to some limiting
function w0 ∈ E0. Denote u0 =w0/µ. Then we have

∥∥Kiuν j −Kiu0
∥∥
Cl−si+α(Ω) =

∥∥∥∥Ki zjµ
∥∥∥∥
Cl−si+α(Ω)

, (2.131)

where

zj =wj −w0,
∥∥zj∥∥E0

≤M1, z j −→ 0 (2.132)

in Ê locally, M1 does not depend on j. Denote yj = Ki(zj/µ). We have to prove
that

∥∥yj∥∥Cl−si+α(Ω) −→ 0 (2.133)

as j →∞. It follows from (2.128) that

yj =
p∑

k=1

∑
|γ|<βik

Tkγ(x)Dγzjk, (2.134)

where zj = (zj1, . . . , z j p),

Tkγ(x)=
∑

0<|σ|≤βik,|τ|<βik,|λ|<βik
cστ(x)bλγDσµDλ 1

µ
, (2.135)

bλγ are constants. From (2.134) we get

∥∥yj∥∥Cl−si+α(G) ≤M2

p∑
k=1

∑
|γ|<βik

∥∥Tkγ∥∥Cl−si+α(G)

∥∥Dγzjk
∥∥
Cl−si+α(G), (2.136)

where G = ΩN+1 or G = Ω̂N , ΩN+1 = Ω∩ {|x| < N + 1}, Ω̂N = Ω∩ {|x| > N}.
For any ε > 0 we can find N0 such that for N >N0 we have

∥∥yj∥∥Cl−si+α(Ω̂N ) < ε (2.137)

for all j. This follows from the fact that

Dβ

(
Dσµ(x)Dλ 1

µ(x)

)
−→ 0 (2.138)

as |x| →∞, x ∈Ω for any |σ| > 0, λ and β. Boundedness of the last norm in the
right-hand side of (2.136) follows from (2.132).
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From (2.132), (2.136), and (2.137) with G=ΩN+1 we get (2.133). The theo-
rem is proved. �

3. Properness of nonlinear operators

We consider general nonlinear elliptic operators

Fi
(
x,Dβi1u1, . . . ,D

βipup
)= 0, i= 1, . . . , p, x ∈Ω, (3.1)

with nonlinear boundary operators

Gj
(
x,Dγj1u1, . . . ,D

γjpup
)= 0, j = 1, . . . , r, x ∈ ∂Ω, (3.2)

in an unbounded domain Ω ∈ Rn. Here Dβikuk is a vector with the compo-
nents Dαuk = ∂|α|uk/∂x

α1
1 ···∂xαnn where the multi-index α = (α1, . . . ,αn) takes

all values such that 0 ≤ |α| = α1 + ··· + αn ≤ βik, βik are given integers. The
vectors Dγjkuk are defined similarly. The regularity of the functions Fi, Gi, u =
(u1, . . . ,up), and of the domain Ω is determined by βik, γjk, i,k = 1, . . . , p, j =
1, . . . , r (see below).

In what follows we will use also the notations

Fi
(
x,�iu

)= Fi(x,Dβi1u1, . . . ,D
βipup

)
,

Gj
(
x,�b

j u
)=Gj

(
x,Dγj1u1, . . . ,D

γjpup
)
.

(3.3)

The corresponding linear operators are

Ai
(
v,ηi

)= p∑
k=1

∑
|α|≤βik

aαik
(
x,ηi

)
Dαvk, i= 1, . . . , p, x ∈Ω, (3.4)

Bj
(
v,ζi

)= p∑
k=1

∑
|α|≤γjk

bαjk
(
x,ζi

)
Dαvk, j = 1, . . . , r, x ∈ ∂Ω, (3.5)

where

aαik
(
x,ηi

)= ∂Fi
(
x,ηi

)
∂ηαik

, bαjk
(
x,ζi

)= ∂Gj
(
x,ζ j

)
∂ζαjk

, (3.6)

ηi ∈ Rni and ζj ∈ R
mj are the vectors with the components ηαik and ζαjk, respec-

tively, ordered in the same way as the derivatives in (3.1) and (3.2).
The system (3.1) and (3.2) is called elliptic if the corresponding system (3.4)

and (3.5) is elliptic in the sense of [1] for all values of parameters ηi, ζj . When
we mention the Shapiro-Lopatinskii condition for operators (3.1) and (3.2) we
mean the corresponding condition for operators (3.4) and (3.5) for any ηi ∈Rni

and ζj ∈R
mj .
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We suppose that Fi (Gi) satisfies the following conditions: for any positive
number M and for all multi-indices β and γ: |β + γ| ≤ l− si + 2 (|β + γ| ≤ l−
σi + 2), |β| ≤ l− si (|β| ≤ l− σi) the derivatives D

β
xD

γ
ηFi(x,η) (D

β
xD

γ
ζ Gi(x,ζ)) as

functions of x ∈Ω, η ∈ Rni , |η| ≤M (x ∈ V, ζ ∈ Rmi , |ζ| ≤M) satisfy Hölder
condition in x uniformly in η (ζ) and Lipschitz condition in η (ζ) uniformly in
x (with constants possibly depending on M). We use the notations introduced
in Section 2.1.

The domain Ω is supposed to be of class Cl+λ+α, where λ =max(−si,−σi, t j)
and to satisfy the conditions of Section 2.

Denote F = (F1, . . . ,Fp), G= (G1, . . . ,Gr). Then (F,G) acts from E0,µ into Eµ.
In Section 3.2 we study properness of the operator (F,G). We preface the

study with a result on properness of operators in Banach spaces (Section 3.1).

3.1. Lemma on properness of operators in Banach spaces. Let E0 and E be
two Banach spaces. Suppose that a topology is introduced in E0 such that the
convergence in this topology, which we denote ⇀, has the following property:
for any sequence {un}, un ∈ E0, bounded in E0-norm, there is a subsequence
{unk} : unk ⇀ u0 ∈ E0.

We consider the operator T(u) : D→ E, where D ⊂ E0. Suppose that this op-
erator is closed with respect to the convergence ⇀ in the following sense: if
T(uk) = fk, uk ∈ D, fk ∈ E and uk ⇀ u0 ∈ E0, fk → f0 in E, then u0 ∈ D and
T(u0)= f0.

