
FIXED POINTS OF HOLOMORPHIC MAPPINGS
FOR DOMAINS IN BANACH SPACES

LAWRENCE A. HARRIS

Received 29 November 2001

We discuss the Earle-Hamilton fixed-point theorem and show how it can be ap-
plied when restrictions are known on the numerical range of a holomorphic
function. In particular, we extend the Earle-Hamilton theorem to holomorphic
functions with numerical range having real part strictly less than 1. We also ex-
tend the Lumer-Phillips theorem estimating resolvents to dissipative holomor-
phic functions.

1. Introduction

Our purpose is to provide an introduction to holomorphic fixed-point theorems
and to describe some recent joint work with Simeon Reich and David Shoikhet.
The main results are a fixed-point theorem and a Lumer-Phillips theorem, which
is a mapping theorem for resolvents. These theorems apply to holomorphic
functions whose numerical range is a set of complex numbers that lies to the
left of a certain vertical line.

We begin by recalling some basic facts about holomorphic functions with do-
main and range in a Banach space. We give two equivalent definitions of holo-
morphy (weak and strong) and discuss power series and Taylor’s theorem. The
holomorphic functional calculus is included as an example, although this is not
needed later.

Next we give a brief overview of fixed-point theorems for holomorphic func-
tions beginning with the Earle-Hamilton fixed-point theorem. This theorem
may be viewed as a holomorphic version of Banach’s contraction mapping the-
orem since a holomorphic function that maps a bounded domain strictly inside
itself is a contraction with respect to a natural holomorphically invariant metric
on the domain. (As usual, a contraction is a Lipschitzian mapping with Lips-
chitz constant less than 1.) Our formulation is slightly more general than the
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original since we require only the given function to be bounded rather than that
its domain of definition.

We give a self-contained proof of the Earle-Hamilton theorem and deduce a
closely related fixed-point theorem of Khatskevich, Reich, and Shoikhet. The lat-
ter theorem obtains a unique fixed point for a holomorphic function of a convex
domain into itself provided that the function has a uniformly continuous ex-
tension to the closure of the domain and there are no sequences of approximate
fixed points on its boundary.

Since the main results refer to the numerical range of holomorphic functions,
we introduce this subject by beginning with the classical definition of the numer-
ical range for operators on a Hilbert space. We then discuss Lumer’s extension
of the numerical range and its properties for linear operators on a Banach space.
This leads to the author’s extension to holomorphic functions on the open unit
balls of Banach spaces. Finally, we give the general definition for holomorphic
functions on convex domains containing the origin.

Our first main result is an extension of the Earle-Hamilton theorem. This
asserts that (under mild restrictions) if the numerical range of a holomorphic
function lies strictly to the left of the vertical line x = 1, then the function has a
unique fixed point in its domain. A consequence is that a uniformly continuous
holomorphic function h on a domain is dissipative (i.e., its numerical range lies
on or to the left of the imaginary axis) if and only if the resolvent (I − th)−1 is
defined on the domain and maps it into itself. In the case where h is a linear
operator on a Banach space, this reduces to a theorem of Lumer and Phillips.

2. Holomorphic functions

Holomorphic functions on abstract spaces were considered by M. Fréchet
around 1910 and subsequently studied by many authors. (See [3, 4, 14].) We
give two definitions of holomorphy. Let X and Y be complex Banach spaces and
let � be an open subset of X .

Definition 2.1 (strong definition). A function h : �→Y is holomorphic if for each
x ∈� there exists a continuous complex-linear mappingDh(x) : X→Y such that

lim
y→0

∥∥h(x+ y)−h(x)−Dh(x)y
∥∥

‖y‖ = 0. (2.1)

There is an alternative weaker definition which reduces matters to the case of
a complex-valued function of a complex variable. (We use λ to denote a complex
variable.)

