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We show a construction of domains in complex reflexive Banach spaces which
are locally uniformly convex in linear sense in their Kobayashi distance. We also
show connections between norm and Kobayashi distance properties.

1. Introduction

Recently, in [1], it has been proved that if B is an open unit ball in a Cartesian
product l2 × l2 furnished with the lp-norm ‖ · ‖ and kB is the Kobayashi dis-
tance on B, then the metric space (B,kB) is locally uniformly convex in linear
sense. Our construction of domains, which are locally uniformly convex in their
Kobayashi distances, is based on the ideas from [1]. Such domains play an im-
portant role in the fixed-point theory of holomorphic mappings (see [1, 2, 4, 13,
14]).

In Section 4, we show connections between norm and Kobayashi distance
properties.

2. Preliminaries

Throughout this paper, all Banach spaces X will be complex and reflexive, all
domains D ⊂ X bounded and convex, and kD will denote the Kobayashi distance
on D [6, 7, 9, 10, 11, 12].

We will use the notions and notations from [2]. Here, we recall a few facts
only.

The Kobayashi distance kD is locally equivalent to the norm ‖ · ‖ [9]. Indeed,
if dist‖·‖(x,∂D) denotes the distance in (X,‖ · ‖) between the point x and the
boundary ∂D of the domain D, and diam‖·‖D is the diameter of D in (X,‖ · ‖),
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then

argtanh

( ‖x− y‖
diam‖·‖D

)
≤ kD(x, y) (2.1)

for all x, y ∈D and

kD(x, y)≤ argtanh

( ‖x− y‖
dist‖·‖(x,∂D)

)
(2.2)

whenever ‖x− y‖ < dist‖·‖(x,∂D).
A subset C of D is said to lie strictly inside D if dist‖·‖(C,∂D) > 0. We can

observe that a subset C of D is kD-bounded if and only if C lies strictly inside D
[9, Proposition 23].

Each open (closed) kD-ball in the metric space (D,kD) is convex [15] and if
D is strictly convex, then every kD-ball is also strictly convex in a linear sense
[3, 18] (see also [17]).

The metric space (D,kD) is called a locally uniformly linearly convex space
[2] if there exist w ∈D and the function

δ(w,·,·,·,·,·) (2.3)

such that for all 0 < R1, kD(w,z)≤ R1, 0 < R2 ≤ R≤ R3, and 0 < ε1 ≤ ε ≤ ε2 < 2,
we have

δ
(
w,R1,R2,R3,ε1,ε2

)
> 0,

kD(z,x)≤ R
kD(z, y)≤ R
kD(x, y)≥ εR


=⇒ kD

(
z,

1
2
x+

1
2
y
)
≤ (1− δ

(
w,R1,R2,R3,ε1,ε2

))
R.

(2.4)

The function δ(w,·,·,·,·,·) is called a modulus of linear convexity for the
Kobayashi distance kD.

The open unit ball BH in a Hilbert space is called the Hilbert ball [5, 7, 8, 14,
16].

For more useful properties of the Kobayashi distance, see [14].

3. Examples of locally uniformly linearly convex domains

The first known domain is the Hilbert ball [13, 14]. Other examples are given
in [1]. Namely, if B is the open unit ball in a Cartesian product l2× l2 furnished
with the lp-norm, where 1 < p <∞ and p �= 2, then the metric space (B,kB) is
also locally uniformly linearly convex.

Before stating our main result, we prove the following auxiliary lemma.

Lemma 3.1. Let X be a finite-dimensional Banach space and D a bounded, closed,
and strictly convex domain in X . Then, the metric space (D,kD) is locally uniformly
linearly convex.
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Proof. Since D is a bounded and strictly convex domain in X , each kD-ball is
strictly convex in a linear sense. Therefore, using the equivalent definition of the
kD-boundedness and the compactness argument, we see that the metric space
(D,kD) is locally uniformly linearly convex. �

Now, we state the main result of this paper.

