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We propose another extension of Orlicz-Sobolev spaces to metric spaces based on the
concepts of the Φ-modulus and Φ-capacity. The resulting space N1

Φ is a Banach space.
The relationship between N1

Φ and M1
Φ (the first extension defined in Aı̈ssaoui (2002))

is studied. We also explore and compare different definitions of capacities and give a
criterion under which N1

Φ is strictly smaller than the Orlicz space LΦ.

1. Introduction

In [22], Shanmugalingam studies extensively an extension of Sobolev spaces on metric
spaces different from the approach of Hajłasz in [12]. In particular, he gives a comparison
between the obtained two spaces. See also [6, 9, 13, 22] for further developments of these
two theories.

Since a first extension of Orlicz-Sobolev spaces on metric spaces, denoted by M1
Φ(X),

following Hajłasz’ method, was studied in [4], it is natural to examine Shanmugalingam’s
definition based on the notions of modulus of paths families and on the capacity. The
resulting space N1

Φ(X) is a Banach space for any �-function Φ and the space M1
Φ(X) con-

tinuously embeds on N1
Φ(X) when Φ satisfies the ∆2 condition. We know that Lipschitz

functions are dense in M1
Φ(X) for Φ verifying the ∆2 condition. To expect the same re-

sult with the vaster space N1
Φ(X), we must add some assumptions, as in the Sobolev case,

on the metric space X , namely, X must be doubling and support a (1,Φ)-Poincaré in-
equality, and Φ verifies the ∆′ condition. Remark that when Φ(x)= (1/p)xp (p > 1), we
rediscover the same result in the setting of Sobolev spaces. On the other hand, when Ω is
a domain in RN , we give a new characterization of the Orlicz-Sobolev space W1LΦ(Ω),
and we show that N1

Φ(Ω) =W1LΦ(Ω) when Φ satisfies the ∆2 condition. Hence, for re-
flexive Orlicz spaces LΦ(RN ), we get N1

Φ(RN ) =M1
Φ(RN ) =W1LΦ(RN ), since we know

that M1
Φ(RN ) =W1LΦ(RN ). See [4, Theorem 3.3]. We also study the mean equivalent

class with respect to Φ (MECΦ) criterion under which N1
Φ(X) is strictly included in the

Orlicz space LΦ(X) and we compare between natural capacities defined on N1
Φ(X). We

expect that other developments will be done in forthcoming papers.
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We organize this paper as follows. In Section 2, we list the required prerequisites from
the Orlicz theory. Section 3 is reserved to the study of Φ-modulus, the capacity, and
Orlicz-Sobolev space N1

Φ(X). Section 4 deals with comparison between N1
Φ(X) and

M1
Φ(X) and with some properties of N1

Φ(X). In Section 5, we study the MECΦ criterion
and we compare between some capacities.

2. Preliminaries

An �-function is a continuous convex and even function Φ defined on R, verifying Φ(t) >
0 for t > 0, limt→0(Φ(t)/t)= 0, and limt→+∞(Φ(t)/t)= +∞.

We have the representation Φ(t)=∫ |t|0 ϕ(x)dL(x), where ϕ : R+→R+ is nondecreasing,
right continuous, with ϕ(0) = 0, ϕ(t) > 0 for t > 0, limt→0+ϕ(t) = 0, and limt→+∞ϕ(t) =
+∞. Here L stands for the Lebesgue measure. We put in the sequel, as usual, dx = dL(x).

The �-function Φ∗ conjugate to Φ is defined by Φ∗(t) = ∫ |t|0 ϕ∗(x)dx, where ϕ∗ is
given by ϕ∗(s)= sup{t : ϕ(t)≤ s}.

Let (X ,Γ,µ) be a measure space and Φ an �-function. The Orlicz class �Φ,µ(X) is
defined by

�Φ,µ(X)=
{
f : X −→R measurable :

∫
X
Φ
(
f (x)

)
dµ(x) <∞

}
. (2.1)

We define the Orlicz space LΦ,µ(X) by

LΦ,µ(X)=
{
f : X −→R measurable :

∫
X
Φ
(
α f (x)

)
dµ(x) <∞ for some α > 0

}
. (2.2)

The Orlicz space LΦ,µ(X) is a Banach space with the following norm, called the Lux-
emburg norm:

|‖ f ‖|Φ,µ,X = inf
{
r > 0 :

∫
X
Φ
(
f (x)
r

)
dµ(x)≤ 1

}
. (2.3)

If there is no confusion, we set |‖ f ‖|Φ = |‖ f ‖|Φ,µ,X .
The Hölder inequality extends to Orlicz spaces as follows: if f ∈ LΦ,µ(X) and g ∈

LΦ∗,µ(X), then f g ∈ L1 and∫
X
| f g|dµ≤ 2|‖ f ‖|Φ,µ,X · |‖g‖|Φ∗,µ,X . (2.4)

Let Φ be an �-function. We say that Φ verifies the ∆2 condition if there is a constant
C > 0 such that Φ(2t)≤ CΦ(t) for all t ≥ 0.

The ∆2 condition for Φ can be formulated in the following equivalent way: for every
C > 0, there exists C′ > 0 such that Φ(Ct)≤ C′Φ(t) for all t ≥ 0.

We have always �Φ,µ(X)⊂ LΦ,µ(X). The equality �Φ,µ(X)= LΦ,µ(X) occurs if Φ veri-
fies the ∆2 condition.

We know that LΦ,µ(X) is reflexive if Φ and Φ∗ verify the ∆2 condition.
Note that if Φ verifies the ∆2 condition, then

∫
Φ( fi(x))dµ→ 0 as i→∞ if and only if

|‖ fi‖|Φ,µ,X → 0 as i→∞.
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Recall that an �-function Φ satisfies the ∆′ condition if there is a positive constant C
such that for all x, y ≥ 0, Φ(xy)≤ CΦ(x)Φ(y). See [16, 21]. If an �-function Φ satisfies
the ∆′ condition, then it satisfies also the ∆2 condition.