Definition 2.2 (weak definition). A function h : � → Y is holomorphic if it is
locally bounded and if the mapping

λ−→ �
(
h(x+ λy)

)
(2.2)

is holomorphic at λ= 0 for each x ∈�, y ∈ X and linear functional � ∈ Y∗.
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Clearly the strong definition implies the weak definition. It was shown by
Dunford in 1938, using the uniform boundedness principle, that both defini-
tions are equivalent. (See [14, Theorems 3.10.1 and 3.17.1].) In many cases, �
will be the open ball of radius r and center x, that is,

Br(x)= {z ∈ X : ‖z− x‖ < r
}
. (2.3)

If S is a set of complex numbers, we define

|S| = sup
{|λ| : λ∈ S

}
. (2.4)

Example 2.3. Define a mapping P : X → Y to be a homogeneous polynomial of
degree n if

P(x)= F(x, . . . ,x︸ ︷︷ ︸
n

), (2.5)

where F : X ×···×X → Y is a continuous (complex) multilinear map of degree
n. Then P is holomorphic on X and

DP(x)y =
n−1∑
k=0

F(x, . . . ,x︸ ︷︷ ︸
k

, y,x, . . . ,x︸ ︷︷ ︸
n−k−1

), x, y ∈ X. (2.6)

If {Pn}∞0 is a sequence of homogeneous polynomials where Pn is of degree n and
if there exist positive constants M and r such that ‖Pn‖rn ≤M for n = 0,1, . . . ,
then it follows easily from the Weierstrass M-test and the weak definition that

h(x)=
∞∑
n=0

Pn(x) (2.7)

converges to a holomorphic function in Br(0).
The nth derivative Dnh(x) of h at x can be represented as a multilinear map

of degree n. We denote the associated homogeneous polynomial of degree n by
D̂nh(x). It can be shown that

Pn = 1
n!
D̂nh(0), n= 0,1, . . . . (2.8)

The following theorem shows that every holomorphic function can be writ-
ten as the sum of an infinite series of homogeneous polynomials in some neigh-
borhood of each of the points of its domain.

Theorem 2.4 (Taylor’s theorem [14, Theorem 3.17.1]). If h is holomorphic and
bounded in Br(x), then

h(x+ y)=
∞∑
n=0

1
n!
D̂nh(x)(y), (2.9)

for all y in Br(0).
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Example 2.5. The holomorphic functional calculus associates classical holomor-
phic functions with holomorphic functions on domains in spaces of operators.
Specifically, let W be a complex Banach space and let X =�(W) be the Banach
space of all bounded linear operators on W . Suppose f (λ) is a complex-valued
function holomorphic in the disk |λ| < r. Then

f (λ)=
∞∑
n=0

anλ
n, for |λ| < r, (2.10)

and hence

f (A)=
∞∑
n=0

anA
n (2.11)

is defined for |σ(A)| < r, where

∣∣σ(A)
∣∣= lim

n→∞
∥∥An

∥∥1/n
(2.12)

is the spectral radius. It is not difficult to show that the set

�= {A∈ X :
∣∣σ(A)

∣∣ < r
}

(2.13)

is open and it follows from Example 2.3 that f : �→ X is holomorphic.
More generally, let Ω be an open subset of the complex plane and let

�= {A∈ X : σ(A)⊆Ω
}
. (2.14)

Define

f (A)= 1
2πi

∫
�
f (λ)(λI −A)−1dλ, (2.15)

where � consists of a finite number of positively oriented rectifiable Jordan
curves in Ω whose interiors are a disjoint cover σ(A). It can be shown (see [14,
Theorem 5.2.4] or [5, page 568]) that this defines f (A) independently of the
curve � and the domain Ω and that f : �→ X is holomorphic.

Example 2.6. To justify hypotheses in later theorems, we exhibit a function that is
holomorphic everywhere in X = c0, bounded on Br(0) for every r with 0 < r < 1
but unbounded on B1(0). Define

h(x)=
∞∑
k=0

xkk , for x = (xk)∞0 . (2.16)

Then h is defined and holomorphic everywhere in X by the weak definition.
Also, since |xkk| ≤ ‖x‖k for any x ∈ X , it follows that

∥∥h(x)
∥∥≤ 1

1−‖x‖ , x ∈ B1(0). (2.17)



Lawrence A. Harris 265

Now for each positive integer n define an x ∈ B1(0) by

xk = 1
n
√

2
, 0≤ k ≤ n,

xk = 0, k > n.
(2.18)

Then

h(x)≥
n∑

k=0

xnk ≥
n∑

k=0

1
2
. (2.19)

Hence h is unbounded in B1(0).