Theorem 3.2. Let Y be a finite-dimensional subspace of a complex reflexive Ba-
nach space X and D a bounded strictly convex domain in X . Suppose that

(i) there exists a point x0 ∈D0 =D∩Y ,
(ii) there exists a holomorphic retraction r : D→D0,

(iii) for every R > 0 and for any three points x, y, and z in the closed kD-ball
B(x0,R), there exists a biholomorphic affine mapping T : D→ D such that
T(x0)= x0 and T(x),T(y),T(z)∈ Y ∩D0.

Then, the metric space (D,kD) is locally uniformly linearly convex.

Proof. First, observe that D0 is a strictly convex domain in Y and by (ii),

kD0 (u,w)= kD(u,w) (3.1)

for all u,w ∈ D0. This (combined with assumption (i)) implies that the closed
kD0 -ball B0(x0,R) is equal to B(x0,R)∩D0.

Let x, y, and z be three arbitrarily chosen points in the closed kD-ball B(x0,R).
By assumption (iii), there exists a biholomorphic affine mapping T : D→D such
that Tx,T y,Tz ∈ Y ∩D0 and Tx0 = x0. Since this biholomorphic mapping is
always a kD-isometry [6, 7, 9, 10, 14], we get

Tx,T y,Tz ∈ B
(
x0,R

)∩D0,

kD(x, y)= kD0 (Tx,T y),

kD(x,z)= kD0 (Tx,Tz),

kD(y,z)= kD0 (Ty,Tz).

(3.2)

Therefore, we may restrict our further considerations to the finite-dimensional
Banach space Y . By Lemma 3.1, the metric space (D0,kD0 ) is locally uniformly
linearly convex and this implies the same property of (D,kD). �

Example 3.3. If B is the open unit ball in a Cartesian product X = Cn× l2, fur-
nished with the lp-norm, where 1 < p <∞, and in Cn we have a strictly convex
norm (i.e., the open unit ball in this norm is strictly convex), then the metric
space (B,kB) is locally uniformly linearly convex.

Indeed, let {e1, e2, . . .} be the standard basis in the Hilbert space l2. For any
three points x = (x1,x2), y = (y1, y2), and z = (z1, z2) in B ⊂Cn× l2, there exists
a linear isometry T1 : l2 → l2 such that

T̃x2, T̃ y2, T̃z2 ∈ lin
{
e1, e2, e3

}
. (3.3)
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Put

Y =C
n× lin

{
e1, e2, e3

}
,

B1 = Y ∩B,

T
(
w1,w2

)= (w1, T̃w2
) (3.4)

for (w1,w2)∈ B ⊂Cn× l2. It is obvious that B1 is the open unit ball in Y and

kB(u,w)= kB1 (u,w) (3.5)

for all u,w ∈ B1. Therefore, we can apply Theorem 3.2.

Example 3.4. In the Cartesian product X = l2 × l2 × l2, we have the following
norm:

∥∥(x1,x2,x3
)∥∥= [∥∥x1

∥∥p +
(∥∥x2

∥∥q +
∥∥x3

∥∥q)p/q]1/p

, (3.6)

where 1 < p,q <∞, p,q �= 2, p �= q, and (x1,x2,x3) ∈ X . Let B be the open unit
ball in X . The metric space (B,kB) is locally uniformly linearly convex. The proof
of this fact is similar to that given in Example 3.3.

Example 3.5. Let X be the Hilbert space l2 with the standard orthonormal basis
{e1, e2, . . .}. Let D0 be an arbitrary bounded strictly convex domain in lin{e1}.
Let ∂D0 denote the boundary of D0 in lin{e1}. A strictly convex domain D ∈ X ,
generated by D0, is defined as follows:

D =
{
z+w : z ∈D0, w ∈ lin

{
e2, e3, . . .

