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This paper contains a review of results concerning “generalized” attractors for a
large class of iterated function systems {wi : i∈ I} acting on a complete separa-
ble metric space. This generalization, which originates in the Banach contraction
principle, allows us to consider a new class of sets, which we call semi-attractors
(or semifractals). These sets have many interesting properties. Moreover, we give
some fixed-point results for Markov operators acting on the space of Borel mea-
sures, and we show some relations between semi-attractors and supports of in-
variant measures for such Markov operators. Finally, we also show some rela-
tions between multifunctions and transition functions appearing in the theory
of Markov operators.

1. Introduction

The fixed-point theory is not only a fruitful tool in diverse branches of mathe-
matics, but sometimes even a crucial part of the construction of a theory. This
paper deals with two such cases, namely, the theory of fractals defined by the
iterated functions systems (see [1, 2, 12]) and the theory of invariant measures
for Markov operators. In the sequel, instead of the term fractal, we rather prefer
to use the term attractor.

Attractors can be considered a generalization of fixed points of contracting
transformations. To explain this fact more precisely, assume that (X,ρ) is a com-
plete metric space and w : X → X is a strict contraction, that is, a Lipschitz func-
tion with a Lipschitz constant L < 1. According to the Banach principle, there is a
unique fixed point x0 of w such that ρ(wn(x),x0)→ 0 for every x ∈ X . Moreover,
the set {x0} is the unique fixed point of the transformation A→ w(A) which
maps the family of nonempty compact subsets of X into itself. If {w1, . . . ,wN} is
a finite family of strict contractions, we may consider the Barnsley-Hutchinson
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multifunction given by the formula

F(A)=
N⋃
i=1

wi(A). (1.1)

Again it can be proved that there is a unique compact setA0 such that F(A0)= A0

and that for every nonempty compact subset A of X the sequence of iterates
(Fn(A)) converges in the Hausdorff distance to A0. According to Barnsley and
Hutchinson (see [1, 9]), the set A0 is called the fractal generated by the iterated
function system {w1, . . . ,wN}.

Fractals are strongly related to Markov operators acting on the space of all
Borel measures. If the functions w1, . . . ,wN are given and p1, . . . , pN is a probabil-
ity vector (i.e., pi ≥ 0,

∑
pi = 1), then we may define the Markov operator

Pµ=
N∑
i=1

pi
(
µ◦w−1

i

)
for µ∈�1, (1.2)

where �1 denotes the family of all probability Borel measures on X . If all wi are
Lipschitzian (not necessarily contractions) with Lipschitz constants Li, then the
condition

∑
piLi < 1 implies the asymptotic stability of P. If all wi are strictly

contractive, then the support of the unique probability measure µ∗ invariant
with respect to P is equal to the fixed point of the Barnsley-Hutchinson multi-
function F defined by (1.1).

It is interesting that the class of sets which can be obtained as a support of
invariant measures of asymptotically stable Markov operators contains not only
attractors (fractals). This leads to the notion of semi-attractors (semifractals).
Roughly speaking, a semiattractor is the support of an invariant measure corre-
sponding to an asymptotically stable Markov operator generated by an iterated
function system with probabilities.

Semi-attractors, likewise attractors, can also be defined by topological meth-
ods without any use of probability theory. Namely, having the Barnsley-
Hutchinson multifunction, we may introduce in a natural way semi-attractors
which correspond in the classical setting to the notion of fractals. What is more,
this approach can be applied to a large class of multifunctions. In order to define
the convergence of a sequence of sets, we use the topological (Kuratowski) limits
instead of the traditional Hausdorff distance in the fractal theory.

It is worth emphasizing that multifunctions with closed values are strongly
related to transition functions appearing in the theory of Markov operators.
Namely, the support of a transition function is a closed-valued measurable mul-
tifunction. Reciprocally, given a closed-valued measurable multifunction F,
there exists a transition function such that its support is equal to F. Analogous
relationship can be established between lower semicontinuous multifunctions
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and Fellerian transition functions. Moreover, the support of an invariant mea-
sure for asymptotically stable Markov operators is equal to the semiattractor of
the corresponding multifunctions.

The paper is organized as follows. Section 2 contains some notions and defi-
nitions concerning measures on metric spaces and Markov operators acting on
the space of measures. In Section 3 we recall Barnsley’s and Hutchinson’s ap-
proach to the fractal theory. In Section 4 we give some sufficient conditions for
the existence of an invariant measure for Markov operators acting on a Polish
space. Moreover, this section contains also some results concerning asymptotic
stability of Markov operators. In Section 5 we extend Barnsley’s and Hutchin-
son’s approach to a more general class of iterated functions systems. This leads
to the definition of a new class of sets called semi-attractors (or semifractals).
In Section 6 we introduce the concept of semistability of multifunctions. In this
way we obtain a further generalization of notion of semifractals. Section 7 is de-
voted to the relation between multifunctions and transition functions. Finally,
in Section 8 we present some results concerning the numerical possibility of the
construction of semi-attractors.

2. Preliminaries

Let (X,ρ) be a metric space. By B(x,r) (resp., Bo(x,r)) we denote the closed
(resp., open) ball with center at x and radius r. For a subset A of X , clA, diamA,
and 1A stand for the closure of A, the diameter of A, and the characteristic func-
tion of A, respectively. By R we denote the set of all reals and by N the set of all
positive integers.

By � we denote the σ-algebra of Borel subsets of X and by � the family of
all finite Borel measures on X . By �1 we denote the space of all µ ∈� such
that µ(X)= 1 and by �s the space of all finite signed Borel measures on X . The
elements of �1 are called distributions.

Given µ∈�, we define the support of µ by the formula

suppµ= {x ∈ X : µ
(
B(x,r)

)
> 0 for every r > 0

}
. (2.1)

As usual, by B(X) we denote the space of all bounded Borel measurable func-
tions f : X → R and by C(X) the subspace of all continuous functions. Both
spaces are considered with the supremum norm.