3. Holomorphic fixed-point theorems

A set S is said to lie strictly inside a subset � of a Banach space if there is some
ε > 0 such that Bε(x)⊆� whenever x ∈ S. The following theorem may be viewed
as a holomorphic version of the Banach’s contraction mapping theorem.

Theorem 3.1 (Earle-Hamilton [6]). Let � be a nonempty domain in a complex
Banach space X and let h : �→� be a bounded holomorphic function. If h(�) lies
strictly inside �, then h has a unique fixed point in �.

Proof. We construct a metric ρ, called the CRF-pseudometric, in which h is a
contraction. Define

α(x,v)= sup
{∣∣Dg(x)v

∣∣ : g : �−→ ∆ holomorphic
}
, (3.1)

for x ∈� and v ∈ X , and set

L(γ)=
∫ 1

0
α
(
γ(t),γ′(t)

)
dt, (3.2)

for γ in the set Γ of all curves in � with piecewise continuous derivative. Clearly
α specifies a seminorm at each point of �. We view L(γ) as the length of the
curve γ measured with respect to α. Define

ρ(x, y)= inf
{
L(γ) : γ ∈ Γ, γ(0)= x, γ(1)= y

}
, (3.3)

for x, y ∈�. It is easy to verify that ρ is a pseudometric on �.
Let x ∈� and v ∈ X . By the chain rule,

D(g ◦h)(x)v =Dg
(
h(x)

)
Dh(x)v, (3.4)

for any holomorphic function g : �→ ∆. Hence,

α
(
h(x),Dh(x)v

)≤ α(x,v). (3.5)
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By integrating this and applying the chain rule, we obtain L(h ◦ γ)≤ L(γ) for all
γ ∈ Γ and thus the Schwarz-Pick inequality

ρ
(
h(x),h(y)

)≤ ρ(x, y) (3.6)

holds for all x, y ∈�.
Now by hypothesis there exists an ε > 0 such that Bε(h(x)) ⊆ � whenever

x ∈�. We may assume that � is bounded by replacing � by the subset

∪{Bε(h(x)
)

: x ∈�
}
. (3.7)

Fix t with 0 < t < ε/δ, where δ denotes the diameter of h(�). Given x ∈�, define

ĥ(y)= h(y) + t
[
h(y)−h(x)

]
, (3.8)

and note that ĥ : �→� is holomorphic. Given x ∈� and v ∈ X , it follows from

Dĥ(x)v = (1 + t)Dh(x)v (3.9)

and (3.5), with h replaced by ĥ, that

α
(
h(x),Dh(x)v

)≤ 1
1 + t

α(x,v). (3.10)

Integrating this as before, we obtain

ρ
(
h(x),h(y)

)≤ 1
1 + t

ρ(x, y), (3.11)

for all x, y ∈�.
Now pick a point x0 ∈ � and let {xn} be the sequence of iterates given by

xn = hn(x0). Then {xn} is a ρ-Cauchy sequence by the proof of the contraction
mapping theorem. Since X is complete in the norm metric, it suffices to show
that there exists a constant m> 0 such that

ρ(x, y)≥m‖x− y‖, (3.12)

for all x, y ∈�. Since � is bounded, we may take m= 1/d, where d is the diam-
eter of �. Given x ∈� and v ∈ X , define

g(y)=m�(y− x), (3.13)

where � ∈ X∗ with ‖�‖ = 1. Then g : �→∆ is holomorphic andDg(x)v =m�(v).
Hence α(x,v) ≥m‖v‖ by the Hahn-Banach theorem. Integrating as before, we
obtain (3.12). �

The Earle-Hamilton theorem still applies in cases where the holomorphic
function does not necessarily map its domain strictly inside itself. In fact, the
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following interesting fixed-point theorem is a consequence of two applications
of the Earle-Hamilton theorem.