Let Ω be an open set in RN , let C∞(Ω) be the space of functions which, together with
all their partial derivatives of any order, are continuous on Ω, and let C∞0 (RN )= C∞0 stand
for all functions in C∞(RN ) which have compact support in RN . The space Ck(Ω) stands
for the space of functions having all derivatives of order ≤ k continuous on Ω, and C(Ω)
is the space of continuous functions on Ω.

The (weak) partial derivative of f of order |β| is denoted by

Dβ f = ∂|β|

∂x
β1

1 · ∂xβ2

2 · ··· · ∂xβNN
f . (2.5)

Let Φ be an �-function and m∈N. We say that a function f : RN →R has a distribu-
tional (weak partial) derivative of order m, denoted by Dβ f , |β| =m, if

∫
f Dβθdx = (−1)|β|

∫ (
Dβ f

)
θdx, ∀θ ∈ C∞0 . (2.6)

Let Ω be an open set in RN and denote LΦ,L(Ω) by LΦ(Ω). The Orlicz-Sobolev space
WmLΦ(Ω) is the space of real functions f such that f and its distributional derivatives
up to the order m are in LΦ(Ω).

The space WmLΦ(Ω) is a Banach space equipped with the norm

|‖ f ‖|m,Φ,Ω =
∑

0≤|β|≤m

∣∣∥∥Dβ f
∥∥∣∣

Φ, f ∈WmLΦ(Ω), (2.7)

where |‖Dβ f ‖|Φ = |‖Dβ f ‖|Φ,L,Ω.
Recall that if Φ verifies the ∆2 condition, then C∞(Ω) ∩WmLΦ(Ω) is dense in

WmLΦ(Ω), and C∞0 (RN ) is dense in WmLΦ(RN ).
For more details on the theory of Orlicz spaces, see [1, 16, 17, 18, 21].
In this paper, the letter C will denote various constants which may differ from one

formula to the next one even within a single string of estimates.

3. The Orlicz-Sobolev space N1
Φ(X)

3.1. Φ-modulus in metric spaces. Let (X ,d,µ) be a metric, Borel measure space, such
that µ is positive and finite on balls in X .

If I is an interval in R, a path in X is a continuous map γ : I → X . By abuse of language,
the image γ(I)=: |γ| is also called a path. If I = [a,b] is a closed interval, then the length
of a path γ : I → X is

l(γ)= length(γ)= sup
n∑
i=1

∣∣γ(ti+1
)− γ(ti)∣∣, (3.1)
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where the supremum is taken over all finite sequences a= t1 ≤ t2 ≤ ··· ≤ tn ≤ tn+1 = b. If
I is not closed, we set

l(γ)= sup l
(
γ|J
)
, (3.2)

where the supremum is taken over all closed subintervals J of I . A path is said to be recti-
fiable if its length is a finite number. A path γ : I → X is locally rectifiable if its restriction
to each closed subinterval of I is rectifiable.

For any rectifiable path γ, there are its associated length function sγ : I → [0, l(γ)] and
a unique 1-Lipschitz continuous map γs : [0, l(γ)]→ X such that γ = γs ◦ sγ. The path γs
is the arc-length parametrization of γ.

Let γ be a rectifiable path in X . The line integral over γ of each nonnegative Borel
function ρ : X → [0,∞] is

∫
γ
ρds=

∫ l(γ)

0
ρ ◦ γs(t)dt. (3.3)

If the path γ is only locally rectifiable, we set∫
γ
ρds= sup

∫
γ′
ρds, (3.4)

where the supremum is taken over all rectifiable subpaths γ′ of γ. See [14] for more de-
tails.

Denote by Γrect the collection of all nonconstant compact (i.e., I is compact) rectifiable
paths in X . If A is a subset of X , then ΓA is the family of all paths in Γrect that intersect the
set A, and Γ+

A is the family of all paths γ in Γrect such that the Hausdorff one-dimensional
measure �1(|γ|∩A) is positive.

Definition 3.1. Let Φ be an �-function and Γ be a collection of paths in X . The Φ-
modulus of the family Γ, denoted by ModΦ(Γ), is defined as

inf
ρ∈�(Γ)

|‖ρ‖|Φ, (3.5)

where �(Γ) is the set of all nonnegative Borel functions ρ such that
∫
γ ρds ≥ 1 for all

rectifiable paths γ in Γ. Such functions ρ used to define the Φ-modulus of Γ are said to be
admissible for the family Γ.

From Definition 3.1, the Φ-modulus of the family of all nonrectifiable paths is 0.
We have the following important proposition.

Proposition 3.2. Let Φ be an �-function and let Γ be a collection of paths in X . Then the
Φ-modulus of the family Γ is an outer measure on Γ. That is,

(1) ModΦ(∅)= 0,
(2) ModΦ(Γ1)≤ModΦ(Γ2) if Γ1 ⊂ Γ2,
(3) ModΦ(

⋃∞
i=1Γi)≤

∑∞
i=1 ModΦ(Γi).
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Proof. Assertions (1) and (2) are obvious. We prove (3). We may assume that ModΦ(Γi)<
∞ for all i. For ε > 0, there is ρi ∈�(Γi) such that

∣∣∥∥ρi∥∥∣∣Φ ≤ModΦ
(
Γi
)

+ ε2−i. (3.6)

Set ρ = supi ρi and Γ=⋃∞i=1Γi. Since ρ≥ ρi for all i,ρ ∈�(Γ). Thus ModΦ(Γ)≤ |‖ρ‖|Φ.
By [5, Lemma 2], |‖ρ‖|Φ ≤

∑∞
i=1 |‖ρi‖|Φ. Hence,

ModΦ(Γ)≤
∞∑
i=1

ModΦ(Γi) + ε. (3.7)

Since ε is arbitrary, (3) is proved. �

A property relevant to paths in X is said to hold for Φ-almost all paths if the family of
rectifiable compact paths on which that property does not hold has Φ-modulus zero.

