
BIRKHOFF-KELLOGG THEOREMS ON INVARIANT
DIRECTIONS FOR MULTIMAPS

RAVI P. AGARWAL AND DONAL O’REGAN

Received 11 December 2001

We establish Birkhoff-Kellogg type theorems on invariant directions for a gen-
eral class of maps. Our results, in particular, apply to Kakutani, acyclic, O’Neill,
approximable, admissible, and �κ

c maps.

1. Introduction

This paper presents Birkhoff-Kellogg type theorems on invariant directions for
a large class of maps. A number of results which will enable to deduce results
for upper semicontinuous maps which are either (a) Kakutani, (b) acyclic, (c)
O’Neill, or (d) admissible (strongly) in the sense of Gorniewicz are given.

The results in this paper, when the map is compact, complement and extend
the previously known results in [8, 14, 16]. Also using the results in [7], we are
able to present invariant direction results for countably condensing maps.

For the remainder of this section, we present some definitions and some
known facts. Let X and Y be subsets of Hausdorff topological vector spaces E1

and E2, respectively. We will look at maps F : X → K(Y), here K(Y) denotes the
family of nonempty compact subsets of Y . We say F : X → K(Y) is Kakutani if
F is upper semicontinuous with convex values. A nonempty topological space
is said to be acyclic, if all its reduced C̆ech homology groups over the rationals
are trivial. Now F : X → K(Y) is acyclic if F is upper semicontinuous with acyclic
values. The map F : X → K(Y) is said to be an O’Neill map if F is continuous
and if the values of F consist of one or m-acyclic components (here m is fixed).

Given two open neighborhoods U and V of the origins in E1 and E2, re-
spectively, a (U,V)-approximate continuous selection [6] of F : X → K(Y) is a
continuous function s : X → Y satisfying

s(x)∈ (F[(x+U)∩X
]

+V
)∩Y, ∀x ∈ X. (1.1)
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We say F : X → K(Y) is approximable if its restriction F|K , to any compact sub-
set K of X , admits a (U,V)-approximate continuous selection for every open
neighborhood U and V of the origins in E1 and E2, respectively.

For our next definition, let X and Y be metric spaces. A continuous single-
valued map p : Y → X is called a Vietoris map if the following two conditions
are satisfied:

(i) for each x ∈ X , the set p−1(x) is acyclic;
(ii) p is a proper map, that is, for every compact A⊆ X , p−1(A) is compact.

Definition 1.1. A multifunction φ : X → K(Y) is admissible (strongly) in the
sense of Gorniewicz if φ : X → K(Y) is upper semicontinuous, and if there exist
a metric space Z and two continuous maps p : Z → X and q : Z → Y such that

(i) p is a Vietoris map;
(ii) φ(x)= q(p−1(x)) for any x ∈ X .

Remark 1.2. It should be noted [10, page 179] that φ upper semicontinuous is
redundant in Definition 1.1.

Suppose X and Y are Hausdorff topological spaces. Given a class � of maps,
�(X,Y) denotes the set of maps F : X → 2Y (nonempty subsets of Y) belonging
to �, and �c the set of finite compositions of maps in �. A class � of maps is
defined by the following properties:

(i) � contains the class � of single-valued continuous functions;
(ii) each F ∈�c is upper semicontinuous and compact valued;

(iii) for any polytope P, F ∈�c(P,P) has a fixed-point where the intermedi-
ate spaces of composites are suitably chosen for each �.

Definition 1.3. The map F ∈�κ
c (X,Y) if for any compact subset K of X , there is

a G∈�c(K,Y) with G(x)⊆ F(x) for each x ∈ K .

Examples of �κ
c maps are the Kakutani, the acyclic, the O’Neill maps, and the

maps admissible in the sense of Gorniewicz.
For a subset K of a topological space X , we denote by CovX(K) the directed

set of all coverings of K by open sets of X (usually we write Cov(K)= CovX(K)).
Given two maps F, G : X → 2Y and α∈ Cov(Y), F and G are said to be α-close,
if for any x ∈ X , there exists Ux ∈ α, y ∈ F(x)∩Ux, and w ∈G(x)∩Ux.