Theorem 3.2 (Khatskevich-Reich-Shoikhet [15, 19]). Let � be a nonempty
bounded convex domain in a Banach space and let h : �→� be a holomorphic
function having a uniformly continuous extension to �. If there exists an ε > 0
such that ‖h(x)− x‖ ≥ ε whenever x ∈ ∂�, then h has a unique fixed point in �.

For example, the hypothesis that ‖h(x)− x‖ ≥ ε for all x ∈ ∂� is satisfied
when � contains the origin and

sup
x∈∂D

∥∥h(x)
∥∥

‖x‖ < 1. (3.14)

Proof. Given 0 < t < 1 and x ∈�, define

ft(y)= (1− t)x+ th(y) (3.15)

and let δ > 0 be such that Bδ(x)⊆�. Since � is convex, ft : �→� is holomor-
phic. To show that ft(�) lies strictly inside �, take ε = (1− t)δ. Let y ∈� and
let w ∈ Bε( ft(y)). Then

z = w− th(y)
1− t

(3.16)

is in � since z ∈ Bδ(x), so

w = (1− t)z+ th(y)∈�. (3.17)

Hence Bε( ft(y))⊆� for all y ∈�.
By the Earle-Hamilton theorem, ft has a unique fixed point gt(x) in �. Since

the CRF-metric is continuous, the proof of the contraction mapping theorem
shows that the iterates of ft at a chosen point y0 ∈� are holomorphic and locally
uniformly Cauchy in x. Hence the limit function gt : �→� is holomorphic by
[14, Theorem 3.18.1]. Now an x ∈� is a fixed point for gt if and only if x is a
fixed point for h. Thus, by the Earle-Hamilton theorem, it suffices to show that
gt(�) lies strictly inside � for some t > 0.

Since h has a uniformly continuous extension to �, there exist ε > 0 and δ > 0
such that ‖h(x)− x‖ ≥ ε whenever x ∈� and

d(x,∂�)= inf
{‖x− y‖ : y ∈ ∂�

}
< δ. (3.18)

Since � is bounded, there is an M with ‖x‖ ≤M for all x ∈�. If x ∈�,

h
(
gt(x)

)− gt(x)= (1− t)
[
h
(
gt(x)

)− x
]
, (3.19)

so
∥∥h(gt(x)

)− gt(x)
∥∥≤ 2(1− t)M. (3.20)
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Choose t close enough to 1 so that 2(1− t)M < ε. If d(gt(x),∂�) < δ for some
x ∈�, then

ε ≤ ∥∥h(gt(x)
)− gt(x)

∥∥, (3.21)

a contradiction. Thus, Bδ(gt(x))⊆� for all x ∈�, as required. �

Considerably stronger results have been obtained for the case where � is the
open unit ball of a Hilbert space.

Theorem 3.3 (Goebel-Sekowski-Stachura [9, Theorem 11]). Let B be the open
unit ball of a Hilbert space and let h : B→ B be holomorphic. If there is a point x0

in B such that the sequence {hn(x0)} of iterates lies strictly inside B, then h has a
fixed point in B.

Obtaining fixed points for mappings that are only nonexpansive rather than
contractive is more difficult. A fundamental result due, independently, to Brow-
der, Göhde, and Kirk in 1965 is that a nonexpansive self-mapping of a closed
bounded convex set in a uniformly convex Banach space has a fixed point. In
analogy, Goebel, Sekowski, and Stachura [9] showed that the CRF-metric ρ in
the open unit ball B of a Hilbert space is uniformly convex and obtained a fixed-
point theorem for holomorphic self-mappings of B. All such mappings are ρ-
nonexpansive by the Schwarz-Pick inequality (3.6).

Theorem 3.4 (Goebel-Reich [8, Theorem 25.4]). Let B be the open unit ball of a
Hilbert space and let h : B→ B be an arbitrary function satisfying

ρ
(
h(x),h(y)

)≤ ρ(x, y), (3.22)

for all x, y ∈ B. If h has a continuous extension to B, then h has a fixed point in B.