For any path γ ∈ Γrect and for distinct points x and y in |γ|, denote γxy to be the
subpath γ|[tx ,ty], where the two distinct numbers tx and ty are chosen from the domain of
γ such that γ(tx)= x and γ(ty)= y. The subpath γxy is not a well-defined notion as there
can be more than one choice of the related numbers tx and ty . Because of this ambiguity,
any property that is required for one choice of the subpath γxy is also required for all such
choices of subpaths.

Definition 3.3. Let Φ be an �-function and let l(γ) denote the length of γ. A function u
is said to be absolutely continuous on Φ-almost every curve (ACCΦ) if u◦ γ is absolutely
continuous on [0, l(γ)] for Φ-almost every rectifiable arc-length parametrized path γ in
X . If X is a domain in RN , a function u is said to have the absolute continuity on almost
every line (ACL) property if on almost every line parallel to the coordinate axes with
respect to the Hausdorff (N − 1)-measure, the function is absolutely continuous. An ACL
function therefore has directional derivatives almost everywhere. An ACL function is said
to have the property ACLΦ if its directional derivatives are in LΦ.

Definition 3.4. Let u be a real-valued function on a metric space X . A nonnegative Borel-
measurable function ρ is said to be an upper gradient of u if for all compact rectifiable
paths γ, the following inequality holds:

∣∣u(x)−u(y)
∣∣≤ ∫

γ
ρds, (3.8)

where x and y are the end points of the path.

Definition 3.5. Let Φ be an �-function and let u be an arbitrary real-valued function on
X . Let ρ be a nonnegative Borel function on X . If there exists a family Γ⊂ Γrect such that
ModΦ(Γ) = 0 and the inequality (3.8) is true for all paths γ in Γrect \ Γ, then ρ is said to
be a Φ-weak upper gradient of u. If inequality (3.8) holds true for Φ-modulus almost all
paths in a set B ⊂ X , then ρ is said to be a Φ-weak upper gradient of u on B.
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Lemma 3.6. Let Φ be an �-function and let Γ be a collection of paths inX . Then ModΦ(Γ)=
0 if and only if there is a nonnegative Borel function ρ onX such that ρ ∈ LΦ and for all paths
γ ∈ Γ,

∫
γ
ρds=∞. (3.9)

Proof. Suppose that ModΦ(Γ)= 0. Then if n∈N∗, there exists a nonnegative Borel func-
tion ρn on X such that ρn ∈ LΦ and |‖ρn‖|Φ ≤ 2−n. The function ρ =∑∞

n=1 ρn is a nonneg-
ative Borel function on X and, by [5, Lemma 2], |‖ρ‖|Φ ≤

∑∞
n=1 |‖ρn‖|Φ, which implies

that ρ∈ LΦ. It is evident that
∫
γ ρds=∞ for all paths γ ∈ Γ.

Assume that there is a nonnegative Borel function ρ on X such that ρ ∈ LΦ and for all
paths γ ∈ Γ,

∫
γ ρds=∞. Then for each n, the function 2−nρ is admissible for calculating

the Φ-modulus of the family Γ. This implies that ModΦ(Γ) = 0. The proof is complete.
�

Corollary 3.7. Let Φ be an �-function and let E ⊂ X be such that µ(E) = 0. Then
ModΦ(Γ+

E)= 0.

Proof. Since ∞χE is an admissible function for calculating ModΦ(Γ+
E), the corollary fol-

lows by Lemma 3.6. �

3.2. The Orlicz-Sobolev space N1
Φ(X)

Definition 3.8. Let Φ be an �-function and let the set Ñ1
Φ(X ,d,µ) be the collection of all

real-valued function u on X such that u∈ LΦ and u has a Φ-weak upper gradient in LΦ.

We remark that Ñ1
Φ is a vector space, since if α,β ∈ R and u,v ∈ Ñ1

Φ with respect to
Φ-weak upper gradients ρ and σ , then |α|ρ+ |β|σ is a Φ-weak upper gradient of αρ+βσ .

If u∈ Ñ1
Φ, we set

|‖u‖|
Ñ1
Φ
= |‖u‖|Φ + inf

ρ
|‖ρ‖|Φ, (3.10)

where the infimum is taken over all Φ-weak upper gradient ρ of u such that ρ∈ LΦ.

If u,v ∈ Ñ1
Φ, let u� v if |‖u− v‖|

Ñ1
Φ
= 0. It can be easily seen that � is an equivalence

relation, partitioning Ñ1
Φ into equivalence classes, which is a normed vector space under

the norm defined by (3.10).

Definition 3.9. Let Φ be an �-function. The Orlicz-Sobolev space corresponding to Φ,

denoted by N1
Φ(X), is defined to be the space Ñ1

Φ(X ,d,µ)� � with the norm |‖u‖|N1
Φ

:=
|‖u‖|

Ñ1
Φ

.

If u,v ∈ Ñ1
Φ, then it is easily verified that the functions |u|, min{u,v}, max{u,v} ∈ Ñ1

Φ,

that if λ≥ 0, then min{u,λ} ∈ Ñ1
Φ, and that if λ≤ 0, then max{u,λ} ∈ Ñ1

Φ. Thus N1
Φ(X)

enjoys all the lattice properties in classical first-order Orlicz-Sobolev spaces.
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Lemma 3.10. Let Φ be an �-function and u∈ Ñ1
Φ. Then u is ACCΦ.