Lemma 3.1. Suppose that D is a bounded closed set in E0, the operator T(u) is
closed with respect to the convergence ⇀ and for any u0 ∈ D there exists a linear
bounded operator S(u0) : E0 → E, which has a closed range and finite-dimensional
kernel, such that for any sequence {vk}, vk ∈D, vk⇀ u0 ∈D, we have

∥∥T(u0
)−T(vk)− S(u0

)(
u0− vk

)∥∥
E −→ 0. (3.7)

Then T(u) is a proper operator.

Proof. Consider a sequence {un} in D such that fn = T(un)→ f0 in E. We have
to prove that there exists a subsequence of {un} which is convergent in E0. Con-
sider a subsequence {uni} such that uni ⇀ u0 ∈ E0. Then since T(u) is closed,
we have u0 ∈ D and T(u0) = f0. Denote vi = uni − u0 and hi = S(u0)vi. Then
hi = [S(u0)(uni − u0)− (T(uni)−T(u0))] + (T(uni)−T(u0))→ 0 in E. Suppose
thatw1, . . . ,wk is a basis of KerS(u0) and {ϕi} is a biorthogonal sequence of func-
tionals in the dual to E0 space. Denote E1 = {u ∈ E0,〈ϕi,u〉 = 0, i = 1, . . . ,k}.
Then we have

vi =
k∑
j=1

〈
ϕj,vi

〉
wj + v1

i , v1
i ∈ E1. (3.8)
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Denote by S1 the restriction of S(u0) on E1. Then S1v
1
i = hi. By Banach theo-

rem, S1 has bounded inverse. So v1
i is a convergent in E0 sequence. Since uni ∈D

and so vi is a bounded sequence in E0, it follows from (3.8) that we can find a
convergent subsequence of vi. The lemma is proved. �

3.2. Properness of elliptic operators. In this section, we prove that the oper-
ator T = (F,G) : E0,µ → Eµ defined above satisfies the conditions of Lemma 3.1
under the assumptions formulated below. The convergence ⇀ is convergent in
the space E0,µ(ΩR) for α= 0 and any R > 0. Here ΩR is the intersection of Ω with
a ball BR in Rn with a radius R and the center at 0. It is clear that any bounded
sequence in E0,µ has a⇀ convergent subsequence.

As a domain D we take a closed ball in E0,µ with the center at zero. Obviously
the operator T = (F,G) is closed with respect to the convergence⇀.

We construct below the operator S introduced in Lemma 3.1. Let F =
(F1, . . . ,Fp), where Fi is the operator (3.1), and let ηi = (ηi1, . . . ,ηini) and η0

i =
(η0

i1, . . . ,η
0
ini) be two vectors in Rni . Then by Taylor’s formula we can write

Fi
(
x,ηi

)= Fi(x,η0
i

)
+

ni∑
j=1

F′iηi j
(
x,η0

i

)(
ηi j −η0

i j

)

+
∫ 1

0
(1− s)

ni∑
j,k=1

F′′iηi j ηik
(
x,η0

i + s
(
ηi−η0

i

))
ds
(
ηi j −η0

i j

)(
ηik −η0

ik

)
.

(3.9)

Therefore, for any u,u0 ∈ E0,µ we have

Fi
(
x,�iu

)−Fi(x,�iu
0)= Ai(u−u0,�iu

0)+Φi
(
u,u0), (3.10)

where Ai is given by (3.4) and

Φi
(
u,u0)= ∫ 1

0
(1− s)

ni∑
j,k=1

F′′iv j vk
(
x,v0 + s

(
v− v0))ds(vj − v0

j

)(
vk − v0

k

)
, (3.11)

v(x)=�iu(x), v0(x)=�iu0(x).

Lemma 3.2. The convergence ‖Φi(um,u0)‖
C
l−si+α
µ (Ω)

→ 0 takes place if um⇀ u0 and

‖um‖E0,µ is bounded.

Proof. It is sufficient to prove that

∥∥Dβ
(
F′′iv j vk

(
x,v0 + s

(
vm− v0))(vmj − v0

j

)(
vmk − v0

k

)
µ
)∥∥

Cα(Ω) −→ 0 (3.12)
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for |β| ≤ l− si. Here vm(x)=�ium(x). We will prove that

∥∥DβF′′iv j vk
(
x,v0 + s

(
vm− v0))∥∥

Cα(Ω) ≤M, |β| ≤ l− si, (3.13)

where M is a constant and

∥∥Dβ
((
vmj − v0

j

)(
vmk − v0

k

)
µ
)∥∥

Cα(Ω) −→ 0, |β| ≤ l− si as m−→∞. (3.14)

We begin with (3.13). Let um = (um1 , . . . ,u
m
p ). By assumption ‖umk ‖Cl+tk+α

µ (Ω)
≤

M1 (k = 1, . . . , p). (Here and below M with subscripts denotes constants inde-
pendent of u and v.) It follows that

∥∥umk ∥∥Cl+tk+α(Ω) ≤M2. (3.15)

Indeed, denote w = µumk . Then ‖w‖Cl+tk+α(Ω) ≤M1, umk = (1/µ)w, and (3.15) fol-
lows easily from the properties of the function µ(x) since by (2.9), Dβ(1/µ) is
bounded for any multi-index β.

Obviously (3.15) implies

∥∥vm∥∥Cl−si+α(Ω) ≤M3. (3.16)

Inequality (3.13) follows from this inequality and from the conditions of smooth-
ness of the functions Fi.

Now we prove (3.14). Denote wm
j = vmj − v0

j . Obviously Dβ(wm
j w

m
k µ) is a sum

of expressions of the form

Dγwm
j D

τwm
k D

σµ= [µDγwm
j

][
µDτwm

k

]1
µ

(
1
µ
Dσµ

)
(3.17)

with constant coefficients, where γ, τ, σ are multi-indices, γ+ τ + σ ≤ β. The last
factor in (3.17) is bounded by virtue of (2.9). From the properties of the function
µ we conclude that 1/µ and Di(1/µ) (i= 1, . . . ,n) tend to 0 as |x| →∞, x ∈Ω. So

∥∥∥∥1
µ

∥∥∥∥
Cα(Ω−R )

−→ 0 as R−→∞. (3.18)

Here Ω−
R is the intersection of Ω with the ball |x| > R.