For f ∈ B(X) and µ∈�s, we write

〈 f ,µ〉 =
∫
X
f (x)µ(dx). (2.2)

We admit that �s is endowed with the Fortet-Mourier norm given by

‖µ‖ = sup
{∣∣〈 f ,µ〉∣∣ : f ∈�

}
for µ∈�s, (2.3)
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where � is the set of all f ∈ C(X) such that | f (x)| ≤ 1 and | f (x)− f (y)| ≤
ρ(x, y) for x, y ∈ X (see [8]).

We say that a sequence (µn)⊂� converges weakly to a measure µ∈� if

lim
n→∞

〈
f ,µn

〉= 〈 f ,µ〉 for every f ∈ C(X). (2.4)

It is well known (see [4]) that the convergence in the Fortet-Mourier norm is
equivalent to the weak convergence.

An operator P : �→� is called a Markov operator if

P
(
λ1µ1 + λ2µ2

)= λ1Pµ1 + λ2Pµ2 for λ1,λ2 ∈R+, µ1,µ2 ∈�,

Pµ(X)= µ(X) for µ∈�.
(2.5)

The theory of Markov operators started in 1906 when Markov showed that
the asymptotic properties of some stochastic processes can be studied using
stochastic matrices [17]. Such matrices define positive linear operators on Rn.
Markov’s ideas were generalized in many directions. In particular, Feller devel-
oped the theory of the Markov operators acting on Borel measures defined on
some topological spaces. Hopf proposed to study Markov operators on L1 spaces.
Some historical remarks and a vast literature can be found in the book of Num-
melin [19] (see also [3, 6, 7, 12, 20]).

A Markov operator P is called nonexpansive if

∥∥Pµ1−Pµ2
∥∥≤ ∥∥µ1−µ2

∥∥ for µ1,µ2 ∈�1. (2.6)

A Markov operator P is called a Markov-Feller operator if there is an operator
U : B(X)→ B(X) such that

(i) 〈U f ,µ〉 = 〈 f ,Pµ〉 for f ∈ B(X) and µ∈�;
(ii) U f ∈ C(X) for f ∈ C(X).

The operator U is called dual to P.
It can be proved that every nonexpansive Markov operator is a Markov-Feller

operator.
A measure µ is called invariant (or stationary) with respect to P if Pµ = µ.

A Markov operator P is called asymptotically stable if there exists a stationary
measure µ∗ ∈�1 such that

lim
n→∞P

nµ= µ∗ for every µ∈�1. (2.7)

Obviously, the measure µ∗ satisfying the condition above is unique.
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3. Barnsley’s and Hutchinson’s approach to the fractal theory

Let (X,ρ) be a complete separable metric space.
An iterated function system (shortly IFS) is given by a family of continuous

functions

wi : X −→ X, i∈ I. (3.1)

If, in addition, there is given a family of continuous functions

pi : X −→ [0,1], i∈ I (3.2)

satisfying

∑
i∈I

pi(x)= 1 for every x ∈ X, (3.3)

then the family {(wi, pi); i∈ I} is called an IFS with probabilities. Here, for sim-
plicity we assume that the index set I is finite. Note that only some of these results
remain true for the case of the countable index set as well.

Having an IFS {wi : i∈ I}, we define the corresponding Barnsley-Hutchinson
multifunction F by

F(x)= {wi(x) : i∈ I
}

for x ∈ X, (3.4)

and having an IFS with probabilities {(wi, pi); i∈ I}, we define the Markov op-
erator P acting on measures by

Pµ(A)=
∑
i∈I

∫
X

1A
(
wi(x)

)
pi(x)µ(dx) for µ∈�, A∈�. (3.5)

It is easy to verify that P is a Markov-Feller operator and its dual U is given by

U f (x)=
∑
i∈I

pi(x) f
(
wi(x)

)
. (3.6)

A set A0 such that F(A0)= A0 is called invariant with respect to the IFS {wi :
i∈ I}. If, in addition, for every nonempty compact subset A of X , the sequence
(Fn(A)) converges in the Hausdorff distance toA0, the setA0 is called an attractor
(or fractal) corresponding to the IFS {wi : i∈ I}.

Assume that I is finite. Moreover, assume that for every i ∈ I , the function
wi is Lipschitzian with the Lipschitz constant Li and the function pi is constant.
The following facts are well known (see [1, 12]).

Fact 3.1. If Li < 1 for i∈ I , then the IFS {wi : i∈ I} is asymptotically stable (on
sets), the operator P given by (3.5) is asymptotically stable (on measures), and

A0 = suppµ∗, (3.7)
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where A0 is the attractor corresponding to the IFS {wi : i ∈ I} and µ∗ is the
invariant measure with respect to P.

Fact 3.2. If

∑
i∈I

piLi < 1, (3.8)

then an IFS with probabilities {(wi, pi) : i∈ I} is asymptotically stable.

The following natural questions arise. What are the geometric properties of
the set suppµ∗? Can we define this set using only the transformations wi also
in the case when some constants Li ≥ 1? Note that the assumption Li < 1, i∈ I ,
is quite restrictive and excludes such natural transformations as shifts and rota-
tions. Can we extend these results to a more general family of maps wi or, di-
rectly, to some classes of multifunctions. The positive answers to these questions
are given in the next sections.

4. Existence of an invariant measure for Markov operators

In this section, we give some sufficient conditions for the existence of an invari-
ant measure for Markov operators defined on a Polish space X . Similar results
for the case of compact spaces and locally compact spaces can be found in the
literature, starting from the classical book by Foguel [7]. In the case of a com-
pact space, the proof of existence goes as follows: first, we construct a positive,
invariant functional defined on the space of all continuous and bounded func-
tions f : X →R, and then using the Riesz representation theorem, we define an
invariant measure (see [3, 6, 19]). The case of locally compact spaces requires
some caution. The first existence results were established by Lasota and Yorke
(see [16]) by using the concept of nonexpansiveness and lower bound technique.
When X is a Polish space, the ideas above break down, since a positive functional
may not correspond to a measure. General existence theorems for Markov oper-
ators on Polish spaces have been established quite recently (see [21, 22, 23, 24]).
The proofs of these results are based on the concept of tightness and suitable
concentration properties of Markov operators. Here we recall some of them.