Corollary 3.5 (Goebel-Sekowski-Stachura [9]). If h : B → B is a holomorphic
function that has a continuous extension to B, then h has a fixed point in B.

Extensions of Theorems 3.3 and 3.4 and of Corollary 3.5 to Cartesian prod-
ucts of the Hilbert ball B can be found in papers of Kuczumow and others. It
would be desirable to obtain extensions to more general spaces. See [4, 7, 12] for
basic material about function-theoretic metrics on domains in Banach spaces.
See [16] for an extensive survey of fixed-point theorems for holomorphic map-
pings.

4. The linear numerical range

Let A ∈�(H), where H is a Hilbert space. The numerical range of A is defined
by

W(A)= {(Ax,x) : ‖x‖ = 1, x ∈H
}
. (4.1)
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Like the spectrum, the numerical range associates a set of complex numbers
with A that reflects the properties of A. However, unlike the spectral radius, the
numerical radius is an equivalent norm on �(H). The following is a list of some
basic properties. (See [10].)

Theorem 4.1. Let A∈�(H). Then

(1) W(A) is convex,
(2) A is hermitian (i.e., A∗ = A) if and only if W(A) is real,
(3) σ(A)⊆W(A),
(4) |W(A)| ≤ ‖A‖ ≤ 2|W(A)|.
The notion of the numerical range was successfully extended to operators on

an arbitrary Banach space X by Lumer [17]. To give an equivalent form of his
definitions, define

J(x)= {� ∈ X∗ : ‖�‖ = �(x)= 1
}

(4.2)

for x ∈ X with ‖x‖ = 1 and note that J(x) is nonempty by the Hahn-Banach
theorem. Let Q(x) be a nonempty subset of J(x) for each x ∈ X with ‖x‖ = 1.

Now let A∈�(X). Define numerical ranges of A by

V(A)= {�(Ax) : � ∈ J(x), ‖x‖ = 1
}
,

W(A)= {�(Ax) : � ∈Q(x), ‖x‖ = 1
}
.

(4.3)

Clearly, W(A) ⊆ V(A). If Q(x) is taken to be J(x) for all x ∈ X with ‖x‖ = 1,
then W(A)=V(A).

In the case where X is a Hilbert space, the sets Q(x) and J(x) coincide and
consist of the single functional �(y)= (y,x) by the Riesz representation theorem.
Thus W(A) and V(A) reduce to the previous definition of the numerical range.

Since there is in general no adjoint operation on �(X), an operator A∈�(X)
is defined to be hermitian if V(A) is real. The following theorem is a well-known
extension of Theorem 4.1. (See Bonsall and Duncan [1, 2] for this and many
other properties of the numerical range.)

Theorem 4.2. Let A∈�(X). Then

(1) V(A) is connected,
(2) A is hermitian if and only if ‖eitA‖ = 1 for all real t,
(3) coσ(A)⊆V(A),
(4) |V(A)| ≤ ‖A‖ ≤ e|V(A)|,
(5) supReW(A)= limt→0+ (‖I + tA‖− 1)/t.

In the above, the symbol co denotes the closed convex hull. Following Lumer,
we can deduce from part (5) of the above theorem that the closed convex hulls
of W(A) and V(A) are equal no matter what choice of Q is taken. Thus, in par-
ticular, |W(A)| = |V(A)|.
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The theorem we extend is a characterization of dissipative operators. This can
be viewed as a one-sided formulation of part (2) of the previous theorem.

Theorem 4.3 (Lumer-Phillips [18]). Let A ∈ �(X). The following are equiva-
lent:

(a) supReW(A)≤ 0,
(b) ‖etA‖ ≤ 1 for all t ≥ 0,
(c) ‖(I − tA)−1‖ ≤ 1 for all t ≥ 0.