}
, ‖w‖ <

√
dist

(
z,∂D0

)}
. (3.7)

It is easy to check that we may apply Theorem 3.2, and therefore the metric space
(D,kD) is locally uniformly linearly convex.

Remark 3.6. A construction of more complicated examples is obvious.

4. Connections between norm and Kobayashi distance properties

There is some connection between the local uniform convexity in linear sense
of the unit ball (B,kB) and the uniform convexity of the whole Banach space.
Namely, the following theorem is valid.

Theorem 4.1. Let (X,‖ · ‖) be a complex Banach space and B the open unit ball
in (X,‖ · ‖). If (B,kB) is locally uniformly convex in linear sense, then the Banach
space (X,‖ · ‖) is uniformly convex.
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Proof. It is sufficient to show that the ball B(0,1/2) in (X,‖ · ‖) is uniformly
convex. Let

‖x‖ = ‖y‖ = 1
2
,

‖x− y‖ ≥ 1
2
ε.

(4.1)

We know that the norm ‖ · ‖ and the Kobayashi distance are locally equivalent
and, additionally, we have

kB(0,x)= kB(0, y)= argtanh
(

1
2

)
= R,

kB(x, y)≥ argtanh
(‖x− y‖

2

)
≥ argtanh

(
(1/4)ε

)
R

R= ηR.

(4.2)

Hence, by the local uniform convexity in linear sense of the unit ball (B,kB), we
get

kB

(
0,

1
2
x+

1
2
y
)
≤ (1− δ(0,R,R,R,η,η)

)
R

= (1− δ(0,R,R,R,η,η)
)

argtanh
(

1
2

)

= argtanh
((

1− δ∗
)1

2

)
(4.3)

and therefore

∥∥∥∥1
2
x+

1
2
y
∥∥∥∥≤ (1− δ∗

)1
2
, (4.4)

where

δ∗ = 1− 2tanh
((

1− δ(0,R,R,R,η,η)
)

argtanh
(

1
2

))
. (4.5)

�

Remark 4.2. There is the following open problem. Does the uniform convexity of
the complex Banach space (X,‖ · ‖) imply the local uniform convexity in linear
sense of (B,kB), where B is the open unit ball in (X,‖ · ‖)?

It is worth recalling here two facts about strict convexity. As we mentioned in
Section 2, the strict convexity of the domain D implies that every kD-ball is also
strictly convex in a linear sense [3, 18] (see also [17]). It is natural to ask whether
the strict convexity of (D,kD) implies the strict convexity of D. The answer is, no,
as the following example shows.
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Example 4.3 (see [4]). Consider the domain

D = ∆∩
{
z ∈C : Rez <

1√
2

}
(4.6)

in the complex plane C. Then, every kD-ball is strictly convex in a linear sense
but D is not a strictly convex set.

On the other hand, in the case of the open unit ball, we have the positive
answer to the above question.

Theorem 4.4. Let (X,‖ · ‖) be a complex Banach space and B the open unit ball
in (X,‖ · ‖). The Banach space (X,‖ · ‖) is strictly convex if and only if (B,kB) is
strictly convex in linear sense.

Proof. We know that the strict convexity of the ball B implies that every kB-ball
is also strictly convex in a linear sense [3, 18] (see also [17]). Now, if each kB-ball
is strictly convex in a linear sense, then we can repeat the method of the proof of
Theorem 4.1 to get the strict convexity of the Banach space (X,‖ · ‖). �
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[4] M. Budzyńska, T. Kuczumow, and A. Stachura, Properties of the Kobayashi distance,
Proceedings of the International Conference on Nonlinear Analysis and Convex
Analysis (Hirosaki, 2001), to appear.

[5] S. Dineen, The Schwarz Lemma, Oxford Mathematical Monographs, Oxford Univer-
sity Press, New York, 1989.

[6] T. Franzoni and E. Vesentini, Holomorphic Maps and Invariant Distances, Notas de
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