Given a set A⊂ X and a number r > 0, we denote by �o(A,r) (resp., �(A,r))
the open (resp., closed) r-neighbourhood of the set A, that is,

�o(A,r)= {x ∈ X : ρ(x,A) < r
}
, �(A,r)= {x ∈ X : ρ(x,A)≤ r

}
, (4.1)

where

ρ(x,A)= inf
{
ρ(x, y) : y ∈A

}
. (4.2)

We denote by �ε, ε > 0, the family of all closed sets C for which there exists a
finite set {x1,x2, . . . ,xn} ⊂ X (ε-net) such that C ⊂⋃n

i=1B(xi,ε).
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Let A∈�. We say that a measure µ∈� is concentrated on A if µ(X \A)= 0.
By �A

1 we denote the set of all distributions concentrated on A.
A sequence of distributions (µn) (µn ∈�1) is called tight if for every ε > 0

there exists a compact set K ⊂ X such that µn(K)≥ 1− ε for every n∈N.
It is well known (see [4, 6]) that every tight sequence of distributions contains

a weakly convergent subsequence.
We say that a Markov operator P : � →� is tight if for every µ ∈�1 the

sequence of iterates (Pnµ) is tight.
An operator P is called globally concentrating if for every ε > 0 and every Borel

bounded set A, there exist a Borel bounded set B and a number n0 ∈N such that

Pnµ(B)≥ 1− ε for n≥ n0, µ∈�A
1 . (4.3)

An operator P is called locally concentrating if for every ε > 0, there is α > 0
such that for every Borel bounded set A, there exist a set B ∈� with diamB ≤ ε
and n0 ∈N satisfying

Pn0µ(B) > α for µ∈�A
1 . (4.4)

Remark 4.1. There exists a Markov operator which is locally concentrating but
not globally concentrating.

An operator P is called concentrating if for every ε > 0, there exist a set B ∈�
with diamB ≤ ε and a number α > 0 such that

liminf
n→∞ Pnµ(B) > α for µ∈�1. (4.5)

An operator P is called semiconcentrating if for every ε > 0, there exist B ∈�ε

and α > 0 such that condition (4.5) holds.

By �+
ε we denote the family of all B ∈�ε such that

inf
µ∈�1

liminf
n→∞ Pnµ(B) > 0. (4.6)

Remark 4.2. It is obvious that a concentrating Markov operator is semiconcen-
trating.

Theorem 4.3. Let P be a Markov operator. Assume that P is continuous in the
weak topology. If P is tight, then P admits an invariant measure µ∗ ∈�1.

Proof. Fix µ∈�1 and set

µ̄n = µ+Pµ+ ···+Pn−1µ

n
for n∈N. (4.7)
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Since P is tight, the sequence of distributions (µ̄n) is tight. From the Prokhorov
theorem (see [4, 6, 19]), it follows that there exists a subsequence (µ̄nk ) of (µ̄n)
which converges weakly to some distribution µ̄. Since P is continuous, we obtain
Pµ̄nk → Pµ̄ in the weak topology. From (4.7) it follows that ‖Pµ̄nk − µ̄nk‖→ 0 and
consequently Pµ̄= µ̄. The proof is completed. �

We also need the following known facts concerning tightness.

Lemma 4.4. Let (µn) be a sequence of distributions such that for every ε > 0, there
exists a set C ∈�ε satisfying µn(C)≥ 1− ε, n∈N. Then (µn) is tight.

The proof can be found in [22].

Lemma 4.5. Every sequence of distributions (µn) satisfying the Cauchy condition is
tight.

Sketch of the proof. Since (µn) satisfies the Cauchy condition, for every ε > 0, we
may choose n0 ∈N such that

∥∥µp−µq
∥∥≤ ε2

4
for p,q ≥ n0. (4.8)

Further, by the Ulam theorem there exists a compact set K ⊂ X such that

µn(K)≥ 1− ε

2
for n= 1, . . . ,n0. (4.9)

By (4.8), [22, Lemma 3.1], and (4.9), we have

µn

(
�
(
K,

ε

2

))
≥ µn0 (K)− ε

2
for n≥ n0. (4.10)

Observe that �(K,ε/2) ∈ �ε. An application of Lemma 4.4 finishes the proof.
�

Let a Markov operator P be fixed. For A∈� and η ∈ [0,1] we set

�
A,η
1 = {µ∈�1 : Pnµ(A)≥ 1−η for n∈N

}
. (4.11)

Now we define a function ϕ : �× [0,1]→ [0,2]∪{−∞} by the formula

ϕ(A,η)= limsup
n→∞

sup
{∥∥Pnµ1−Pnµ2

∥∥ : µ1,µ2 ∈�
A,η
1

}
. (4.12)

As usual, we admit that the supremum of an empty set is equal to −∞.
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Lemma 4.6. Let P be a nonexpansive and locally concentrating Markov operator
and let η ∈ (0,1/2). Then, for every Borel bounded set A,

ϕ
(
A,η

(
1− α

2

))
≤
(

1− α

2

)
ϕ(A,η) +

αε

2
, (4.13)

where ε > 0 is arbitrary and α > 0 corresponds to ε according to the locally concen-
trating property.

The proof is rather technical and long, and can be found in [22].

Theorem 4.7. Let P be a nonexpansive and locally concentrating Markov operator.
If for every µ∈�1 and every ε > 0 there is a Borel bounded set A⊂ X such that

liminf
n→∞ Pnµ(A)≥ 1− ε, (4.14)

then P admits an invariant measure µ∗ ∈�1.