By a space, we mean a Hausdorff topological space. In what follows, Q de-
notes a class of topological spaces. A space Y is an extension space for Q (writ-
ten Y ∈ ES(Q)) if for any pair (X,K) in Q with K ⊆ X closed, any continuous
function f0 : K → Y extends to a continuous function f : X → Y .

A space Y is an approximate extension space for Q (and we write Y ∈ AES(Q))
if for any α∈ Cov(Y) and any pair (X,K) in Q with K ⊆ X closed and any con-
tinuous function f0 : K → Y , there exists a continuous function f : X → Y such
that f |K is α-close to f0.
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Definition 1.4. Let V be a subset of a Hausdorff topological vector space E. Then
we say V is Schauder admissible if for every compact subset K of V and every
covering α∈ CovV (K), there exists a continuous function (called the Schauder
projection) πα : K →V such that

(i) πα and i : K →V are α-close;
(ii) πα(K) is contained in a subset C ⊆V with C ∈ AES (compact).

If V ∈ AES (compact), then V is trivially Schauder admissible. If V is an open
convex subset of a Hausdorff locally convex topological space E, then it is well
known that V is Schauder admissible.

The following fixed-point result was established in [5].

Theorem 1.5. Let V be a Schauder admissible subset of a Hausdorff topological
vector space E and F ∈�κ

c (V,V) a compact map. Then F has a fixed point.

A nonempty subset X of a Hausdorff topological vector space E is said to be
admissible if for every compact subset K of X and every neighborhood V of 0,
there exists a continuous map h : K → X with x− h(x) ∈ V for all x ∈ K and
h(K) is contained in a finite-dimensional subspace of E. The nonempty subset
X is said to be q-admissible if any nonempty compact, convex subset Ω of X is
admissible.

In [12], we proved the following fixed-point result.

Theorem 1.6. Let Ω be a q-admissible, closed, convex subset of a Hausdorff topo-
logical vector space E with x0 ∈Ω. Suppose F ∈�κ

c (Ω,Ω) with the following prop-
erty holding:

A⊆Ω, A= co
({
x0
}∪F(A)

)
, implies A is compact. (1.2)

Then F has a fixed point in Ω.

Let (E,d) be a pseudometric space. For S ⊆ E, let B(S,ε) = {x ∈ E : d(x,S) ≤
ε}, ε > 0, where d(x,S)= inf y∈Y d(x, y). The measure of noncompactness of the
set M ⊆ E is defined by α(M)= inf Q(M) where

Q(M)= {ε > 0 : M ⊆ B(A,ε) for some finite subset A of E
}
. (1.3)

Let E be a locally convex Hausdorff topological vector space and let P be a defin-
ing system of seminorms on E. Suppose F : S→ 2E, here S⊆ E. The map F is said
to be a countably P-concentrative mapping if F(S) is bounded, and for p ∈ P,
for each countably bounded subset X of S, we have αp(F(X))≤ αp(X), and for
p ∈ P, for each countably bounded non-p-precompact subset X of S (i.e., X is
not precompact in the pseudonormed space (E, p)), we have αp(F(X)) < αp(X),
here αp(·) denotes the measure of noncompactness in the pseudonormed space
(E, p).

Finally for completeness, we also give the definition of countably k-set con-
tractive maps. Let X be a metric space and PB(X) the bounded subsets of X .
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The Kuratowskii measure of noncompactness is the map α : PB(X)→ [0,∞) de-
fined by

α(A)= inf
{
ε > 0 : A⊆∪n

i=1Xi, diam
(
Xi
)≤ ε}, (1.4)

here A ∈ PB(X). Let S be a nonempty subset of X and H : S→ 2X . The map H
is called countably k-set contractive (k ≥ 0) if H(S) is bounded and α(H(Ω))≤
kα(Ω) for all countably bounded sets Ω of S.