5. The holomorphic numerical range

We first consider the case where the domain is the open unit ball B of X and
h : B→ X is a holomorphic function that is uniformly continuous in B. Then h
has a uniformly continuous extension to B. Moreover, h is bounded in B so

‖h‖ = sup
{∥∥h(x)

∥∥ : x ∈ B
}

(5.1)

is finite. In analogy with (4.3), define numerical ranges of h by

V(h)= {�(h(x)
)

: � ∈ J(x), ‖x‖ = 1
}
,

W(h)= {�(h(x)
)

: � ∈Q(x), ‖x‖ = 1
}
.

(5.2)

Theorem 5.1 [11]. (a) supReW(h)= limt→0+ (‖I + th‖− 1)/t.
(b) If Pn is a homogeneous polynomial of degree n > 1, then

∥∥Pn∥∥≤ nn/(n−1)
∣∣W(

Pn
)∣∣. (5.3)

As was shown in [11], a consequence of part (a) of Theorem 5.1 is that the
closed convex hulls of W(h) and V(h) are the same no matter what choice of Q
is taken. It was also shown in [11] that the constant in part (b) of the theorem is
best possible.

Following [13], we now extend the numerical range to functions defined on
more general domains. Let � be a convex domain in X and suppose � contains
the origin. For each x ∈ ∂�, let

J(x)= {� ∈ X∗ : �(x)= 1, Re�(y)≤ 1∀y ∈�
}
. (5.4)

It follows from [5, Corollary 6, page 449] that J(x) is nonempty. Let Q(x) be a
nonempty subset of J(x) for each x ∈ X with x ∈ ∂�. If h : �→ X has a contin-
uous extension to �, then we define

V(h)= {�(h(x)
)

: � ∈ J(x), x ∈ ∂�
}
,

W(h)= {�(h(x)
)

: � ∈Q(x), x ∈ ∂�
}
.

(5.5)

Otherwise, consider

hs(x)= h(sx), 0 < s < 1. (5.6)
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The function hs always has a continuous extension to � and hence we may define

L(h)= lim
r→1−

sup
{

Re�
(
hs(x)

)
: � ∈Q(x), x ∈ ∂�, r ≤ s < 1

}
(5.7)

since the indicated supremum is decreasing in r. If h is uniformly continuous on
�, then h has a uniformly continuous extension to �. Hence, W(h) is defined
and L(h)= supReW(h).

Lemma 5.2 (cf. [11, Lemma 2]). If h : �→X is holomorphic and bounded on
each domain strictly inside �, then hs is uniformly continuous on � for each s with
0 < s < 1.

The following lemma is the key to our extension of the Lumer-Phillips the-
orem to holomorphic functions. Throughout the remainder of this section we
assume that the domain � is bounded as well as convex.

Lemma 5.3 [13]. Let g : � → X be holomorphic and bounded on each domain
strictly inside �. If L(g) < 0, then the equation g(x) = 0 has a unique solution
x ∈�.

Proof. By Lemma 5.2, it suffices to prove the lemma for the case where g is uni-
formly continuous. Let

p(x)= inf{r > 0 : x ∈ r�} (5.8)

be the Minkowski functional for �. It is not difficult to extend the proof of part
(a) of Theorem 5.1 (given in [11]) to the case where B is replaced by � and p
replaces the norm, that is,

‖I + tg‖ = sup
{
p
(
x+ tg(x)

)
: x ∈�

}
. (5.9)

(In fact, we can avoid inverses in that proof by arguing as in [1, page 83].) By
hypothesis there is an ε > 0 with supReW(g) <−ε. Hence there is a t > 0 with

p
(
x+ tg(x)

)
< 1− tε, (5.10)

for all x ∈�. Thus (I + tg)(�) lies inside (1− tε)� and so strictly inside �. By
the Earle-Hamilton theorem, I + tg has a unique fixed point in � so g(x)= 0 has
a unique solution in �. �

Theorem 5.4 [13]. Let h : �→ X be holomorphic and bounded on each domain
strictly inside �. If L(h) < 1, then h has a unique fixed point in �.

Proof. This theorem follows from the previous lemma with g = h−I since L(g)=
L(h)− 1 < 0. �

The above theorem is an extension of the Earle-Hamilton fixed-point theo-
rem since it is not difficult to show that L(h) < 1 when h maps � strictly inside
�.
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Our main result is the following extension of the Lumer-Phillips theorem.