Proof. By hypothesis, u ∈ LΦ and u has a Φ-weak upper gradient ρ ∈ LΦ. Let Γ be the
collection of all paths in Γrect for which inequality (3.8) does not hold. Then ModΦ(Γ)= 0.
Let Γ1 be the collection of all paths in Γrect that have a subpath in Γ. Then any admissible
function used to estimate the Φ-modulus of Γ is an admissible function for Γ1. Hence,

ModΦ
(
Γ1
)≤ModΦ(Γ)= 0. (3.11)

Let Γ2 be the collection of all paths γ in Γrect such that
∫
γ ρds=∞. Since ρ ∈ LΦ, then

ModΦ(Γ2)= 0. Thus ModΦ(Γ1∪Γ2)= 0. If γ is a path in Γrect \ (Γ1∪Γ2), γ has no subpath
in Γ1, and hence for all x, y ∈ |γ|,

∣∣u(x)−u(y)
∣∣≤ ∫

γxy
ρds <∞. (3.12)

Therefore, u is absolutely continuous on each path γ in Γrect \ (Γ1 ∪ Γ2). The proof is
complete. �

Lemma 3.11. Let Φ be an �-function and let u ∈ Ñ1
Φ be such that |‖u‖|Φ = 0. Then

ModΦ(Γ)= 0, where

Γ= {γ ∈ Γrect : u(x) �= 0 for some x ∈ |γ|}. (3.13)

Proof. Since |‖u‖|Φ = 0, the set S = {x ∈ X : u(x) �= 0} has measure zero. Hence, Γ = ΓS
and

Γ= Γ+
S ∪

(
ΓS \Γ+

S

)
. (3.14)

The subfamily Γ+
S can be disregarded since

ModΦ
(
Γ+
S

)≤ |‖∞· χS‖|Φ = 0, (3.15)

where χS is the characteristic function of the set S. The paths γ ∈ ΓS \ Γ+
S intersect S only

on a set of linear measure zero, and hence, with respect to the linear measure almost
everywhere on γ, the function u takes on the value of zero. By the fact that γ also intersect
S, therefore, u is not absolutely continuous on γ. By Lemma 3.10, ModΦ(ΓS \ Γ+

S ) = 0.
Thus ModΦ(Γ)= 0 and the proof is complete. �

We deduce from the previous lemma the following corollary.

Corollary 3.12. Let Φ be an �-function. If u,v ∈ Ñ1
Φ are such that |‖u− v‖|Φ = 0, then

u and v belong to the same equivalent class in N1
Φ(X).

In the sequel, we will not distinguish between the functions in Ñ1
Φ and their equiva-

lence classes in N1
Φ.
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Lemma 3.13. Let Φ be an �-function. If (ρi)i∈N∗ is a sequence of Borel functions in LΦ such
that limi→∞|‖ρi‖|Φ = 0, then there exist a subsequence (ρik )k∈N∗ and a family Γ⊂ Γrect such
that ModΦ(Γ)= 0 and for all paths γ ∈ Γrect \Γ,

lim
k→∞

∫
γ
ρikds= 0. (3.16)

Proof. Let (ρik )k∈N∗ be a subsequence of the sequence (ρi)i∈N∗ such that |‖ρik‖|Φ ≤ 2−k.
Then

Γ=
{
γ ∈ Γrect : limsup

k→∞

∫
γ
ρikds > 0

}

=
⋃
n∈N

{
γ ∈ Γrect : limsup

k→∞

∫
γ
ρikds≥

1
n

}

=
⋃
n∈N

{
γ ∈ Γrect : for infinitely many k,

∫
γ
ρikds≥

1
2n

}
.

(3.17)

Hence, it suffices to show that for each n∈N, the family of paths

Γn =
{
γ ∈ Γrect : for infinitely many k,

∫
γ
ρikds≥

1
2n

}
(3.18)

is such that ModΦ(Γn)= 0. For this goal, let ρ =∑∞
k=1 ρik . Then by [5, Lemma 2], ρ ∈ LΦ.

For all γ ∈ Γn,

∫
γ
ρds≥

∞∑
k=1

∫
γ
ρikds=∞. (3.19)

Hence, ModΦ(Γn)= 0. The proof is complete. �

3.3. The capacity CΦ

Definition 3.14. Let Φ be an �-function. For a set E ⊂ X , define CΦ(E) by

CΦ(E)= inf
{|‖u‖|N1

Φ
: u∈�(E)

}
, (3.20)

where �(E)= {u∈N1
Φ : u|E ≥ 1}.

If �(E) =∅, we set CΦ(E) =∞. Functions belonging to �(E) are called admissible
functions for E.

We define a capacity as an increasing positive set function C given on a σ-additive
class of sets Γ, which contains compact sets and such that C(∅) = 0 and C(

⋃
i≥1Xi) ≤∑

i≥1C(Xi) for Xi ∈ Γ, i= 1,2, . . . .
The set function C is called outer capacity if for every X ∈ Γ,

C(X)= inf
{
C(O) :O open, X ⊂O}. (3.21)
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We omit the proof of the following lemma, since it is an easy adaptation of the one [4,
Theorem 4.3].

Lemma 3.15. Let Φ be an �-function. The set function CΦ is an outer capacity.

Lemma 3.16. Let Φ be an �-function and let (ui)i be a Cauchy sequence in N1
Φ(X). Then

there are a function u in N1
Φ(X) and a subsequence (uik )k such that (uik )k converges to u in

LΦ and pointwise µ-almost everywhere.

Proof. Since (ui)i is a Cauchy sequence in N1
Φ(X), it is also a Cauchy sequence in LΦ.

By passing to a subsequence if necessary, there is a function v ∈ LΦ to which the subse-
quence converges both pointwise µ-almost everywhere and in LΦ. We choose a further
subsequence, also denoted by (un)n for simplicity in notation, such that

∣∣∥∥ui− v∥∥∣∣Φ ≤ 2−i, (3.22)

ui −→ v pointwise µ-a.e., (3.23)∣∣∥∥gi+1,i
∥∥∣∣

Φ ≤ 2−i, (3.24)

where gi, j is an upper gradient of ui−uj . If g1 is an upper gradient of u1 such that g1 ∈ LΦ,
then u2 = u1 + (u2−u1) has an upper gradient g2 = g1 + g1,2.

In general, ui = u1 +
∑i−1

k=1(uk+1− uk) has an upper gradient gi = g1 +
∑i−1

k=1 gk+1,k such
that gi ∈ LΦ.