2. Hausdorff locally convex topological vector spaces

In this section, we present a variety of Birkhoff-Kellogg type theorems on in-
variant directions. Throughout, E will be a Hausdorff locally convex topological
vector space, C will be a closed convex subset of E, U ⊆ C will be convex, U will
be an open subset of E, and 0∈U . Notice intCU =U since U is open in C. Also
we wish to consider maps F : U → K(C) which are upper semicontinuous and
either (a) approximable, (b) admissible (strongly) in the sense of Gorniewicz, or
more generally (c) �κ

c , here U denotes the closure of U in C and K(C) denotes
the family of nonempty compact subsets of C.

To take care of all the above maps (and even more general types), we intro-
duce the following definition.

Definition 2.1. The map F ∈ LS(U,C) if F : U → K(C) is upper semicontinuous
and satisfies condition (D). We assume condition (D) is

for any map F ∈ LS
(
U,C

)
and any continuous single-valued

map r : E→U, rF satisfies condition (D).
(2.1)

Certainly if condition (D) means (a), (b), or (c) above, then (2.1) holds (see
[2, 6, 10, 15]).

Throughout this section, we will assume the map F : U → K(C) satisfies one
of the following conditions:

(H1) F is compact;
(H2) if D ⊆U and D ⊆ co({0}∪F(D)), then D is compact; or
(H3) F is countably P-concentrative and E is Fréchet (here P is a defining

system of seminorms).

Fix i∈ {1,2,3}.
Definition 2.2. We say F ∈ LSi(U,C) if F ∈ LS(U,C) satisfies (Hi).

Remark 2.3. Throughout this section, it is possible to replace F upper semicon-
tinuous in Definition 2.1 with F closed and taking compact sets into relatively
compact sets.

The following result was established in [4].
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Theorem 2.4. Fix i∈ {1,2,3} and let E be a Hausdorff locally convex topological
vector space, C a closed convex subset of E, U ⊆ C convex, U an open subset of E,
0 ∈ U , and assume (2.1) holds. Suppose F ∈ LSi(U,C) and assume the following
condition holds:

any map Φ∈ LSi
(
U,U

)
has a fixed point. (2.2)

Then either

(i) F has a fixed point in U ; or
(ii) there exist x ∈ ∂U and λ∈ (0,1) with x ∈ λFx;

here ∂U denotes the boundary of U in C.

Example 2.5. Suppose condition (D) in Definition 2.1 means F : U → K(C) be-
longs to �κ

c (U,C). Now since �κ
c is closed under compositions, then (2.1) is

true. If i = 1, we know from [15] that (2.2) holds. If i = 2, we know from [13]
that (2.2) is satisfied. If i = 3, we know from [11] that (2.2) holds. As a result,
Theorem 2.4 contains most of the Leray-Schauder alternatives (see [4, 14, 16, 17]
and the references therein).

For our next result, assume condition (D) is such that

for any map F ∈ LS
(
U,C

)
and any λ∈R,λF satisfies condition (D). (2.3)

Certainly if condition (D) means (a) or (b) above, then (2.3) is satisfied.
Now from Theorem 2.4, we obtain the following Birkhoff-Kellogg type theo-

rem. Some of the ideas here were borrowed from the literature (see [14] and the
references therein).

Theorem 2.6. Let E be a Hausdorff locally convex topological vector space, C a
closed convex subset of E, U ⊆ C convex, U an open subset of E, 0∈U , and assume
(2.1), (2.2) (with i = 1), and (2.3) hold. Suppose F ∈ LS1(U,C) and assume the
following condition holds:

∃µ∈R, with µF
(
U
)∩U =∅. (2.4)

Then there exist λ ∈ (0,1) and x ∈ ∂U with (λ−1µ−1)x ∈ Fx (i.e., F|∂U has an
eigenvalue); here µ �= 0 is chosen as in (2.4).

Remark 2.7. Notice that 0∈U guarantees that µ �= 0 in (2.4).