Sketch of the proof. By virtue of Lemma 4.5 and Theorem 4.3, it is sufficient to
show that for every µ ∈�1 the sequence (Pnµ) satisfies the Cauchy condition.
Fix ε > 0 and µ ∈�1. Let α > 0 correspond to ε/2 according to the locally con-
centrating property. Let k ∈N be such that 4(1−α/2)k < ε. By hypothesis we can
choose a Borel bounded set A and a number n̄ such that

Pnµ(A)≥ 1− (1−α/2)k

3
for n≥ n̄. (4.15)

Using Lemma 4.6 and an induction argument, we can prove that

ϕ
(
A,

(1−α/2)k

3

)
< ε. (4.16)

Since Pmµ, Pnµ∈�A,(1−α/2)k/3
1 for m,n∈N, from (4.16) it follows that there ex-

ists n0 ∈N (n0 ≥ n̄) such that

∥∥Pn0Pnµ−Pn0Pmµ
∥∥ < ε. (4.17)

Consequently,

∥∥Ppµ−Pqµ
∥∥ < ε for p,q ≥ n0, (4.18)

which completes the proof. �

We also need the following lemma, proved in [23].
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Lemma 4.8. Let P be a nonexpansive Markov operator and let ε > 0. Assume that
A∈� is such that diamA≤ ε2/16. Moreover, assume that there exists µ∈�1 such
that

liminf
n→∞ Pnµ(A) > 0. (4.19)

Then, there exists C ∈�ε such that

Pnν(C)≥ 1− ε

2
∀n∈N, ν∈�A

1 . (4.20)

Theorem 4.9. If P is a nonexpansive and concentrating Markov operator, then P
admits an invariant measure µ∗ ∈�1.

Sketch of the proof. By virtue of Theorem 4.3 and Lemma 4.4, it is sufficient to
show that for every ε > 0 and µ ∈�1, there exists C ∈ �ε such that Pnµ(C) ≥
1− ε for n∈N. Fix ε > 0 and set ε̃ = ε2/16. Let α > 0 and A∈� correspond to ε̃
according to the concentrating property. By Lemma 4.4 there exists C ∈�ε such
that

Pnν(C)≥ 1− ε

2
∀n∈N, ν∈�A

1 . (4.21)

Let µ∈�1. Using an induction argument, we define a sequence of integers (nk)
and two sequences of distributions (µk), (νk) in the following way. If k = 0, we
set n0 = 0 and µ0 = ν0 = µ. If k ≥ 1 and nk−1, µk−1, νk−1 are given, we choose,
according to the concentrating property, an integer nk such that

Pnkµk−1(A)≥ α

2
. (4.22)

Now we define

νk(B)= Pnkµk−1(B∩A)
Pnkµk−1(A)

for B ∈�, (4.23)

µk(B)= 1
1−α/2

(
Pnkµk−1(B)− α

2
νk(B)

)
for B ∈�. (4.24)

Observe that νk ∈�A
1 . Using (4.24), it is easy to verify by an induction argument

that

Pn1+···+nkµ= α

2
Pn2+···+nkν1 +

α

2

(
1− α

2

)
Pn3+···+nkν2

+ ···+
α

2

(
1− α

2

)k−1

νk +
(

1− α

2

)k
µk.

(4.25)
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Let k ∈N be such that

(
1−

(
1− α

2

)k)(
1− ε

2

)
≥ 1− ε. (4.26)

Since νi ∈�A
1 for i= 1,2, . . . ,k, from (4.25) and (4.21) it follows that

Pnµ(C)≥ α

2
Pn−n1 ν1(C) +

α

2

(
1− α

2

)
Pn−n1−n2 ν2(C)

+ ···+
α

2

(
1− α

2

)k−1

Pn−n1−···−nkνk(C)

≥
(

1−
(

1− α

2

)k)(
1− ε

2

)
≥ 1− ε

(4.27)

for n ≥ n1 + ···+ nk. By the Ulam theorem, we can find a compact set K ⊂ X
such that

Pnµ(K ∪C)≥ 1− ε for n∈N. (4.28)

Since K ∪C ∈�ε, Lemma 4.4 and Theorem 4.3 show that P admits an invariant
measure. This completes the proof. �

The following technical lemma is crucial for further consideration.

Lemma 4.10. Let P be a nonexpansive and semiconcentrating Markov operator.
Then for every ε > 0, there exist a finite sequence of Borel sets A1, . . . ,Ak with
diamAi ≤ ε, i= 1, . . . ,k and a measure µ0 ∈�1 such that

k⋃
i=1

Ai ∈�+
ε , liminf

n→∞ Pnµ0
(
Ai
)
> 0 for i= 1, . . . ,k. (4.29)

The proof can be found in [23].

Theorem 4.11. Every nonexpansive and semiconcentrating Markov operator P
admits an invariant measure µ∗ ∈�1.

Sketch of the proof. Fix ε > 0 and set ε̃ = ε2/16. By virtue of Lemma 4.10, there
exist a sequence of Borel sets (A1, . . . ,Ak) with diamAi ≤ ε̃ for i= 1, . . . ,k, and a
measure µ0 ∈�1 such that the set

⋃k
i=1Ai ∈�+

ε̃ and

liminf
n→∞ Pnµ0

(
Ai
)
> 0 for i= 1, . . . ,k. (4.30)
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By Lemma 4.8, for every i∈ {1, . . . ,k} there exists a set Ci ∈�ε such that

Pnν
(
Ci
)≥ 1− ε

2
for n∈N, ν∈�Ai

1 , i= 1, . . . ,k. (4.31)

Set C =⋃k
i=1Ci and observe that C ∈�ε. Moreover, we have

Pnν(C)≥ 1− ε

2
for n∈N, ν∈

k⋃
i=1

�Ai
1 . (4.32)

Since
⋃k

i=1Ai ∈�+
ε̃ , it follows that there exists α̃ > 0 such that

liminf
n→∞ Pnµ

( k⋃
i=1

Ai

)
> α̃ for µ∈�1. (4.33)

Define

η = sup
{
γ ≥ 0 : liminf

n→∞ Pnµ(C)≥ γ ∀µ∈�1

}
. (4.34)

We claim that η ≥ 1− ε/2. To see this, suppose for a contradiction that η <
1− ε/2. Set α= α̃/k. Clearly,