For j < i,

∣∣∥∥gi− gj∥∥∣∣Φ ≤ i−1∑
k= j

∣∣∥∥gk+1,k
∥∥∣∣

Φ ≤
i−1∑
k= j

2−k ≤ 2− j+1 −→ 0 as j −→∞. (3.25)

Hence, (gi)i is a Cauchy sequence in LΦ, which implies that it converges in LΦ-norm
to a nonnegative Borel function g. Let u be a function defined by

u(x)= 1
2

{
limsup
i→∞

ui(x) + liminf
i→∞

ui(x)
}

(3.26)

whenever the definition makes sense. By (3.23), we get u(x)= v(x) µ-almost everywhere,
and hence, u ∈ LΦ. Set T = {x : limsupi→∞ |ui(x)| = ∞}. The function u is well defined
outside of T . To prove that u∈N1

Φ, by Lemma 3.10, we must show that u is well defined
on almost all paths. To this end, we must prove that ModΦ(ΓT)= 0.

Let Γ1 be the collection of all paths γ ∈ Γrect such that either
∫
γ g ds=∞ or limi→∞

∫
γ gi ds

�= ∫γ g ds. By Lemma 3.13, ModΦ(Γ1)= 0. On the other hand, recall that Γ+
T = {γ ∈ Γrect :

�1(|γ| ∩ T) > 0}. By (3.23), µ(T) = 0. Hence, ModΦ(Γ+
T) = 0. Therefore, ModΦ(Γ1 ∪

Γ+
T) = 0. Let γ ∈ Γrect \ (Γ1 ∪ Γ+

T). Then, since γ /∈ Γ+
T , there exists a point y ∈ |γ| such

that y ∈ T . Since gi is an upper gradient of ui, for any point x ∈ |γ|, we get

∣∣ui(x)
∣∣−∣∣ui(y)

∣∣≤ ∣∣ui(x)−ui(y)
∣∣≤ ∫

γ
gi ds. (3.27)
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Hence, |ui(x)| ≤ |ui(y)|+
∫
γ gi ds. Since γ /∈ Γ1, we deduce that

limsup
i→∞

∣∣ui(x)
∣∣≤ limsup

i→∞
|ui(y)|+

∫
γ
g ds <∞, (3.28)

and hence x /∈ T . Thus ΓT ⊂ Γ1∪Γ+
T . This implies that ModΦ(ΓT)= 0.

On the other hand, if γ ∈ Γrect \ (Γ1∪Γ+
T), denoting x and y as the end points of γ and

noting by the above argument that x, y /∈ T , we get

∣∣u(x)−u(y)
∣∣= 1

2

∣∣∣∣ limsup
i→∞

ui(x)− liminf
i→∞

ui(y) + liminf
i→∞

ui(x)− limsup
i→∞

ui(y)
∣∣∣∣

≤ limsup
i→∞

∣∣ui(x)−ui(y)
∣∣

≤ lim
i→∞

∫
γ
gi ds=

∫
γ
g ds.

(3.29)

This means that g is a weak upper gradient of u, and hence, u ∈ N1
Φ. The proof is

complete. �

Lemma 3.17. Let Φ be an �-function. If E ⊂ X is such that CΦ(E)= 0, then ModΦ(ΓE)= 0.

Proof. Since CΦ(E) = 0, for each i ∈ N∗, there exists a function ui ∈ N1
Φ such that

|‖ui‖|N1
Φ
≤ 2−i with ui|E ≥ 1. Pose vn =

∑n
i=1 |ui|. Then for each n, vn ∈N1

Φ and

∣∣∥∥vn− vm∥∥∣∣N1
Φ
≤

n∑
i=m+1

∣∣∥∥ui∥∥∣∣N1
Φ
≤ 2−m −→ 0 as m−→∞. (3.30)

Hence, the sequence (vn)n is a Cauchy sequence in N1
Φ. By Lemma 3.16, there is a

function v ∈ LΦ such that |‖vn− v‖|Φ→ 0. By the construction used in Lemma 3.16 and
since the sequence (vn(x))n is increasing outside of a set T such that ModΦ(ΓT) = 0, we
get

v(x)= lim
n→∞vn(x) (3.31)

with v(x) <∞.
If E \T �= ∅, then for arbitrary large n,

v|E\T ≥ vn|E\T =
n∑
i=1

∣∣ui∣∣∣∣E\T ≥ n. (3.32)

Hence, v|E\T = ∞, which is not possible because x /∈ T . Therefore, E \ T = ∅, and
hence, ΓE ⊂ ΓT . Thus ModΦ(ΓE)= 0. The proof is complete. �

Corollary 3.18. Let Φ be an �-function and let E be a subset of X such that CΦ(E)= 0. If
u∈N1

Φ(X \E), then there is an extension of u to E that is inN1
Φ(X). Any two such extensions

of u to all of X are in the same equivalence class of N1
Φ(X).
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Theorem 3.19. For any �-function Φ, N1
Φ(X) is a Banach space.

Proof. Let (ui)i∈N∗ be a Cauchy sequence in N1
Φ(X). It suffices to show that some subse-

quence is a convergent sequence in N1
Φ(X). By passing to a subsequence if necessary, we

can assume that

∣∣∥∥uk −uk+1
∥∥∣∣

Φ ≤ 2−2k (3.33)

and that

∣∣∥∥gi+1,i
∥∥∣∣

Φ ≤ 2−i, (3.34)

where gi, j is an upper gradient of ui−uj chosen to satisfy the above inequality.
Let

Ek =
{
x ∈ X :

∣∣uk(x)−uk+1(x)
∣∣≥ 2−k

}
. (3.35)

Then 2k|uk −uk+1| ∈N1
Φ(X) and 2k|uk −uk+1||Ek ≥ 1. Hence, by (3.33),

CΦ
(
Ek
)≤ 2k

∣∣∥∥uk −uk+1
∥∥∣∣

Φ ≤ 2−k. (3.36)