Proof. Let µ �= 0 be chosen as in (2.4). Now (2.3) guarantees that µF ∈ LS(U,C),
and as a result µF ∈ LS1(U,C). In addition, (2.4) guarantees that µF has no fixed
points in U . Theorem 2.4 (applied to µF) guarantees that there exists λ and x ∈
∂U with x ∈ λ(µF)x. As a result, (λ−1µ−1)x ∈ Fx and the proof is complete. �

Example 2.8. In Theorem 2.6, if condition (D) means that the map F : U → K(C)
is either (a) approximable, or (b) admissible in the sense of Gorniewicz, then we
know that (2.1), (2.2) (see [3, 12, 13]), and (2.3) hold.



440 Birkhoff-Kellogg theorems

In Theorem 2.6, if condition (D) means that the map F : U → K(C) belongs
to �κ

c (U,C), then we know that (2.1) and (2.2) hold. Notice that (2.3) may not
be true. However, (2.3) (or a slight modification of it, see (2.5)) may work for
a subclass �(U,C) of �κ

c (U,C) (e.g., � could be the Kakutani or acyclic maps
or indeed the maps described in the above example). In the proof of our next
result, condition (D) means that the map F : U → K(C) belongs to �κ

c (U,C), so
F ∈ LS(U,C) means that F is upper semicontinuous and F ∈�κ

c (U,C).

Theorem 2.9. Let E be a Hausdorff locally convex topological vector space, C
a closed convex subset of E, U ⊆ C convex, U an open subset of E, 0 ∈ U , F ∈
�(U,C) a compact map, and assume (2.4) holds. Suppose the following condition
holds:

for any map F ∈�
(
U,C

)
, and any λ∈R, λF ∈�κ

c

(
U,C

)
. (2.5)

Then there exist λ ∈ (0,1) and x ∈ ∂U with (λ−1µ−1)x ∈ Fx (i.e., F|∂U has an
eigenvalue); here µ �= 0 is chosen as in (2.4).

Proof. Essentially the same reasoning as in Theorem 2.6 establishes the result.
�

In our next result, we assume (2.3) when |λ| ≤ 1.

Theorem 2.10. Fix i ∈ {2,3} and let E be a Hausdorff locally convex topological
vector space, C a closed convex subset of E, U ⊆ C convex, U an open subset of E,
0 ∈ U , F ∈ LSi(U,C), and assume (2.1) and (2.2) hold. In addition, suppose the
following conditions are satisfied:

(i) for any map F ∈ LS(U,C) and any λ∈R with |λ| ≤ 1, λF satisfies condition
(D),

(ii) there exists µ∈R with |µ| ≤ 1,µF(U
)∩U =∅,

(iii) if i= 2, assume either µ > 0 in (ii) or −F(D)= F(D) for any D ⊆U .

Then there exists λ∈ (0,1) and x ∈ ∂U with (λ−1µ−1)x ∈ Fx.

Proof. Let µ �= 0 be chosen as in (i), and notice that µF ∈ LS(U,C) from (i). We
claim

µF ∈ LSi
(
U,C

)
. (2.6)

If i = 3, then (2.6) is immediate since |µ| ≤ 1. Next suppose i = 2 and let D ⊆
U with D ⊆ co({0} ∪ µF(D)). Now from Theorem 2.10(iii), we have µF(D) ⊆
co({0}∪F(D)), and so

D ⊆ co
({0}∪ co

({0}∪F(D)
))= co

(
co
({0}∪F(D)

))= co
({0}∪F(D)

)
.

(2.7)

Now D is compact since F ∈ LS2(U,C), and so (2.6) holds if i = 2. Apply
Theorem 2.4 to µF. �
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Remark 2.11. In Theorem 2.10, condition (iii) can be replaced by the following
more general condition:

if i= 2 and if D ⊆U with D ⊆ co
({0}∪µF(D)

)
,

then D is compact, here µ is chosen as in (ii)
(2.8)

(of course with this assumption, we do not need to assume that |µ| ≤ 1 in (ii) if
i= 2). For example, if F is P-concentrative (here E is Fréchet), then clearly (2.8)
is satisfied (if |µ| ≤ 1).

Remark 2.12. It is also possible to use Theorem 2.9 to obtain an analogue of
Theorem 2.10 for the subclass �. We leave the details to the reader.