η >
η

1−α
− α

1−α

(
1− ε

2

)
. (4.35)

Choose γ > 0 such that

η > γ >
η

1−α
− α

1−α

(
1− ε

2

)
. (4.36)

By the definition of η we have

liminf
n→∞ Pnµ(C)≥ γ for µ∈�1. (4.37)

Fix µ ∈ �1. Analysis similar to that in the proof of Theorem 4.9 (see (4.25))

shows that there exist n0 ∈N, µ̃∈�1, and ν∈⋃k
i=1 �Ai

1 such that

Pn0µ= (1−α)µ̃+αν. (4.38)

By (4.32), (4.37), the linearity of P, and the choice of γ we have

liminf
n→∞ Pn0+nµ(C)≥ (1−α) liminf

n→∞ Pnµ̃(C) +α liminf
n→∞ Pnν(C)

≥ (1−α)γ+α
(

1− ε

2

)
> η.

(4.39)
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Since µ∈�1 is arbitrary, we have

liminf
n→∞ Pnµ(C)≥ (1−α)γ+α

(
1− ε

2

)
> η for µ∈�1, (4.40)

which contradicts the definition of η. Finally, we can easily check that for every
µ ∈�1 the sequence (Pnµ) is tight. An application of Theorem 4.3 completes
the proof. �

Theorem 4.12. Every nonexpansive, locally and globally concentrating Markov
operator P is asymptotically stable.

Sketch of the proof. First, we check that the assumptions of Theorem 4.7 are sat-
isfied. Indeed, let µ ∈ �1 and ε > 0. Let A be a Borel bounded set such that
µ(A) > 1− ε/2. Define

µ̃(B)= µ(B∩A)
µ(A)

for B ∈�. (4.41)

Clearly, µ̃ ∈�A
1 and µ ≥ (1− ε/2)µ̃. Since P satisfies the globally concentrating

property, there exists a Borel bounded set B such that

liminf
n→∞ Pnµ̃(B)≥ 1− ε

2
. (4.42)

Consequently,

liminf
n→∞ Pnµ(B)≥

(
1− ε

2

)(
1− ε

2

)
> 1− ε, (4.43)

which proves that the hypothesis of Theorem 4.7 holds.
Now we claim that

liminf
n→∞

∥∥Pnµ1−Pnµ2
∥∥= 0 ∀µ1,µ2 ∈�1. (4.44)

Indeed, fix ε > 0 and µ1,µ2 ∈�1. Let α > 0 correspond to ε/2 according to the
locally concentrating property. Let k ∈ N be such that 4(1− α/2)k < ε and let A
be a Borel bounded set such that

Pnµi(A)≥ 1− (1−α/2)k

3
for n∈N, i= 1,2. (4.45)

Similarly as in the proof of Theorem 4.7, we obtain

ϕ

(
A,

(1−α/2)k

3

)
< ε. (4.46)
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From this and the definition of ϕ(A,η), it follows that there exists n0 ∈ N such
that

∥∥Pn0µ1−Pn0µ2
∥∥ < ε. (4.47)

Since P is nonexpansive and ε > 0 is arbitrary, the last condition implies (4.44).
The proof is completed. �

The details of the proofs of Theorems 4.9, 4.11, and 4.12 can be found in [24].
In the same spirit, we can prove the following theorem.

Theorem 4.13. Every nonexpansive and concentrating Markov operator P is as-
ymptotically stable.

5. Semi-attractors given by IFSs

In this section, we develop the Barnsley-Hutchinson approach described in
Section 3. In this purpose, we need the concept of Kuratowski topological limits.

Let (An) be a sequence of subsets of a metric space X . The lower bound LiAn

and the upper bound LsAn are defined by the following conditions. A point x
belongs to LiAn if for every ε > 0 there is an integer n0 such that An∩B(x,ε) �=
∅ for n ≥ n0. A point x belongs to LsAn if for every ε > 0 the condition An ∩
B(x,ε) �= ∅ is satisfied for infinitely many n. If LiAn = LsAn, we say that the
sequence (An) is topologically convergent and we denote this common limit by
LtAn. It is called the topological (or Kuratowski) limit of the sequence (An).

Observe that LiAn and LsAn are always closed sets. The basic properties of
topological limits can be found in [10]. Here we recall that LiAn = Li(clAn),
LsAn = Ls(clAn), and LiAn ⊂ B provided An ⊂ B for sufficiently large n and B
is closed. Moreover, every increasing sequence of sets (An) is topologically con-
vergent and LtAn = cl

⋃∞
n=1An. In the case when X is a compact space, LtAn = A

if and only if the sequence (An) converges to A in the sense of the Hausdorff

distance.
We say that an IFS {wi : i∈ I} is regular if there is a nonempty subset I0 of I

such that an IFS {wi : i ∈ I0} is asymptotically stable. The attractor of the sub-
system {wi : i∈ I0} is called a nucleus of the system {wi : i∈ I}.
Proposition 5.1. Let {wi : i∈ I} be a regular IFS and let A0 be a nucleus of this
system. Let F be the multifunction given by (3.4). Then, the set

A∗
(
A0
)= cl

∞⋃
n=1

Fn
(
A0
)

(5.1)

has the following properties:

(i) A∗(A0)= LtFn(A0);
(ii) F(A∗(A0))= A∗(A0);

(iii) A∗(A0)⊂A for every nonempty closed subset A of X such that F(A)⊂ A.
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Proof. Since A0 ⊂ F(A0), the sequence (Fn(A0)) is increasing, whence (i) fol-
lows. Using the relation cl(wi(clA)) = clwi(A), we can easily verify (ii). Finally,
let B be a bounded nonempty subset of A and F0 the Barnsley-Hutchinson mul-
tifunction corresponding to {wi : i ∈ I0}. We have Fn

0 (B) ⊂ Fn(B) ⊂ Fn(A) ⊂ A.
It follows that A0 = LtFn

0 (B)⊂A. Consequently, Fn(A0)⊂A, n∈N, whence (iii)
follows. �

From Proposition 5.1, it follows that for a given regular IFS {wi : i ∈ I}, the
set A∗(A0) does not depend on the choice of the nucleus A0.