Let Fj =∪∞k= jEk and F =∩ j∈NFj . Then

CΦ
(
Fj
)≤ ∞∑

k= j
CΦ
(
Ek
)≤ 2− j+1. (3.37)

This implies that CΦ(F)= 0.
For x ∈ X \ F, there is j ∈ N such that for all k ∈ N and k ≥ j, x /∈ Ek. Hence, for all

k ∈N and k ≥ j, |uk(x)−uk+1(x)| < 2−k. Therefore, whenever l ≥ k ≥ j, we get

∣∣uk(x)−ul(x)
∣∣≤ 2−k+1. (3.38)

Thus the sequence (ui(x))i∈N∗ is a Cauchy sequence in R, and therefore is convergent
to a finite number. For x ∈ X \F, we let

u(x)= lim
i→∞

ui(x). (3.39)

For x ∈ X \F, we have

u(x)−uk(x)=
∞∑
n=k

(
un+1(x)−un(x)

)
. (3.40)
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By Lemma 3.17, ModΦ(ΓF)= 0, and for each path γ ∈ Γrect \ ΓF , for all points x ∈ |γ|,
(3.40) holds. Thus

∑∞
n=k gn+1,n is a weak upper gradient of u−uk. Therefore,

∣∣∥∥u−uk∥∥∣∣N1
Φ
≤ ∣∣∥∥u−uk∥∥∣∣Φ +

∞∑
n=k

∣∣∥∥gn+1,n
∥∥∣∣

Φ

≤ ∣∣∥∥u−uk∥∥∣∣Φ +
∞∑
n=k

2−n

≤ ∣∣∥∥u−uk∥∥∣∣Φ + 2−k+1 −→ 0 as k −→∞.

(3.41)

This means that the subsequence converges in the norm of N1
Φ(X) to u. The proof is

complete. �

In particular, we have shown that if j ∈N, there is a set Fj such thatCΦ(Fj)≤ 2− j+1 and
the chosen subsequence converges uniformly outside of Fj . Thus we have the following
corollary.

Corollary 3.20. For any �-function Φ, any Cauchy sequence (ui)i∈N∗ ⊂ N1
Φ(X) has a

subsequence that converges pointwise outside a set of Φ-capacity zero. Furthermore, the sub-
sequence can be chosen so that there exist sets of arbitrarily small Φ-capacity such that the
subsequence converges uniformly in the complement of each of these sets.

The proofs of the following three lemmas are an easy adaptation of those in [22, Lem-
mas 2.1.5, 2.1.7, and 2.1.8] relative to Lp Lebesgue spaces. We omit these proofs.

Lemma 3.21. Let Φ be an �-function. Let u1 and u2 be ACCΦ functions on X with Φ-
weak upper gradients g1 and g2, respectively. Let u be another ACCΦ function in X such that
there is an open set O ⊂ X verifying u= u1 on O and u= u2 on X \O. Then g1χO + g2 and
g1 + g2χX\O are Φ-weak upper gradients of u.

Remark that if we are in the hypotheses of the previous lemma and if g2 ≥ g1 almost
everywhere on O, then g2 is a Φ-weak upper gradient of u; and if g2 ≤ g1 almost every-
where on X \O, then g1 is a Φ-weak upper gradient of u.

Lemma 3.22. Let Φ be an �-function and let u be an ACCΦ function on X such that u= 0
µ-almost everywhere on X \O, where O is an open set in X . If g is a Φ-weak upper gradient
of u, then gχO is also a Φ-weak upper gradient of u.

Lemma 3.23. Let Φ be an �-function and let u be an ACCΦ function on X . If g,h ∈ LΦ

are two Φ-weak upper gradients of u and F is a closed subset of X , then the function v =
gχF +hχX\F is also a Φ-weak upper gradient of u.

3.4. A characterization of N1
Φ(X). Next, we define another characterization of Orlicz-

Sobolev spaces on metric measure spaces using only upper gradients and bypassing the
notions of moduli of path families and weak upper gradients. We show in Theorem 3.27
that this characterization gives the same space N1

Φ(X).
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Definition 3.24. Let Φ be an �-function. The Orlicz-Sobolev spaceH1
Φ(X) is the subspace

of LΦ(X) defined by

H1
Φ(X)= { f ∈ LΦ(X) : | f |1,Φ <∞

}
, (3.42)

where

| f |1,Φ = |‖ f ‖|Φ + inf
{gi}

liminf
i→∞

∣∣∥∥gi∥∥∣∣Φ. (3.43)

The infimum is taken over all upper gradients gi of the functions fi, where the sequence
( fi)i converges to f in the space LΦ(X).

The proof of the following lemma is an adaptation of the one of [15, Lemma 3.1].

Lemma 3.25. Let Φ be an �-function and let X be a metric measure space. If ( fi)i is a se-
quence of functions in LΦ(X) with upper gradients (gi)i in LΦ(X) such that ( fi)i weakly con-
verges to f in LΦ(X) and (gi)i weakly converges to g in LΦ(X), then g is a Φ-weak upper gra-

dient of f , and there are convex combination sequences f̃i =
∑ni

k=i λk,i fk and g̃i =
∑ni

k=i λk,igk
with

∑ni
k=i λk,i = 1, λk,i > 0, so that ( f̃i)i converges in LΦ(X) to f and (g̃i)i converges in LΦ(X)

to g.

Proof. We apply Mazur’s lemma to each sequence ( fi)∞i=k. We can form, for each k, a se-
quence of convex combinations of fi that converges in the LΦ(X)-norm to f . Extracting a
member from each sequence of convex combinations corresponding to each k, a sequence
( f k)k can be formed so that each f k is a convex combination of the original sequence
( fi)i, and ( f k)k converges in the LΦ(X)-norm to f . It is easy to see that the corresponding
convex combination (gk)k of the sequence (gi)i is a sequence of upper gradients of ( f k)k,
and because of the way ( f k)k was formed, the sequence (gk)k converges weakly in LΦ(X)
to g. Next, repeating this process to the pair of sequences ( f k)k and (gk)k, we can ob-

tain convex combination sequences ( f̃ j) j and (g̃ j) j that converge in the LΦ(X)-norm to

f and g, respectively with g̃ j being an upper gradient of f̃ j . The final sequences are them-
selves convex combinations of the original sequences, since being convex combinations
of convex combinations.