We prove next that

∥∥µDγwm
j

∥∥
Cα(Ω) ≤M4, (3.19)
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where |γ| ≤ l− si. Denote ymk = umk −u0
k. Thenwm

j has the formDσ ymk with |σ| ≤
si + tk. So Dγwm

j has the form Dσ+γ ymk with |σ + γ| ≤ l+ tk. By the conditions of
the lemma ‖ymk ‖Cl+tk+α

µ (Ω)
≤M5, and (3.19) follows.

From (3.18) and (3.19) we obtain the convergence ‖Dβ(wm
j w

m
k µ)‖Cα(Ω−R ) → 0

asR→∞. So to prove (3.14) it is sufficient to verify that ‖Dβ(wm
j w

m
k µ)‖Cα(ΩR)→ 0

for any R as m→∞. This follows from (3.17) and the fact that ‖µDβwm
j ‖Cα(ΩR)

is bounded and ‖µDβwm
j ‖C(ΩR) → 0 as m→∞ for |β| ≤ l − si since um ⇀ u0.

Therefore, the Hölder norm of the product of the first two factors in the right-
hand side of (3.17) converges to zero. The lemma is proved. �

Lemma 3.2 implies the convergence

∥∥Fi(x,�iu
m
)−Fi(x,�iu

0)−Ai(um−u0,�iu
0)∥∥

C
l−si+α
µ (Ω)

−→ 0 (3.20)

if um⇀ u0 and ‖um‖E0,µ is bounded.
Similarly, we have for the operators Gj(x,�b

j u(x)) ( j = 1, . . . , r):

∥∥Gj
(
x,�b

j u
m
)−Gj

(
x,�b

j u
0)−Bj(um−u0,�b

j u
0)∥∥

C
l−σ j+α
µ (∂Ω)

−→ 0 (3.21)

if um⇀ u0 and ‖um‖E0,µ is bounded.
Consider the operator

S
(
u0
)
u= (A1

(
u,�1u0

)
, . . . ,Ap

(
u,�pu0

)
,

B1
(
u,�b

1u0
)
, . . . ,Br

(
u,�b

r u0
))

: E0,µ −→ Eµ.
(3.22)

We are interested in limiting operators for S(u0) in the sense of the previous
section. We consider also the operator

S0u=
(
A1(u,0), . . . ,Ap(u,0),B1(u,0), . . . ,Br(u,0)

)
: E0,µ −→ Eµ, (3.23)

which does not depend on u0.

Lemma 3.3. For any u0 ∈ E0,µ the limiting operators for S(u0) and S0 coincide.

Proof. Consider first the operatorAi(u;ηi) defined by (3.4). Since u0 ∈ E0,µ, then
µDβu0k(x) ∈ Cα(Ω) for |β| ≤ l+ tk. So µ�iu0 ∈ Cα(Ω) and therefore

∣∣�iu0(x)
∣∣≤ M

µ(x)
−→ 0. (3.24)
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Let |xm| →∞, xm ∈Ω. Then |x+ xm| →∞ for all x ∈ BR. So there exists m0 such
that for all m>m0 and all x ∈Ω∗ ∩BR, the inequality |�iu0(x+ xm)| ≤ 1 holds.
Here Ω∗ is a limiting domain which corresponds to the sequence xm.

Denote f
β
ik(x,ηi) = ∂Fi(x,ηi)/∂η

β
k . It follows from the properties of the func-

tion Fi that for m>m0 we have

∣∣ f βik(x+ xm,0
)− f

β
ik

(
x+ xm,�iu0

(
x+ xm

))∣∣
≤ K∣∣�iu0

(
x+ xm

)∣∣≤ KM

µ
(
x+ xm

) −→ 0
(3.25)

as |xm| →∞, x ∈ BR. Therefore, if one of the functions

f
β
ik

(
x+ xm,0

)
, f

β
ik

(
x+ xm,�iu0

(
x+ xm

))
(3.26)

has a limit as |xm| → ∞, then the same is true for another one and the limits
coincide. Thus the lemma is proved for the operator (3.4). The proof is similar
for the operator (3.5). The lemma is proved. �

Theorem 3.4. Suppose that the system of operators (3.1) is uniformly elliptic and
for the system of operators (3.1) and (3.2) Shapiro-Lopatinskii conditions are satis-
fied. Assume further that all the limiting operators for the operator S0 satisfy Con-
dition NS. Then the operator (F,G) : E0,µ→ Eµ is proper.

Proof. We use Lemma 3.1 for the operator T = (F,G). For any u0 ∈ E0,µ we take

S
(
u0
)= (A1

(
u0,�1u0

)
, . . . ,Ap

(
u0,�pu0

)
,

B1
(
u0,�b

1u0
)
, . . . ,Br

(
u0,�b

r u0
))

: E0,µ −→ Eµ.
(3.27)

From (3.20) and (3.21) we obtain

∥∥T(u0
)−T(um)− S(u0

)(
u0−um

)∥∥
Eµ
−→ 0 (3.28)

if um⇀ u0 and ‖um‖E0,µ is bounded. If all limiting operators for S0 satisfy Condi-
tion NS, then according to Lemma 3.3 the same is true for all limiting operators
for S(u0) for any u0 ∈ E0,µ. The results of the previous section imply that S(u0)
has a closed range and a finite-dimensional kernel. The theorem is proved. �

Remark 3.5. Functions from the weighted space E0,µ tend to zero at infinity. If
we look for solutions, which are not zero at infinity, we can represent them in
the form u+ψ, where ψ is a given function with a needed behavior at infinity,
and u belongs to E0,µ. (See, for example, [30] where such reduction is done for
travelling waves.)
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3.3. Operators depending on parameter. Consider an operator T(u,t) : D ×
[0,1] → E, D ⊂ E0 depending on parameter t ∈ [0,1]. We suppose here as in
Section 3.1 that E0 and E are arbitrary Banach spaces. We will obtain conditions
of its properness with respect to both variables u and t.

First of all, we modify the definition of closed operators given in Section 3.1.
Let T(uk, tk) = fk, tk → t0, uk ∈ D, fk ∈ E, uk ⇀ u0 ∈ E0, fk → f0 in E, then

u0 ∈D and T(u0, t0)= f0.