The set

A∗ =A∗
(
A0
)= LtFn

(
A0
)
, (5.2)

where A0 is an arbitrary nucleus of an IFS {wi : i ∈ I}, is called a semiattractor
(or semifractal) corresponding to the regular IFS {wi : i∈ I}.

Using Proposition 5.1, we can prove the following theorem.

Theorem 5.2. Let {wi : i ∈ I} be a regular IFS and let A∗ be the corresponding
semifractal given by (5.2).Then,

(i) A∗ is the smallest nonempty closed set such that clF(A∗)=A∗;
(ii) LtFn(A)= A∗ for every A⊂ A∗, A �= ∅.

To establish the relation between semi-attractors and the support of invariant
measures, we need some properties of a weakly convergent sequence of mea-
sures.

Let a sequence (µn)⊂� and a measure µ∈� be given. Then, the following
conditions are equivalent:

(1) (µn) weakly converges to µ;
(2) limsupn→∞µn(A)≤ µ(A) for every closed subset A of X ;
(3) liminfn→∞µn(A)≥ µ(A) for every open subset A of X .

The equivalence above is known as the Alexandrov theorem. This theorem
allows us to prove the following property of supports.

Theorem 5.3. Assume that a sequence (µn)⊂� weakly converges to µ. Then,

suppµ⊂ Lisuppµn. (5.3)

A sequence of measures (µn) ⊂� is called condensed at a point x ∈ X if for
every ε > 0 there is η > 0 such that

inf
{
µn
(
Bo(x,ε)

)
: n∈Nη

}
> 0, (5.4)

where

Nη =
{
n∈N : Bo(x,η)∩ suppµn �= ∅

}
. (5.5)
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We say that a sequence (µn) is condensed on X if it is condensed at every point
x ∈ X .

Theorem 5.4. Assume that a sequence of measures (µn)⊂� weakly converges to
a measure µ∈�. Then, the following conditions are equivalent:

(i) (µn) is condensed on X ;
(ii) Ltsuppµn = suppµ.

Sketch of the proof. (i)⇒(ii). In the presence of Theorem 5.3, it is sufficient to
verify that Lssuppµn ⊂ suppµ. For a contradiction, suppose that x ∈ Lssuppµn \
suppµ and let ε > 0 be such that µ(B(x,ε)) = 0. Since the sequence (µn) is con-
densed on X , there exist η > 0 and α > 0 such that suppµn ∩ Bo(x,η) �= ∅ and
µn(B(x,ε))≥ α. The Alexandrov theorem furnishes a contradiction.

To prove (ii)⇒(i), fix x ∈ X and ε > 0. If x ∈ suppµ, then µ(Bo(x,ε)) > 0 and
by the Alexandrov theorem µn(Bo(x,ε)) > µ(Bo(x,ε))/2 for n sufficiently large.
This implies that (µn) is condensed at x. If x /∈ suppµ, hence x /∈ Lssuppµ. Thus
there exist η > 0 and n0 ∈ N such that suppµn∩Bo(x,η)=∅ for n≥ n0, which
again implies that (µn) is condensed at x. �

Theorem 5.5. Let X be a Polish space. Assume that an IFS with probabilities
{(wi, pi) : i ∈ I} is asymptotically stable and that the IFS {wi : i ∈ I} is regular.
Then,

A∗ = suppµ∗, (5.6)

where A∗ is the semiattractor of {wi : i∈ I} and µ∗ is the invariant measure with
respect to the IFS {(wi, pi) : i∈ I}.
Proof. Let u ∈ A∗ and let δu be a δ-Dirac measure supported at u. Simple cal-
culation shows that suppPnδu = Fn(u), n∈N. Since (Pnδu) weakly converges to
µ∗, by Theorems 5.3 and 5.2 we have

suppµ∗ ⊂ LiFn(u)= LtFn(u)=A∗. (5.7)

Now let u∈ suppµ∗. Clearly, u∈A∗ and by Theorem 5.2 we have

LtFn(u)= A∗. (5.8)

On the other hand, since F(suppµ∗) ⊂ suppµ∗, hence F(u) ⊂ suppµ∗. Conse-
quently, LsFn(u)⊂ suppµ∗. From this and the first inclusion in (5.7), we have

LtFn(u)= suppµ∗. (5.9)

From (5.8) and (5.9), the statement of Theorem 5.5 follows. �
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Corollary 5.6. Let an IFS {(wi, pi) : i∈ I} satisfy condition (3.8). Clearly, the set
I0 of all i∈ I such that Li < 1 is nonempty and the IFS {wi : i∈ I0} is asymptotically
stable. Consequently, the IFS {wi : i∈ I} is regular. According to Theorem 5.5, the
support of the invariant measure with respect to the IFS {(wi, pi) : i∈ I} is equal to
the semiattractor of {wi : i∈ I}.

Theorem 5.5 makes in evidence the importance of the results concerning as-
ymptotic stability of IFSs with probabilities. Now we give an example of such
results.

Theorem 5.7. Let (X,ρ) be a Polish space. Assume that the transformations wi :
X → X , i ∈ I , are Lipschitzian on every bounded subset of X . Moreover, assume
that there is i∈ I such that the function wi is a strict contraction. Then, there exist
continuous functions pi : X → (0,1), i∈ I , satisfying

∑
i∈I pi(x)= 1 for x ∈ X and

such that the IFS with probabilities {(wi, pi) : i∈ I} is asymptotically stable.

Proof. The proof, based on Theorem 4.12, is rather technical and so it is omitted
here. �

For further results concerning the semi-attractors given by IFSs and detailed
proofs of the theorem above, see [13, 14, 15].

6. Semi-attractors of multifunctions

Let X be a metric space. A multifunction F : X → X is a subset of X ×X such that
for every x ∈ X the set F(x)= {y : (x, y)∈ F} is nonempty. For A⊂ X we define
F−(A)= {x ∈ X : F(x)∩A �= ∅}.