In Theorem 2.6 (resp., Theorem 2.10), if µ > 0 in (2.4) (resp., (ii)), we say that
F|∂U has an invariant direction (i.e., has a positive eigenvalue). Some of the ideas
here were borrowed from the literature (see [14] and the references therein).

Theorem 2.13. Let E = (E,‖ · ‖) be an infinite-dimensional normed linear space,
C = E, U = B, F ∈ LS1(B,E), and assume that (2.1), (2.2) (with i= 1), and (2.3)
hold; here B = {x ∈ E : ‖x‖ < 1}. In addition, suppose the following two conditions
are satisfied:

for any continuous map r : B −→ S, Fr satisfies condition (D), (2.9)

0 /∈ F(S), (2.10)

here S= {x ∈ E : ‖x‖ = 1}. Then F has an invariant direction.

Proof. We know [7] that there exists a continuous retraction r : B→ S. Let G=Fr
and notice that G ∈ LS(B,E) from (2.9). Now we claim that there exists µ > 0
with

µF(S)∩B =∅. (2.11)

If this is true, then

µG
(
B
)∩B =∅, (2.12)

and so Theorem 2.6 (applied to G with U = B and C = E) guarantees that there
exist λ∈ (0,1) and x ∈ ∂B = S with λ−1µ−1x ∈Gx = Frx = Fx. The proof is fin-
ished. It remains to prove (2.11) but this is immediate since 0 /∈ F(S) (i.e., if
(2.11) was false, then for each n ∈ {1,2, . . .}, there exist yn ∈ F(S) and wn ∈ B
with yn = (1/n)wn). �

Remark 2.14. In Theorem 2.13, we can replace B by any open set U of E with
0∈U (here E is any Hausdorff locally convex topological vector space) provided
that ∂U is a retract of U , and in this case (2.10) is replaced by the following
condition: ∃µ > 0 with µF(∂U)∩U =∅.
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Remark 2.15. In Theorem 2.13, F ∈ LS1(B,E) could be replaced by F ∈ LS1(S,E).

Example 2.16. In Theorem 2.13, if condition (D) means that the map F : B →
K(E) is either (a) approximable, or (b) admissible in the sense of Gorniewicz,
then we know that (2.1), (2.2), (2.3), and (2.9) hold.

Example 2.17. In Theorem 2.13, if condition (D) means that the map F : B →
K(E) belongs to �κ

c (U,C), then we know that (2.1), (2.2), and (2.9) are satisfied.
It is possible to use Theorem 2.9 to obtain an analogue of Theorem 2.13 for the
subclass � of �κ

c . We leave the details to the reader.

In [7], the authors show that if E is an infinite-dimensional normed linear
space, then there exists a Lipschitzian retraction r : B→ S with Lipschitz constant
k0(E), here B and S are as in Theorem 2.13. In fact there exists a k0 with k0(E)≤
k0 for any space E (as described above). We refer the reader to [9, Chapter 21]
for a discussion of upper and lower bounds for k0(E), note in particular that
k0(E)≥ 3. For our next theorem, we let

r : B −→ S be a Lipschitzian retraction

with Lipschitz constant k0(E).
(2.13)

Theorem 2.18. Let E = (E,‖ · ‖) be an infinite-dimensional normed linear space,
C = E, U = B, F ∈ LS(B,E), and assume that (2.1), (2.2) (with i = 3), Theorem
2.10(i), (2.9), and (2.13) hold; here B = {x ∈ E : ‖x‖ < 1} and S= {x ∈ E : ‖x‖ =
1}. In addition, suppose the following two conditions are satisfied:

(a) F is countably k-set contractive with 0 ≤ k < 1/k0(E), here k0(E) is as in
(2.13);

(b) there exist µ > 0 with 0 < µ≤ 1, µF(S)∩B =∅.

Then F has an invariant direction.

Proof. Let G= Fr where r is as in (2.13). Notice that G∈ LS(B,E) and it is easy
to check that G is countably kk0(E)-set contractive. Thus, G ∈ LS3(B,E). Now
apply Theorem 2.10 to G. �

Remark 2.19. In Theorem 2.18, F ∈ LS1(B,E) could be replaced by F ∈ LS1(S,E).