Lemma 3.6. Suppose that D is a bounded set in E0, the operator T(u,t) is closed,
and for any u0 ∈ D there exists a linear bounded operator S(u0) : E0 → E, which
has a closed range and a finite-dimensional kernel, such that for any sequence {vk},
vk ∈D, vk⇀ u0 ∈D and tk → t0, we have∥∥T(u0, t0

)−T(vk, tk)− S(u0
)(
u0− vk

)∥∥
E −→ 0. (3.29)

Then T(u,t) is a proper operator.

The proof of the lemma remains the same as above.
Suppose now that the operator T(u,t) satisfies the conditions of Lemma 3.1

for any t ∈ [0,1] fixed, and it depends on t continuously in the operator norm,
that is, ∥∥T(u,t)−T(u,t0)∥∥E ≤ c(t, t0), ∀u∈D, (3.30)

where c(t, t0)→ 0 as t→ t0. Then∥∥T(u0, t0
)−T(vk, tk)− S(u0

)(
u0− vk

)∥∥
E

≤ ∥∥T(u0, t0
)−T(vk, t0)− S(u0

)(
u0− vk

)∥∥
E

+
∥∥T(vk, t0)−T(vk, tk)∥∥E.

(3.31)

Therefore, if the conditions of Lemma 3.1 are satisfied for each t fixed and the
operator depends continuously on parameter, then Lemma 3.6 holds.

On the other hand, if the operator T(u,t) is closed in the sense of Section 3.1
for each t fixed, and if it depends continuously on parameter, then it is also closed
in the sense of the definition given in this section.

Thus, under the conditions of Section 3.2, elliptic operators depending con-
tinuously on parameter are proper with respect to two variables.

4. Topological degree

In this section, we construct a topological degree for a class of operators in Ba-
nach spaces. We recall the definition of a topological degree (see, e.g., [18, 20]).
Let E0 and E be two Banach spaces. Suppose we are given a class F of operators
acting from E0 to E and a class H of homotopies, that is, the mappings

Aτ(u) : E0× [0,1]−→ E, τ ∈ [0,1], u∈ E0 (4.1)
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such that Aτ(u)∈ F for any τ ∈ [0,1]. Assume, moreover, that for any bounded
open set D ⊂ E0 and any operator A∈ F such that

A(u) �= 0, u∈ ∂D (4.2)

(∂D denotes the boundary of D), there is an integer γ(A,D) satisfying the fol-
lowing conditions.

(i) Homotopy invariance. Let Aτ(u)∈H and

Aτ(u) �= 0, u∈ ∂D, τ ∈ [0,1]. (4.3)

Then

γ
(
A0,D

)= γ(A1,D
)
. (4.4)

(ii) Additivity. Let D ⊂ E0 be an arbitrary bounded open set in E0, and let
D1,D2 ⊂D be open sets such that D1∩D2 =∅. Suppose that A∈ F and

A(u) �= 0, u∈ D̄\(D1∪D2
)
. (4.5)

Then

γ(A,D)= γ(A,D1
)

+ γ
(
A,D2

)
. (4.6)

(iii) Normalization. There exists a bounded linear operator J : E0 → E with a
bounded inverse defined on all of E such that for any bounded open set D ⊂ E0

with 0∈D,

γ(J,D)= 1. (4.7)

The integer γ(A,D) is called topological degree.
In Section 4.1, we study orientation of linear operators used for construction

of the topological degree. In Section 4.2, topological degree is constructed for
a class of operators. It contains in particular elliptic operators, which are Fred-
holm, proper, and for which the Fréchet differentials satisfy some spectral prop-
erties (Section 4.3). Fredholm property and properness of elliptic operators are
discussed in the previous sections. The needed spectral properties follow in par-
ticular from the sectoriality of elliptic operators (see [13, 17] and the references
therein).

4.1. Orientation of operators. Let E0, E1, and E2 be Banach spaces. We suppose
that E0 ⊂ E1. This means that if u∈ E0, then u∈ E1 and ‖u‖E1 ≤ K‖u‖E0 , where
K does not depend on u. Denote E = E1 × E2. We consider linear operators
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A1 : E0 → E1, A2 : E0 → E2, A= (A1,A2) : E0 −→ E, and the following class of op-
erators: classO is a class of bounded operatorsA : E0 → E satisfying the following
conditions:

(i) operator (A1 + λI,A2) : E0 → E is Fredholm with index zero for all λ≥ 0,
(ii) equation A1u= 0, A2u= 0 (u∈ E0) has only zero solution,

(iii) there exists λ0 = λ0(A) such that the equation

(
A1 + λI

)
u= 0, A2u= 0

(
u∈ E0

)
(4.8)

has only zero solution for all λ > λ0. Here I is the identity operator in E0.

Proposition 4.1. Let the operator A= (A1,A2) belong to class O. Then the eigen-
value problem

A1u+ λu= 0, A2u= 0
(
u∈ E0

)
(4.9)

has only finite number of positive eigenvalues λ. Each of them has a finite multi-
plicity.

Remark 4.2. Instead of the eigenvalue problem (4.9) we can consider the eigen-
value problem

A1,2u+ λu= 0, u∈ E0,2, (4.10)

where E0,2 is the space of all u∈ E0 such that A2u= 0, and A1,2 is the restriction
of A1 on the space E0,2. By multiplicity of λ in (4.9) we mean the multiplicity of
λ in (4.10).

Proof of Proposition 4.1. Since A ∈ O, the operator A1,2 + λI is Fredholm with
index zero for all λ ≥ 0 and invertible for λ = 0 and λ > λ0. The proposition
follows from known properties of Fredholm operators (see [14]). �

Definition 4.3. The number

o(A)= (−1)ν, (4.11)

where ν is the sum of multiplicities of all positive eigenvalues of problem (4.9), is
called orientation of the operator A. Operators A belonging to class O are called
orientable.

Definition 4.4. Operators A0 ∈ O and A1 ∈ O are said to be homotopic if there
exists an operator A(τ) : E0 × [0,1] → E such that A(τ) ∈ O for all τ ∈ [0,1],
A(τ) is continuous in the operator norm with respect to τ, λ0(A(τ)) is bounded,
and

A(0)=A0, A(1)= A1. (4.12)
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Theorem 4.5. If A0 and A1 are homotopic, then

o
(
A0)= o(A1). (4.13)

Proof. Let τ0 ∈ [0,1]. It is sufficient to prove that

o
(
A(τ)

)= o(A(τ0
))

(4.14)

for τ in some neighborhood of τ0. Indeed, covering the interval [0,1] by such
neighborhoods and taking a finite subcovering we get (4.13).