A multifunction F is called Borel measurable or simply measurable (resp.,
lower semicontinuous or shortly l.s.c.) if the set F−(A) is Borel (resp., open) for
every open subset A of X .

For the convenience of the reader, we recall some well-known properties of
lower semicontinuous multifunctions.

Proposition 6.1. The following conditions are equivalent:

(i) F is l.s.c.;
(ii) F(clA)⊂ clF(A) for every A⊂ X ;

(iii) for every sequence (xn)⊂ X ,

limxn = x =⇒ F(x)⊂ LiF
(
xn
)
; (6.1)

(iv) for every sequence (xn)⊂ X ,

limxn = x =⇒ F(x)⊂ LsF
(
xn
)
. (6.2)

A set A ⊂ X is called subinvariant (resp., invariant) with respect to a multi-
function F if F(A)⊂A (resp., F(A)= A).
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We say that a multifunction F is asymptotically stable if there is a closed subset
A0 of X such that

(i) clF(A0)= A0;
(ii) LtFn(A)= A0 for every nonempty bounded subset A of X .

Given a multifunction F : X → X , consider the set

C =
⋂
x∈X

LiFn(x). (6.3)

If the set C is nonempty, then the multifunction F is called asymptotically
semistable and the set C is called the semiattractor of F.

Theorem 6.2. Assume that F is an asymptotically stable l.s.c. multifunction with
the semiattractor C. Then, the following conditions hold:

(i) C ⊂ LiFn(A) for every A⊂ X , A �= ∅;
(ii) clF(C)= C;

(iii) LtFn(A)= C for every A⊂ C, A �= ∅;
(iv) C ⊂A for every nonempty closed subset A of X such that F(A)⊂A.

Proof. Condition (i) is obvious. From (6.3) it follows that

F(C)⊂
⋂
x∈X

F
(

LiFn(x)
)
. (6.4)

Using Proposition 6.1 and the semicontinuity of F, it is easy to verify that

F
(

LiFn(x)
)⊂ LiFn(x). (6.5)

From the last inclusion it follows that

F(C)⊂ C. (6.6)

Since C is a closed set, we also have clF(C)⊂ C. To prove the opposite inclusion,
observe that Fn(C) ⊂ F(C) for n ≥ 1, which, in turn, implies that LiFn(C) ⊂
clF(C). Since C ⊂ LiFn(C), this completes the proof of (ii).

To verify (iii), observe that (6.6) implies that LsFn(C)⊂ C. Thus, for an arbi-
trary nonempty set A⊂ C we have

C ⊂ LiFn(A)⊂ LsFn(A)⊂ LsFn(C)⊂ C. (6.7)

Condition (iv) can be verified as follows. The inclusion F(A)⊂ A implies that
Fn(A)⊂ A for n∈N. Consequently,

C ⊂ LiFn(A)⊂ A. (6.8)

�
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Theorem 6.3. Let F : X → X be a l.s.c. multifunction. Assume that there exists
a l.s.c. and asymptotically semistable multifunction F0 : X → Y such that F0(x) ⊂
F(x), x ∈ X . Then, F is asymptotically semistable and its semiattractor C is given
by the formula

C = LtFn
(
C0
)= cl

∞⋃
n=1

Fn
(
C0
)
, (6.9)

where C0 is the semiattractor of F0.

Proof. Since C0 ⊂ C, the multifunction F is asymptotically semistable. The first
equality in (6.9) follows from condition (iii) of Theorem 6.2 with A= C0. Now
observe that Fn(C0)⊂ C for n∈N. Hence

cl
∞⋃
n=1

Fn
(
C0
)⊂ C. (6.10)

Using this inclusion and the first equality in (6.9), we obtain the second equality
of (6.9). The proof is completed. �

7. Markov multifunctions

A mapping π : X ×�→ [0,1] is called a transition function if π(x,·) is a prob-
ability measure for every x ∈ X and π(·,A) is a measurable function for every
A∈�.

We say that a transition function π : X ×�→ [0,1] is Fellerian if the func-
tion x → π(x,·) from X into �1 (endowed with the Fortet-Mourier norm) is
continuous.

Given a transition function π : X ×� → [0,1], the corresponding Markov
operator P, its dual U , and the Markov set function Γ are given by

Pµ(A)=
∫
X
π(x,A)µ(dx) for A∈�,

U f (x)=
∫
X
f (y)π(x,dy) for f ∈ B(X),

Γ(x)= suppπ(x,·).

(7.1)

The function Γ is also called the Markov multifunction generated by π, or shortly
the support of π (see [14]). It is easy to see that Γ is closed valued and measurable.
Vice versa we have the following theorem.

Theorem 7.1. Let F : X → X be a measurable, closed-valued multifunction. Then,
there exists a transition function π : X ×�→ [0,1] such that F is the support of π.
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Proof. According to the Kuratowski-Ryll Nardzewski theorem (see [11]), there
exists a sequence ( fn) of measurable functions fn : X → X such that

F(x)= cl
{
fn(x) : n∈N

}
for x ∈ X. (7.2)

We define the function π : X ×�→ [0,1] by

π(x,A)=
∞∑
n=1

pnδ fn(x)(A), (7.3)

where (pn) is a sequence of positive numbers such that
∑∞

n=1 pn = 1 and δu stands
for the δ-Dirac measure supported at u. A simple calculation shows that π is a
transition function and that F is the support of π. �

Theorem 7.2. Assume that π : X ×�→ [0,1] is a Fellerian transition function.
Then, the corresponding Markov multifunction Γ is l.s.c.

Proof. Fix an x ∈ X and consider a sequence (xn) ⊂ X converging to x. Since π
is Fellerian, the corresponding sequence of measures (π(xn,·)) converges weakly
to the measure π(x,·). By virtue of Theorem 5.3, we have Γ(x)⊂ LiΓ(xn). Thus
the statement of Theorem 7.2 follows from Proposition 6.1. �

Theorem 7.3. Assume that F : X → X is a l.s.c. multifunction with closed values.
Then, there exists a Fellerian transition function π : X ×�→ [0,1] such that F is
the support of π.