Remark 2.20. Theorem 2.18 is the first invariant direction result, to our knowl-
edge, for countably contractive maps.

Remark 2.21. We note that the results in this section improve those in [8, 14, 16].

3. Hausdorff topological vector spaces

Throughout this section, E will be a Hausdorff topological vector space, C a
closed convex subset of E, U an open subset of C, and 0 ∈ U . This section also
presents Birkhoff-Kellogg type theorems, and in some cases the results in Section
2 will be improved.
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Definition 3.1. The map F ∈GA(U,C) if F : U → K(C) is upper semicontinuous
and satisfies condition (C), here U denotes the closure of U in C. We assume
condition (C) is

for any map F ∈GA
(
U,C

)
and any continuous single-valued

map µ : U → [0,1], µF satisfies condition (C).
(3.1)

Certainly if condition (C) means that the map F : U → K(C) is (a) Kakutani, (b)
acyclic, (c) O’Neill, (d) approximable, or (e) admissible (strongly) in the sense
of Gorniewicz, then (3.1) holds.

Fix i∈ {1,2,3}.
Definition 3.2. We say that F ∈ GAi(U,C) if F ∈ GA(U,C) satisfies (Hi), here
(Hi) is as in Section 2.

Definition 3.3. We say that F ∈ GAi
∂U(U,C) if F ∈ GAi(U,C) with x /∈ F(x) for

x ∈ ∂U , here ∂U denotes the boundary of U in C.

Definition 3.4. A map F ∈ GAi
∂U(U,C) is essential in GAi

∂U(U,C) if for every
G∈GAi

∂U(U,C) with G|∂U = F|∂U , there exists x ∈U with x ∈G(x).

Remark 3.5. Throughout this section, it is possible to replace F upper semicon-
tinuous in Definition 3.1 with F closed and taking compact sets into relatively
compact sets.

The following result was established in [4].

Theorem 3.6. Fix i∈ {1,2,3} and let E be a Hausdorff topological vector space, C
a closed convex subset of E, U an open subset of C, 0∈U , and assume (3.1) holds.
Suppose F ∈GAi(U,C) and assume the following condition is satisfied:

the zero map is essential in GAi
∂U

(
U,C

)
. (3.2)

Then either

(i) F has a fixed point in U ; or
(ii) there exist x ∈ ∂U and λ∈ (0,1) with x ∈ λFx.

Examples. (1) Suppose condition (C) in Definition 3.1 means F : U → AK(C),
here AK(C) denotes the family of nonempty, acyclic, compact subsets of C. Then
if i = 3 (in particular E is Fréchet), we know from [3, Theorem 2.2] and [13,
Theorem 2.6] that (3.2) (and of course (3.1)) is satisfied.

(2) Suppose condition (C) in Definition 3.1 means that F : U → K(C) is ap-
proximable. Then if i = 3, we know from [3, Theorem 2.2] and [13, Theorem
2.6] that (3.2) (and of course (3.1)) holds.

(3) Suppose condition (C) in Definition 3.1 means that F : U → K(C) is ad-
missible in the sense of Gorniewicz, E is a Fréchet space (P a defining system
of seminorms), U is convex, and C = E. Now [10] guarantees that (3.1) is true.
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Now we show that (3.2) is satisfied if i= 1,2, or 3 (in fact if i= 1, it is enough (see
Theorem 1.5) for E to be a metrizable locally convex topological vector space).