To prove (4.14) consider the eigenvalue problems

A1
(
τ0
)
u+ λu= 0, A2

(
τ0
)
u= 0, u∈ E0, (4.15)

A1(τ)u+ λu= 0, A2(τ)u= 0, u∈ E0. (4.16)

We should prove that for τ close to τ0 the sum of multiplicities of positive
eigenvalues λ of problems (4.15) and (4.16) coincide modulo 2. It is convenient
to consider the problem

A1
(
τ0
)
u+ λu= 0, A2(τ)u= 0, u∈ E0 (4.17)

and to compare (4.15) and (4.16) with (4.17).
Consider first problems (4.15) and (4.17). Consider also the operatorsA1,2(τ0)

and A1,2(τ), the restrictions of A1(τ0) on the spaces

E0,2
(
τ0
)= {u : u∈ E0, A2

(
τ0
)
u= 0

}
, (4.18)

E0,2(τ)= {u : u∈ E0, A2(τ)u= 0
}
, (4.19)

respectively. By (i) and (ii) of the definition of class O, A1,2(τ0) is invertible.
It is easy to see that for τ sufficiently close to τ0, the operator A1,2(τ) is also

invertible and has uniformly bounded inverse. Indeed, denote K(τ) = (A1(τ0),
A2(τ)) : E0 → E. Obviously ‖K(τ)−K(τ0)‖ ≤ ‖A2(τ)−A2(τ0)‖. Since K(τ0) is
invertible, we conclude that if τ is sufficiently close to τ0, then K(τ) has uni-
formly bounded inverse. Consider the equation A1,2(τ)u = f , u ∈ E0,2(τ) or
A1(τ0)u= f , A2(τ)u= 0, u∈ E0, f ∈ E1. Since K(τ) is invertible, this equation
has a unique solution for any f ∈ E1. So A1,2(τ) is invertible and ‖A−1

1,2(τ)‖ ≤
‖K−1(τ)‖.

Denote

J = A−1
1,2(τ)A1,2

(
τ0
)

: E0,2
(
τ0
)−→ E0,2(τ). (4.20)



170 Properness and topological degree for general elliptic operators

Problems (4.15) and (4.17) can be written as

A1,2
(
τ0
)
v+ λv = 0, v ∈ E0,2

(
τ0
)
, (4.21)

A1,2(τ)u+ λu= 0, u∈ E0,2(τ). (4.22)

Let u= Jv, v ∈ E0,2(τ0), u∈ E0,2(τ). Then from (4.22)

1
λ
v+ S1v = 0, v ∈ E0,2

(
τ0
)
, (4.23)

where S1 = J−1A−1
1,2(τ)J = A−1

1,2(τ0)A−1
1,2(τ)A1,2(τ0). We have from (4.21)

1
λ
v+ S0v = 0, v ∈ E0,2

(
τ0
)
, (4.24)

where S0 = A−1
1,2(τ0).

We will prove that for any ε > 0, there exists δ > 0 such that

∥∥S1− S0
∥∥ < ε if

∣∣τ − τ0
∣∣ < δ. (4.25)

Consider the problems

A1
(
τ0
)
u= f , A2

(
τ0
)
u= 0, u∈ E0, f ∈ E1, (4.26)

A1
(
τ0
)
u1 = f , A2(τ)u1 = 0, u1 ∈ E0, f ∈ E1 (4.27)

or

A1,2
(
τ0
)
u= f , A1,2(τ)u1 = f , u∈ E0,2

(
τ0
)
, u1 ∈ E0,2(τ). (4.28)

Let B = A2(τ0)−A2(τ). Denote w = u−u1. Then from (4.26) and (4.27)

A1
(
τ0
)
w = 0, A2

(
τ0
)
w =−Bu1. (4.29)

We have from (4.28)

A1
(
τ0
)
w = 0, A2

(
τ0
)
w =−BA−1

1,2(τ) f . (4.30)

Denote

L= (A1
(
τ0
)
,A2

(
τ0
))

: E0 −→ E. (4.31)
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Then (4.30) implies

‖w‖E0 ≤
∥∥L−1

∥∥‖B‖∥∥A−1
1,2

∥∥‖ f ‖E1 . (4.32)

By (4.28) we have

∥∥A−1
1,2

(
τ0
)
f −A−1

1,2(τ) f
∥∥
E0
≤ ∥∥L−1

∥∥‖B‖∥∥A−1
1,2

∥∥‖ f ‖E1 . (4.33)

Therefore,

∥∥A−1
1,2

(
τ0
)−A−1

1,2(τ)
∥∥≤ ∥∥L−1

∥∥‖B‖∥∥A−1
1,2(τ)

∥∥. (4.34)

Since A2(τ)→ A2(τ0) as τ → τ0 in the operator norm, we get ‖B‖→ 0 as τ →
τ0, and from (4.34) we obtain (4.25).

Using (4.25) we prove that if τ is sufficiently close to τ0, then the sum of mul-
tiplicities of the negative eigenvalues of the operator S1 coincides modulo 2 with
the sum of multiplicities of the negative eigenvalues of the operator S0. Indeed,
taking into account that ‖S1‖ and λ0(A(τ)) are uniformly bounded, we conclude
that there exists an interval [α,β], α < β < 0, such that all negative eigenvalues of
the operators S1 and S0 lie in this interval. Let Γ be a rectifiable contour in the
λ-plane which contains the interval [α,β] and such that all points inside this
contour, except for negative eigenvalues of the operator S0, are regular points of
this operator. From the known results on root spaces (see [14]), it follows that
the sum of multiplicities of all eigenvalues of S1 lying inside Γ coincides with the
sum of the multiplicities of the negative eigenvalues of S0 if δ in (4.25) is suffi-
ciently small. Therefore, the sum of multiplicities of negative eigenvalues of S0

and S1 coincide modulo 2. It follows that the sum of the multiplicities of positive
eigenvalues of problems (4.21) and (4.22), and consequently of problems (4.15)
and (4.17) coincide modulo 2.