Proof. Consider a multifunction Φ : X →�1 given by the formula

Φ(x)= {µ∈�1 : suppµ⊂ F(x)
}
. (7.4)

Clearly, Φ is convex and closed valued. It is easy to verify that Φ is l.s.c. Observe
that �1 is a convex subset of the linear space �s and �1 is complete with respect
to the Fortet-Mourier norm (see [4, 6]). Thus the conditions of the Michael
selection theorem (see [18]) are satisfied, and so there exists a sequence (ϕn) of
continuous functions ϕn : X →�1 such that

Φ(x)= cl
{
ϕn(x) : n∈N

}
. (7.5)

Let (pn) be a sequence of positive numbers such that
∑

pn = 1. Define π : X ×
�→ [0,1] by

π(x,A)=
∞∑
n=1

pnϕn(x)(A). (7.6)

Obviously, π is a transition function. To complete the proof, it suffices to verify
that F is equal to the support of π. �
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In order to prove the next result, we need two simple lemmas concerning the
support of the measure Pµ (see [14]).

Lemma 7.4. Let P : �→� be a Fellerian operator. If µ1,µ2 ∈� and suppµ1 ⊂
suppµ2, then suppPµ1 ⊂ suppPµ2.

Lemma 7.5. Let P : � → � be a Markov operator corresponding to a Fellerian
transition function π : X ×�→ [0,1]. Further, let Γ denote the support of π. Then,
for every µ∈� and n∈N,

suppPnµ= clΓn(suppµ). (7.7)

Theorem 7.6. If a Fellerian Markov operator P is asymptotically stable, then the
corresponding Markov multifunction Γ is asymptotically semistable and

C = suppµ∗, (7.8)

where C is the semiattractor of Γ and µ∗ is the measure invariant with respect to P.

Proof. Fix an arbitrary x ∈ X and let µ = δx. Since P is asymptotically stable,
the sequence (Pnµ) converges weakly to µ∗. By Theorem 5.3 and Lemma 7.5, we
have

suppµ∗ ⊂ LisuppPnµ= LiΓn(x). (7.9)

This implies that suppµ∗ ⊂ C.
To prove the opposite inclusion, fix a point z /∈ suppµ∗ and choose ε > 0 such

that

B(z,ε)∩ suppµ∗ =∅. (7.10)

Let x ∈ suppµ∗ and µ= δx. By Lemmas 7.4 and 7.5, we have

Γn(x)⊂ suppPnµ⊂ suppPnµ∗ = suppµ∗ for n∈N. (7.11)

Thus

Γn(x)∩B(z,ε)=∅. (7.12)

It follows that z /∈ LiΓn(x) and consequently z /∈ C. The proof is complete. �
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8. Random iteration algorithms

In this section, we show an effective way for the construction of semifractals,
using the well-known fact that an IFS with probabilities determines in a natural
way a dynamical system.

Assume that there is given a family of Lipschitz functions wi : X → X , i =
1, . . . ,N and a probability vector (p1, . . . , pN ). Moreover, assume that we have
given a probability space (Ω,Σ,prob) and a sequence of random elements ξn :
Ω→ I , n∈N, equally distributed, namely,

prob
(
ξn = i

)= pi for i= 1, . . . ,N, n∈N. (8.1)

The dynamical system corresponding to the IFS {(wi, pi) : i∈ I} is described by
the formula

xn+1 =wξn

(
xn
)

for n∈N, (8.2)

where x0 is a given initial point independent of the sequence (ξn).
Setting

µn(A)= prob
(
xn ∈A

)
for A∈�, (8.3)

we obtain a sequence of distribution (µn). It is well known that the operator P
given by (1.2) is the transition function for this sequence, that is,

µn+1 = Pµn. (8.4)

The following fact is basic for the computational construction of fractals. If
the IFS under consideration satisfies condition (3.8), then for every ε > 0 there
exist n0 and k0 such that dist({xn, . . . ,xn+k},A∗) < ε for every n > n0 and k > k0

(here, dist stands for the Hausdorff distance).
Using the Elton ergodic theorem (see [5]), we can obtain the following result.

Theorem 8.1. Let {(wi, pi) : i ∈ I} be an IFS satisfying (3.8) and let A∗ be the
semifractal corresponding to {wi : i∈ I}. Then, for every x0 ∈ A∗,

Lt
{
x0, . . . ,xn

}= A∗ a.s., (8.5)

where the sequence (xn) is defined by (8.2).

A disadvantage of Theorem 8.1 is that we must start from a point x0 belong-
ing to the set A∗. However, if all the maps wi are nonexpansive, then the initial
point x0 can be arbitrarily chosen in X . In fact, we have the following theorem.
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Theorem 8.2. Let {(wi, pi) : i ∈ I} be an IFS satisfying (3.8) and let Li ≤ 1 for
i∈ I . Then, for every x0 ∈ X and ε > 0, there exist n0 and k0 such that

prob
(

dist
({
xn, . . . ,xn+k

}
,A∗

)≤ ε
)≥ 1− ε (8.6)

for every n≥ n0 and k ≥ k0, where (xn) denotes the sequence defined by (8.2).

Theorems 8.1 and 8.2 suggest a natural numerical algorithm to construct
semifractals. Namely, given a family of transformations {wi : i ∈ I}, we look
for probabilities {pi : i ∈ I}, for which the iterated function system with prob-
abilities {(wi, pi) : i∈ I} is asymptotically stable (for one can use Theorem 5.7).
Then, it is sufficient to find a point x0 which belongs to a nucleus of the IFS
{(wi, pi) : i∈ I} and construct a sequence (xn) by the formula

xn+1 =win

(
xn
)
, (8.7)

where in are randomly chosen step by step in such a way that the probability of
choosing in = k is equal to pk(xn).

If all maps wi are nonexpansive, by virtue of Theorem 8.2 the started point x0

can be arbitrarily chosen in X .
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