To see (3.2), let θ ∈ GAi
∂U(U,E) with θ|∂U = {0}. We must show that there

exists x ∈ U with x ∈ θ(x). Let µ be the Minkowski functional on U and let
r : E→U be given by

r(x)= x

max
{

1,µ(x)
} , for x ∈ E. (3.3)

Consider G= rθ. We know [10] that G is admissible in the sense of Gorniewicz,
and as a result G∈ GA(U,U). If i= 1, then G is compact whereas if i= 3, then
G is countable P-concentrative since r(A) ⊆ co(A∪{0}) for any subset A of E.
Now let i= 2 and let D ⊆U with D = co({0}∪G(D)). Then since r(A)⊆ co(A∪
{0}) for any subset A of E, we have

D ⊆ co
({0}∪ co

(
θ(D)∪{0}))= co

({0}∪ θ(D)
)
. (3.4)

Thus, D is compact since θ ∈GA2(U,E). Now [12, Theorem 2.1] and [13, Theo-
rem 2.2] (or alternatively Theorem 1.5, Theorem 1.6 if i= 1 or 2) guarantee that
there exists x ∈U with x ∈ G(x)= rθ(x). Thus, x = r(y) for some y ∈ θx, here
x ∈U =U ∪ ∂U (note C = E here). Suppose x ∈ ∂U . Then µ(x)= 1 and so

1= µ(x)= µ
(
r(y)

)= µ(y)
max

{
1,µ(y)

} , since r(y)= y

max
{

1,µ(y)
} . (3.5)

Thus, µ(y)≥ 1 and so x = r(y)= y/µ(y). This implies

x ∈ λθ(x)= {0} since θ|∂U = {0}; here λ= 1
µ(y)

. (3.6)

This is a contradiction since 0 ∈ U . As a result x ∈ U . This implies µ(x) < 1.
Consequently,

1 > µ(x)= µ
(
r(y)

)= µ(y)
max

{
1,µ(y)

} , (3.7)

and so µ(y) < 1. Thus r(y)= y, so x = y ∈ θ(x). As a result, (3.2) holds.
(4) Suppose condition (C) in Definition 3.1 means that F : U → K(C) is either

(a) Kakutani, (b) acyclic, (c) O’Neill, or (d) approximable and C is Schauder
admissible. If i= 1, then we know from [4] that (3.2) and also (3.1) hold.
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(5) Suppose condition (C) in Definition 3.1 means that F : U → K(C) is either
(a) Kakutani, (b) acyclic, (c) O’Neill, or (d) approximable and C is q-admissible
with the extra condition that

co(K) is compact for any compact subset K of E. (3.8)

If i= 2, then we know [4, 1] (we use Theorem 1.6) that (3.2) and also (3.1) hold.

For our next result, assume condition (C) is

for any map F ∈GA
(
U,C

)
and any λ∈R, λF satisfies condition (C). (3.9)

Theorem 3.7. Let E be a Hausdorff topological vector space, C a closed convex
subset of E, U an open subset of C, 0 ∈ U , and assume (3.1), (3.2) (with i = 1),
and (3.9) hold. Suppose F ∈GA1(U,C) and assume the following condition holds:

∃µ∈R, with µF
(
U
)∩U =∅. (3.10)

Then there exist λ∈ (0,1) and x ∈ ∂U with (λ−1µ−1)x ∈ Fx, here µ �= 0 is chosen
as in (3.10).

Proof. Apply Theorem 3.6 to µF (see the proof of Theorem 2.6). �

Example 3.8. In Theorem 3.7, if condition (C) means the map F : U → K(C)
is either (a) Kakutani, (b) acyclic, (c) O’Neill, or (d) approximable, and C is
Schauder admissible, then (3.1), (3.2), and (3.9) hold.

Example 3.9. In Theorem 3.7, if condition (C) means that the map F : U → K(C)
is admissible in the sense of Gorniewicz, E is a Fréchet space, U is convex, and
C = E, then (3.1), (3.2), and (3.9) hold.

For our next result, we assume (3.9) when |λ| ≤ 1.

Theorem 3.10. Fix i ∈ {2,3} and let E be a Hausdorff topological vector space,
C a closed convex subset of E, U an open subset of C, 0∈ U , F ∈ GAi(U,C), and
assume (3.1) and (3.2) hold. In addition, suppose the following conditions are sat-
isfied:

(a) for any map F ∈ GA(U,C) and any λ∈R with |λ| ≤ 1, λF satisfies condi-
tion (C),

(b) there exist µ∈R with |µ| ≤ 1, µF(U)∩U =∅,
(c) if i= 2, assume either µ > 0 in (b) or −F(D)= F(D) for any D ⊆U .