We obtain now the same results for problems (4.16) and (4.17). Denote by
B(τ0) and B(τ) the restrictions of A1(τ0) and A1(τ) on the space E0,2(τ) (see
(4.19)), respectively. Then obviously

∥∥B(τ)−B(τ0
)∥∥≤ ∥∥A(τ)−A(τ0

)∥∥−→ 0 (4.35)

as τ → τ0. By the same arguments that we used for the operators S0 and S1 above
we prove that the sum of multiplicities of the negative eigenvalues of the opera-
tors B(τ) and B(τ0) coincide modulo 2. The theorem is proved. �

Remark 4.6. The requirement λ0(A(τ)) is bounded in Definition 4.4 can be
omitted if we replace (iii) in class O by the following:

(iii∗) There exists λ0 = λ0(A) such that the operator (A1 + Iλ,A2) : E0 → E has
inverse for λ > λ0 which is uniformly bounded.
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Indeed, denote A(τ,λ) = (A1(τ) + Iλ,A2(τ)). Let τ0 ∈ [0,1]. Then A(τ,λ) =
A(τ0,λ) +B(τ), where B(τ)=A(τ)−A(τ0). For λ > λ0(A(τ0)) we have

A(τ,λ)=A(τ0,λ
)[
I +A−1(τ0,λ

)
B(τ)

]
. (4.36)

Since ‖B(τ)‖ → 0 as τ → τ0, we can take δ(τ0) > 0 such that ‖A−1(τ0,λ)B(τ)‖ ≤
1/2 for all λ > λ0(A(τ0)), |τ − τ0| < δ(τ0). So for these values of τ and λ the opera-
tor A(τ,λ) has a uniformly bounded inverse. Taking the corresponding covering
of the interval [0,1] and choosing a finite subcovering, we obtain that λ0(A(τ))
is bounded for τ ∈ [0,1].

Class O with the property (iii∗) instead of (iii) will be used in the construc-
tion of the topological degree.

4.2. Topological degree for Fredholm operators. Let E0, E1, E2, and E = E1 ×
E2 be the same spaces as in Section 4.1, and let G⊂ E0 be an open bounded set.
We consider the following classes of linear (Φ) and nonlinear (F) operators.

Class Φ is a class of bounded linear operators A= (A1,A2) : E0 → E satisfying
the following conditions:

(i) the operator (A1 + Iλ,A2) : E0 → E is Fredholm for all λ≥ 0,
(ii) there exists λ0 = λ0(A) such that operators (A1 + Iλ,A2) : E0 → E have

inverse which are uniformly bounded for all λ > λ0.

Class F is a class of proper operators f ∈ C1(G,E) such that for any x ∈G the
Fréchet derivative f ′(x) belongs to Φ.

We introduce also the following class of homotopies.

Class H is a class of proper operators f (x, t)∈ C1(G× [0,1],E) which for any
t ∈ [0,1] belong to class F.

Two operators f0(x) : G→ E and f1(x) : G→ E are said to be homotopic if
there exists f (x, t)∈H such that

f0(x)= f (x,0), f1(x)= f (x,1). (4.37)

In this section, we construct a topological degree for the classes F and H . In
what follows D denote an open set such that D̄ ⊂G.

Let a∈ E, f ∈ C1(G,E),

f (x) �= a (x ∈ ∂D), (4.38)

where ∂D is the boundary of D. Suppose that the equation

f (x)= a (x ∈D) (4.39)



V. Volpert and A. Volpert 173

has finite number of solutions x1, . . . ,xm and f ′(xk) (k = 1, . . . ,m) are invertible
operators belonging to the class Φ. Then the orientation of these operators is
defined. We will use the following notation:

γ( f ,D;a)=
m∑
k=1

o
(
f ′
(
xk
))
. (4.40)

If (4.39) does not have solutions, it is supposed that γ( f ,D;a)= 0.

Lemma 4.7. Let f (x, t)∈H , a∈ E be a regular value of f (·,0) and f (·,1). Sup-
pose that

f (x, t) �= a (
x ∈ ∂D, t ∈ [0,1]

)
. (4.41)

Then

γ
(
f (·,0),D;a

)= γ( f (·,1),D;a
)
. (4.42)

Proof. The main part of the proof of the lemma is done under the assumption
that a is a regular value of the homotopy under consideration. Since this is not
supposed in the formulation of the lemma, we replace f (x, t) by a close function
g(x, t) for which a is a regular value and

γ
(
g(·,0),D;a

)= γ( f (·,0),D;a
)
, (4.43)

γ
(
g(·,1),D;a

)= γ( f (·,1),D;a
)

(4.44)

(see [23]). Then we prove that

γ
(
g(·,0),D;a

)= γ(g(·,1),D;a
)
. (4.45)

To construct the function g(x, t), we use the following result (see [23]). For
any η > 0 an operator h∈ C1(G× [0,1]× [0,1],E) with the following properties
can be constructed:

(i) ‖h(·,τ)− f ‖1,G×[0,1] < η for any τ ∈ [0,1],
(ii) h is proper,

(iii) for τ ∈ [0,1], h(·,τ) is Fredholm of index 1,
(iv) h(·,0)= f and a is a regular value of h(·,1).

Here we use the notation ‖ f ‖1,G×[0,1] = sup‖ f (x, t)‖+ sup‖ f ′(x, t)‖ for f ∈
C1(G× [0,1],E) (the supremum is taken over (x, t) ∈ G× [0,1] and f ′ is the
Fréchet derivative of f ).

We can put now g(x, t) = h(x, t,1), x ∈ G, t ∈ [0,1]. From (4.41) it follows
that η > 0 can be taken such that

g(x, t) �= a (
x ∈ ∂D, t ∈ [0,1]

)
. (4.46)
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We will prove that for a proper choice of η > 0 equality (4.43) holds. Since a is
a regular value of f (x,0), f (x,0) �= a, x ∈ ∂D and f (x,0) is a proper operator, it
follows that the equation

f (x,0)= a, x ∈D, (4.47)

has finite number of solutions.
If (4.47) does not have solutions, then taking η sufficiently small we conclude

that the equation

g(x,0)= a, x ∈D, (4.48)

does not have solutions either. In this case both parts of equality (4.43) are equal
0.

Suppose that (4.47) has solutions. We denote them by x1, . . . ,xm. Let Bk (k =
1, . . . ,m) be open balls with centers at xk and radius r. We suppose that r is taken
such that the closures of the balls are disjoint and belong to D. If η > 0 is taken
sufficiently small, then (4.48) has exactly m solutions and moreover the equa-
tion g(x,0)= a, x ∈ Bk has one and only one solution (k = 1, . . . ,m) (see [23]).
Denote this solution by ξk.