A slight modification of the proof of Lemma 3.16 shows that g is a Φ-weak upper
gradient of f . The proof is complete. �
Corollary 3.26. Let Φ be an �-function such that Φ and Φ∗ satisfy the ∆2 condition, and
let X be a metric measure space equipped with a σ-finite measure. If u is a function with a
Φ-weak upper gradient in LΦ(X), then there exists a Φ-weak upper gradient ρu in LΦ(X)
such that if ρ is another Φ-weak upper gradient of u, then ρu ≤ ρ almost everywhere.

Proof. By the reflexivity of the space LΦ(X) and by Lemma 3.25, there is a Φ-weak upper
gradient ρu in LΦ(X) with the smallest LΦ(X)-norm among all Φ-weak upper gradients
in LΦ(X) of u. Let ρ be another Φ-weak upper gradient of u, and denote E = {x : ρ(x)≤
ρu(x)}. Suppose that µ(E) > 0. Then there is a closed subset F of E such that µ(E) > 0; see
[8, Theorem 2.2.2]. By Lemma 3.23, the function ρuχX\F + ρχF is aΦ-weak upper gradient
of u, of strictly smaller LΦ(X)-norm than ρu. This is impossible and hence, µ(E)= 0. The
proof is complete. �
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Theorem 3.27. Let Φ be an �-function. Then the space H1
Φ(X) is isometrically equivalent

to the space N1
Φ(X).

Proof. Every function in N1
Φ(X) satisfies Definition 3.24, since we can take the sequence

( fi)i to be the function itself. By Lemma 3.25, it is clear that functions satisfying Definition
3.24 have a LΦ(X)-representative in N1

Φ(X). Moreover, the N1
Φ(X)-norm is equal to the

norm (3.43). The proof is complete. �

4. Comparisons between N1
Φ(X) and M1

Φ(X) and more properties of N1
Φ(X)

We begin by recalling the definition of the space M1
Φ(X).

Let u : X → [−∞,+∞] be a µ-measurable function defined on X . We denote by D(u)
the set of all µ-measurable functions g : X → [0,+∞] such that∣∣u(x)−u(y)

∣∣≤ d(x, y)
(
g(x) + g(y)

)
(4.1)

for every x, y ∈ X \F, x �= y with µ(F)= 0. The set F is called the exceptional set for g.
Note that the right-hand side of (4.1) is always defined for x �= y. For the points x, y ∈

X , x �= y, such that the left-hand side of (4.1) is undefined, we may assume that the left-
hand side is +∞.

Let Φ be an �-function. The Dirichlet-Orlicz space L1
Φ(X) is the space of all µ-

measurable functions u such that D(u)∩ LΦ(X) �= ∅. This space is equipped with the
seminorm

|‖u‖|L1
Φ(X) = inf

{|‖g‖|Φ : g ∈D(u)∩LΦ(X)
}
. (4.2)

The Orlicz-Sobolev space M1
Φ(X) is defined by M1

Φ(X) = LΦ(X)∩ L1
Φ(X) equipped

with the norm

|‖u‖|M1
Φ(X) = |‖u‖|Φ + |‖u‖|L1

Φ(X). (4.3)

The following lemma is easy to verify.

Lemma 4.1. Let Φ be an �-function and let u∈M1
Φ(X). If g ∈D(u)∩ LΦ(X), then there

exist two functions ũ and g̃ such that u = ũ almost everywhere and |‖g‖|Φ = |‖g̃‖|Φ, and
for all points x, y ∈ X , ∣∣ũ(x)− ũ(y)

∣∣≤ d(x, y)
(
g̃(x) + g̃(y)

)
. (4.4)

Furthermore, if u is continuous in M1
Φ(X), then it is possible to choose u= ũ everywhere.

Proposition 4.2. Let Φ be an �-function. Then the set of equivalence classes of continuous
function u in the space M1

Φ(X) embeds into N1
Φ(X) with

|‖u‖|N1
Φ
≤ 4|‖u‖|M1

Φ
. (4.5)

Proof. Let u be a continuous representative of its equivalence class in M1
Φ(X). Then by

Lemma 4.1, for each g′ ∈D(u)∩LΦ(X), there is a function g ∈ LΦ(X) such that |‖g‖|Φ =
|‖g′‖|Φ, and for all points x, y ∈ X , (4.1) holds.
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Let x, y ∈ X and γ be an arc-length parametrizing rectifiable path connecting x to
y. If

∫
γ g ds = ∞, then |u(x)− u(y)| ≤ ∫γ g ds. Suppose

∫
γ g ds <∞. For each n ∈ N, let

σn be the partition of the domain of γ into n pieces of equal length. On each partition
γi = γ|σn(i),σn(i+1), 0≤ i≤ n− 1, there exists xi ∈ |γi| such that

g(xi)≤ l(γi)−1
∫
γi
g ds. (4.6)

We note that d(xi,xi+1)≤ 2l(γi). We get

∣∣u(x0
)−u(xn)∣∣≤ n−1∑

i=0

∣∣u(xi)−u(xi+1
)∣∣

≤
n−1∑
i=0

d
(
xi,xi+1

)(
g
(
xi
)

+ g
(
xi+1

))
≤ 4

n−1∑
i=0

∫
γi
g ds= 4

∫
γ
g ds.