Theorem 5.5 [13]. Let h : �→ X be holomorphic and uniformly continuous. Then
supReW(h) ≤ 0 if and only if (I − th)−1 is defined on � and is a holomorphic
mapping of � into itself for each t ≥ 0.

Proof. Suppose that supReW(h) ≤ 0. Since supReW(h) is positive homoge-
neous, it suffices to consider the case where t = 1. Let y ∈� and take g = y + h.
Then

supReW(g)≤ p(y) + supReW(h) < 1 (5.11)

by hypothesis. Hence by the previous theorem, the function g has a unique fixed
point f (y) in �. It can be shown as in the proof of Theorem 3.2 that f is holo-
morphic in �. Moreover, for each y ∈ �, the only solution of (I − h)(x) = y
with x ∈� is x = f (y). Hence (I − h)−1 = f exists on � and is a holomorphic
mapping of � into itself.

Conversely, suppose that (I − th)−1 is defined on � and maps � into itself for
all t > 0. Since h is uniformly continuous on � and � is bounded, there is an
M > 0 with ‖h(x)‖ ≤M for all x ∈�. Also, given ε > 0 there exists a δ > 0 such
that ‖h(x)−h(y)‖ < ε whenever x, y ∈� and ‖x− y‖ < δ. Clearly,

(I − th)−1(x)− x = th
(
(I − th)−1(x)

)
(5.12)

for any x ∈� and t > 0. Let 0 < t < δ/M. If x ∈�, then

∥∥(I − th)−1(x)− x
∥∥ < δ, (5.13)

so

∥∥h((I − th)−1(x)
)−h(x)

∥∥ < ε. (5.14)

Now the Minkowski functional p for � satisfies p(x) ≤ ‖x‖/r for all x ∈ X ,
where r > 0 is chosen so that Br(0) ⊆�. Since p is subadditive, it follows from
(5.14) and the identity

(I + th)(x)= (I − th)−1(x) + t
[
h(x)−h

(
(I − th)−1(x)

)]
(5.15)

that

p
(
(I + th)(x)

)≤ p
(
(I − th)−1(x)

)
+ t
ε
r
, (5.16)

for all x ∈�. Hence

‖I + th‖ ≤ 1 + t
ε
r
, (5.17)

for 0 < t < δ/M and thus supReV(h)≤ ε/r. �
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The above arguments obtain the forward implication of Theorem 5.5 as an
easy consequence of Lemma 5.3. Conversely, Lemma 5.3 is an easy consequence
of the forward implication of Theorem 5.5. To see this, by hypothesis and Lemma
5.2 we may suppose that g : �→ X has a uniformly continuous extension to �
and that

δ ≡−supReW(g) > 0. (5.18)

Put h= g + δI and note that supReW(h)≤ 0. Hence by Theorem 5.5, the equa-
tion (I − th)(x) = 0 has a unique solution x in � for each t ≥ 0. Since g =
−δ(I − th) when t = 1/δ, it follows that g(x)= 0 has a unique solution x in �.

It is shown in [13, Corollary 9] that if � is the open unit ball of X and if L(h)
is finite for the choice Q = J , then h is bounded on each domain strictly inside �.
Thus, in the case mentioned, this hypothesis may be omitted from Lemma 5.3
and Theorem 5.4.

See [13] for further details and applications to Bloch’s theorem and Cartan’s
uniqueness theorem.

In the case where the underlying space is finite dimensional, there is a version
of Lemma 5.3 where the domain � does not need to be convex and the numer-
ical range is computed as in a Hilbert space. (For purposes of comparison, we
reformulate the theorem.)

Theorem 5.6 (Shih [20]). Suppose X is finite dimensional and let (·,·) be an in-
ner product on X . Let � be a bounded domain in X containing the origin and
let g : � → X be a holomorphic function with a continuous extension to �. If
Re(g(x),x) < 0 for all x ∈ ∂�, then g(x)= 0 has a unique solution x in �.
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