Taking into account that f ′x (xk,0) belongs to Φ and that it is invertible, it is
easy to prove, for a proper choice of r and η, that g′x(ξk,0) also belongs to Φ
and is invertible. So the orientation of this operator is defined. Moreover using
Theorem 4.5 to the homotopy (1− τ) f ′x (xk,0) + τg′x(ξk,0), τ ∈ [0,1] we obtain

o
(
g′x
(
ξk,0

))= o( f ′x (xk,0)) (4.49)

and (4.43) follows from this. Decreasing η, if necessary, we obtain (4.44) in the
same way.

We prove now (4.45). If both of the equations

g(x,0)= a, g(x,1)= a (x ∈D) (4.50)

have no solutions, then (4.45) is true, both parts of the equality are equal 0.
Suppose that at least one of (4.50) has a solution. Then the set S = g−1(a)∩

D̄× [0,1] is not empty. Since a is a regular value of g, g−1(a) is a one-dimensional
submanifold of D̄× [0,1]. The set S is compact since the map is proper. Because
of (4.46) the set S cannot have joint points with the set ∂D× [0,1]. Suppose that
the equation g(x,0)= a has m solutions (m> 0) : ξ1, . . . , ξm,

g
(
ξk,0

)= a (k = 1, . . . ,m). (4.51)
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We denote by lk the connected component of S which contains the point (ξk,0).
The set lk is homeomorphic to a closed interval ∆ = [0,1]. We denote the end-
points of lk by P0 = (ξk,0) and P1 and suppose that P0 corresponds to the point
0 in ∆ and P1 to 1.

Denote y = (x, t) (x ∈ G, t ∈ [0,1]). We introduce local coordinates on lk by
finite number of sets {Ui} such that each of them is homeomorphic to an open or
half-open interval ∆i. Moreover, we can suppose that Ui is given by the equation

y = y(s)
(
s∈ ∆i

)
(4.52)

and that there exists a derivative in the norm ‖y‖ = ‖x‖+ |t|. We have g(y(s))=
a and therefore

g′
(
y(s)

)
y′(s)= 0. (4.53)

Since a is a regular value, then the range of the operator g′(y(s)) coincides
with E. Moreover, the index of g′(y(s)) is 1. So y′(s) is the only (up to a real
factor) solution of (4.53). We have y(s) = (x(s), t(s)), where x(s) ∈ E0, t(s) is a
real valued function. It is easy to see that we can construct a functional φ(s)∈ E∗0
which is continuous with respect to s∈ ∆i and

〈
φ(s),x′(s)

〉
> 0 if

∥∥x′(s)∥∥ > 0, (4.54)

where 〈·,·〉 denotes the action of a functional.
We can find η in (i) such that for all y satisfying the equation g(y)= a, the op-

erators g′x(y) belong to Φ, and λ0(g′x(y)) are uniformly bounded. Indeed, denote
by T the set of all solutions of the equation f (y)= a. From (i) and properness
of f it follows that for any ε > 0 we can find η > 0 such that all solutions of the
equation g(y)= a belong to ε-neighborhood of T . Since T is compact, ε and η
can be found such that g′x(y) has the mentioned property.

We represent g in the form g = (g1, g2), where g1 : G× [0,1] → E1, g2 : G×
[0,1]→ E2. Denote by g′ix(x, t) and g′it(x, t) (i = 1,2) the partial derivatives in x
and t, respectively.

Consider the operators

A1(s)=
[
g′1x
(
y(s)

)
g′1t
(
y(s)

)
φ(s) t′(s)

]
, A2(s)= (g′2x(y(s)

)
, g′2t

(
y(s)

))
, (4.55)

where A1(s) : E0×R→ E1×R, A2(s) : E0×R→ E2, R is the space of real num-
bers.
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Denote A(s)= (A1(s),A2(s)) : E0×R→ (E1×R)×E2. It is easy to see that A
is a Fredholm operator of index zero.

The equation A(s)w = 0, w ∈ E0×R has only zero solution. Indeed, let w =
(u,v), u∈ E0, v ∈R. Then

g′
(
y(s)

)
w = 0,

〈
φ(s),u

〉
+ t′(s)v = 0. (4.56)

It follows that

w = α(s)y′(s), that is, u= α(s)x′(s), v = α(s)t′(s). (4.57)

So

〈
φ(s),u

〉
+ t′(s)v = α(s)

(〈
φ(s),x′(s)

〉
+ t′2(s)

)
. (4.58)

Since y′(s) �= 0, then 〈φ(s),x′(s)〉+ t′2(s) �= 0, and therefore α(s)= 0.
Let J be identity operator in E1×R. Then the operator

(
A1(s) + λJ,A2(s)

)
: E0×R−→ (

E1×R
)×E2 (4.59)

is Fredholm operator of index 0 for λ≥ 0.
Let s∈ ∆i. We will prove that there exists λ0 > 0 such that for λ > λ0 the oper-

ator (A1(s) + λJ,A2(s)) has uniformly bounded inverse in λ. Indeed, consider the
equation

(
A1(s) + λJ,A2(s)

)
w = ψ, w ∈ E0×R, ψ ∈ (E1×R

)×E2. (4.60)

Let w = (w1,w2), ψ = (ψ1,ψ2,ψ3), w1 ∈ E0, w2 ∈R, ψ1 ∈ E1, ψ2 ∈R, ψ3 ∈ E2.
We have

(
g′1x + λI

)
w1 + g′1tw2 = ψ1 (4.61)(

φ,w1
)

+
(
t′ + λ

)
w2 = ψ2 (4.62)

g′2xw1 + g′2tw2 = ψ3. (4.63)

We can find w1 from (4.61) and (4.63) for λ > λ0 since (g′1x + λI,g′2x) has uni-
formly bounded inverse, and substitute in (4.62). Obviously the equation so ob-
tained for w2 can be solved for λ > λ0 if λ0 is sufficiently large. It is clear that
the solution w1, w2 of (4.61), (4.62), and (4.63) is unique and can be estimated
by a constant independent of λ. So we have proved that (A1(s) + λJ,A2(s)) has
uniformly bounded inverse for λ > λ0.
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Operator A(s) satisfies conditions formulated in the previous subsection. So
the orientation o(A(s)) of operator A(s) can be constructed, and it does not
depend on s. By standard arguments we can prove that the orientation does not
depend on the choice of covering of lk.