Then there exist λ∈ (0,1) and x ∈ ∂U with (λ−1µ−1)x ∈ Fx.

Proof. Apply Theorem 3.6 to µF (see the proof of Theorem 2.10). �
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Remark 3.11. In Theorem 3.10, (c) can be replaced by the more general condi-
tion

if i= 2 and if D ⊆U with D ⊆ co
({0}∪µF(D)

)
,

then D is compact, here µ is chosen as in (b)
(3.11)

(of course with this assumption, we do not need to assume |µ| ≤ 1 in (b) if i= 2).

Theorem 3.12. Let E = (E,‖ · ‖) be an infinite-dimensional normed linear space,
C = E, U = B, F ∈GA1(B,E), and assume (3.1), (3.2) (with i= 1), and (3.9) hold,
here B = {x ∈ E : ‖x‖ < 1}. In addition, suppose the following two conditions are
satisfied:

for any continuous map r : B −→ S, Fr satisfies condition (C), (3.12)

0 /∈ F(S), (3.13)

here S= {x ∈ E : ‖x‖ = 1}. Then F has an invariant direction.

Proof. Essentially the same reasoning as in Theorem 2.13 (except here we use
Theorem 3.7 instead of Theorem 2.6) establishes the result. �

Remark 3.13. In Theorem 3.12, we can replace B by any open set U of E with
0 ∈ U (here E is any Hausdorff topological vector space) provided that ∂U is a
retract of U , and in this case (3.13) is replaced by the following condition: ∃µ > 0
with µF(∂U)∩U =∅.

Remark 3.14. In Theorem 3.12, F ∈ GA1(B,E) could be replaced by F ∈ GA1

(S,E).

Example 3.15. In Theorem 3.12, if condition (C) means that the map F : B →
K(E) is either (a) Kakutani, (b) acyclic, (c) O’Neill, (d) approximable, or (e)
admissible (strongly) in the sense of Gorniewicz, then clearly (3.1), (3.2), (3.9),
and (3.12) hold.

We also have the following result when E is not necessarily infinite dimen-
sional.

Theorem 3.16. Let E = (E,‖ · ‖) be a normed linear space, C ⊆ E is a cone (i.e.,
closed, convex, invariant under multiplication by nonnegative real numbers and
C∩ (−C)= {0}), U = BC, F ∈ GA1(BC,C), and assume (3.1), (3.2) (with i= 1),
and (3.9) hold, here BC = {x ∈ C : ‖x‖ < 1} and BC = {x ∈ C : ‖x‖ ≤ 1}. In addi-
tion, suppose the following two conditions are satisfied:

(a) for any continuous map r : BC → SC, Fr satisfies condition (C);
(b) 0 /∈ F(SC),

here SC = {x ∈ C : ‖x‖ = 1}. Then F has an invariant direction.

Proof. Since C is a cone, it is well known that there exists a continuous retraction
r : BC → SC. Let G= Fr and follow Theorem 2.13. �
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Also, as in Section 2, if E is an infinite-dimensional normed linear space, then
there exists a Lipschitzian retraction r : B→ S with Lipschitz constant k0(E), here
B = {x ∈ E : ‖x‖ < 1} and S= {x ∈ E : ‖x‖ = 1}.
Theorem 3.17. Let E = (E,‖ · ‖) be an infinite-dimensional normed linear space,
C = E, U = B, F ∈GA(B,E), and assume (2.13), (3.1), (3.2) (with i= 3), (a), and
(3.12) hold, here B = {x ∈ E : ‖x‖ < 1} and S = {x ∈ E : ‖x‖ = 1}. In addition,
suppose the following two conditions are satisfied:

(a) F is countably k-set contractive with 0 ≤ k < 1/k0(E), here k0(E) is as in
(2.13);

(b) there exist µ > 0 with 0 < µ≤ 1, µF(S)∩B =∅.

Then F has an invariant direction.

Proof. Essentially the same reasoning as in Theorem 2.18 establishes the result.
�
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