Suppose now that for some s the operator g′x(y(s)) : E0 → E is invertible and
t′(s) �= 0. We will prove the following formula:

o
(
A(s)

)= o(g′x(y(s)
))

sgn t′(s). (4.64)

Consider the operator A(s;τ)= (A1(s;τ),A2(s;τ)), 0≤ τ ≤ 1,

A1(s;τ)=
[
g′1x
(
y(s)

)
τg′1t

(
y(s)

)
τφ(s) t′(s)

]
, A2(s;τ)= (g′2x(y(s)

)
,τg′2t

(
y(s)

))
.

(4.65)

As before we prove that this operator satisfies conditions of the previous subsec-
tion and, consequently,

o
(
A(s)

)= o(A(s;0)
)
. (4.66)

Equality (4.64) easily follows from the definition of the orientation.
Consider now the operator A(s) at the endpoints of the line lk : P0 = (ξk,0)

and P1. We begin with the point P0. The operator g′x(ξk,0) is invertible. For small
t we can take s= t. Then t′(s)= 1.

There are two possibilities for the point P1:

P1 =
(
ξl,0

)
(l �= k), (4.67)

P1 = (x̄,1), (4.68)

where (x̄,1) is a solution of the equation

g(x̄,1)= a. (4.69)

Consider first the case (4.67). We can take s= 1− t in the neighborhood of the
point P1 (this corresponds to the positive orientation), and so t′(s)=−1. From
(4.64) it follows that

o
(
g′x
(
P0
))=−o(g′x(P1

))
. (4.70)
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In the case (4.68) by the same reason we have

o
(
g′x
(
P0
))= o(g′x(P1

))
. (4.71)

The proof of (4.45) follows directly from these equalities. The lemma is proved.
�

Theorem 4.8. Let f ∈ F and B be a ball ‖a‖ < r, a∈ E such that f (x) �= a (x ∈
∂D) for all a∈ B. Then for all regular values a∈ B, γ( f ,D;a) does not depend on a.

Proof. Let a0 and a1 be two regular values belonging to B. Denote at = a0(1−
t) + a1t, t ∈ [0,1] and consider the operator f (x, t) = f (x)− at. It is easy to
see that all conditions of Lemma 4.7 are satisfied for this operator if we set
a= 0 in this lemma. So equality (4.42) is valid. From (4.40) we get γ( f ,D;a0)=
γ( f ,D;a1). The theorem is proved. �

Using this theorem we can give the following definition of the topological
degree γ( f ,D).

Definition 4.9. Let f ∈ F and f (x) �= 0 (x ∈ ∂D). Let B be a ball ‖a‖ < r in E
such that f (x) �= a (x ∈ ∂D) for all a∈ B. Then

γ( f ,D)= γ( f ,D;a) (4.72)

for any regular value a∈ B.

Existence of regular values a ∈ B of f follows from the Sard-Smale theorem
(see [24, 28]).

Theorem 4.10 (homotopy invariance). Let f (x, t) ∈ H and (4.37) take place.
Suppose that

f (x, t) �= 0
(
x ∈ ∂D, t ∈ [0,1]

)
(4.73)

for an open set D, D̄ ⊂G. Then

γ
(
f0,D

)= γ( f1,D). (4.74)

Proof. We take a number ε > 0 so small that

f (x, t) �= a (
x ∈ ∂D, t ∈ [0,1]

)
(4.75)

for all a such that ‖a‖ < ε. Let a be a regular value for both f0(x) and f1(x).
Consider the function f̃ (x, t)= f (x, t)− a. This function satisfies the conditions
of Lemma 4.7 if we set a= 0 in this lemma. So

γ
(
f̃ (·,0),D;0

)= γ( f̃ (·,1),D;0
)

(4.76)



V. Volpert and A. Volpert 179

and therefore

γ
(
f0,D;a

)= γ( f1,D;a
)
. (4.77)

This implies (4.74). The theorem is proved. �

Additivity of the topological degree follows from (4.40). We suppose that the
class F is not empty. Let f ∈ F, x ∈G, f ′(x)= (A1,A2), where A1 : E0 → E1, A2 :
E0 → E2. Suppose that λ > 0 is so large that operator J = (A1 + λI,A2) : E0 → E is
invertible. Then the operator J can be taken as a normalization operator.

Thus the topological degree for the class F of operators and class H of homo-
topies is constructed.

4.3. Application to elliptic problems. In this section, we briefly discuss appli-
cation of the topological degree constructed above to elliptic problems. We recall
that we consider the class F of nonlinear operators, class Φ of linearized opera-
tors, and class H of homotopies (Section 4.2).

Properness of nonlinear elliptic problems follows from Condition NS for the
linearized problems (Theorem 3.4). This condition means that all limiting prob-
lems have only zero solution. It is a necessary and sufficient condition.

Condition (i) of the definition of the class Φ is satisfied in particular if the
essential spectrum of the linearized operator is in the right-half plane. Condition
(ii) would follow from sectoriality (see [17]).

Sectoriality of elliptic operators is well known (see [13]). However, to our
knowledge it is not yet done for general elliptic problems in the sense of [2].
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[21] È. M. Mukhamadiev, Normal solvability and Noethericity of elliptic operators in spaces
of functions on Rn. I, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.
(LOMI) 110 (1981), 120–140 (Russian), translated in J. Soviet Math. 25 (1984),
no. 1, 884–901.

[22] S. A. Nazarov and K. Pileckas, On the Fredholm property of the Stokes operator in a
layer-like domain, Z. Anal. Anwendungen 20 (2001), no. 1, 155–182.

[23] J. Pejsachowicz and P. J. Rabier, Degree theory for C1 Fredholm mappings of index 0, J.
Anal. Math. 76 (1998), 289–319.

[24] F. Quinn and A. Sard, Hausdorff conullity of critical images of Fredholm maps, Amer.
J. Math. 94 (1972), 1101–1110.

[25] P. J. Rabier and C. A. Stuart, C1-Fredholm maps and bifurcation for quasilinear ellip-
tic equations on RN , Recent Trends in Nonlinear Analysis, Progress in Nonlinear
Differential Equations and Their Applications, vol. 40, Birkhäuser, Basel, 2000,
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