(4.7)

Since u is continuous, by letting n→∞, we obtain

∣∣u(x)−u(y)
∣∣≤ 4

∫
γ
g ds. (4.8)

Hence, the continuous representative u of its equivalence class inM1
Φ(X) belongs to an

equivalence class in N1
Φ(X) with |‖u‖|N1

Φ
≤ 4|‖u‖|M1

Φ
. By Corollary 3.12, if any represen-

tative in the equivalence class of u in M1
Φ(X) belongs to an equivalence class in N1

Φ(X),
then it belongs to the same equivalence class as u in N1

Φ(X). Thus the embedding is well
defined. The proof is complete. �

Theorem 4.3. Let Φ be an �-function satisfying the ∆2 condition. Then the space M1
Φ(X)

continuously embeds into the space N1
Φ(X).

Proof. The space N1
Φ(X) is a Banach space by Theorem 3.19. Hence, by Proposition 4.2,

the closure of the subspace of equivalence classes of continuous functions in M1
Φ(X) in

the norm of M1
Φ(X) is a subspace of N1

Φ(X). By [4, Theorem 3.10], Lipschitz functions,
and therefore continuous functions, are dense in M1

Φ(X). Thus such closure is M1
Φ(X).

The proof is complete. �

Recall the following lemma in [22, Lemma 3.2.5] or [15, Lemma 2.2].

Lemma 4.4. If u is a function on X such that there exist nonnegative Borel-measurable
functions g, h on X with the property that

∣∣u(x)−u(y)
∣∣≤ ∫

γ
g ds+d(x, y)

(
h(x) +h(y)

)
(4.9)

whenever γ is a compact rectifiable path in X with end points x, y, then g + 4h is an upper
gradient of u.
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Recall that if Φ and Φ∗ satisfy the ∆2 condition, then M1
Φ(RN )=W1LΦ(RN ). See [4,

Theorem 3.3]. We examine the relation between N1
Φ(Ω) and W1LΦ(Ω) when Ω is a do-

main in RN , d(x, y)= |x− y|, and µ is a Lebesgue N-measure.
We omit the proof of the following lemma, since it is exactly the same as the one in

[10]; see also [23].

Lemma 4.5. Let Φ be an �-function. If Ω is a domain in RN , d(x, y)= |x− y|, and µ is a
Lebesgue N-measure, then W1LΦ(Ω)⊂N1

Φ(Ω).

For the reverse inclusion, we need some auxiliary results about Orlicz and Orlicz-
Sobolev spaces on Euclidean spaces.

Let ψ be a nonnegative, real-valued function in C∞0 (RN ) such that suppψ ⊂ B(0,1) and∫
ψ(x)dx = 1. For ε > 0, the function defined by ψε(x) = ε−Nψ(x/ε) belongs to C∞0 (RN )

and suppψε ⊂ B(0,ε). The function ψε is called a regularizer, and the convolution uε =
u∗ ψε, when it makes sense, is called the regularization of u. A proof of the following
lemma can be deduced from [7]; see also [11]. We give a new proof inspired by [24,
Theorem 1.6.1(iii)] relative to Lp Lebesgue spaces.

Lemma 4.6. Let Φ be an �-function satisfying the ∆2 condition. If u∈ LΦ(RN ), then uε ∈
LΦ(RN ),

∫
(Φ◦uε)(x)dx ≤ ∫ (Φ◦u)(x)dx, and limε→0|‖uε−u‖|Φ = 0.

Proof. By Jensen’s inequality, (Φ ◦ uε)(x) ≤ (Φ ◦ u)∗ψε(x). Since Φ verifies the ∆2 con-
dition, Φ◦u∈ L1(RN ), which implies that uε ∈ LΦ(RN ) and∫ (

Φ◦uε
)
(x)dx ≤

∫
(Φ◦u)(x)dx. (4.10)

On the other hand, for each δ > 0, we can find v ∈ C∞0 (RN ) such that∫
Φ
(|u− v|(x)

)
dx ≤ δ. (4.11)

Now, since v has compact support, it follows that
∫
Φ(|vε − v|(x))dx ≤ δ for ε suffi-

ciently small. We apply (4.10) and (4.11) to the difference v− u and obtain by using the
convexity of Φ and the fact that Φ verifies the ∆2 condition,∫

Φ◦∣∣u−uε∣∣dx ≤ C

3

[∫
Φ◦ |u− v|dx+

∫
Φ◦∣∣vε− v∣∣dx+

∫
Φ◦∣∣vε−uε∣∣dx]

≤ Cδ.
(4.12)

Hence,
∫
Φ ◦ |u−uε|dx→ 0 as ε→ 0. Since Φ verifies the ∆2 condition, the result fol-

lows. �

Lemma 4.7. Let Φ be an �-function satisfying the ∆2 condition and u∈WmLΦ(Ω). Then
the regularizers of u, uε are such that

limε→0
∣∣∥∥uε−u∥∥∣∣m,Φ,Ω′ = 0 (4.13)

whenever Ω′�Ω. When Ω=RN , then limε→0 |‖uε−u‖|m,Φ = 0.
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Proof. Since Ω′ is a bounded domain, there is ε0 > 0 such that ε0 < dist(Ω′,∂Ω). Let ε < ε0.
The differentiation under the integral in the definition of uε and the application of (2.6)
give for x ∈Ω′ and |α| ≤m,

Dαuε(x)= ε−N
∫
Ω
Dα
xψ
(
x− y

ε

)
u(y)dy

= (−1)|α|ε−N
∫
Ω
Dα
yψ
(
x− y

ε

)
u(y)dy

= ε−N
∫
Ω
ψ
(
x− y

ε

)
Dαu(y)dy

= (Dαu
)
ε(x).

(4.14)

The result follows from Lemma 4.6. �

Corollary 4.8. Let Φ be an �-function satisfying the ∆2 condition and u∈ LΦ(Ω). Then
u∈W1LΦ(Ω) if and only if u has a representative u that is absolutely continuous on almost
all line segments in Ω parallel to the coordinate axes and whose (classical) partial derivatives
belong to LΦ(Ω).

Proof. Applying Lemma 4.7, we follow word by word the proof in [24, Theorem 2.14] to
get the result. We omit the details. �

Theorem 4.9. Let Φ be an �-function satisfying the ∆2 condition. If Ω is a domain in RN ,
d(x, y)= |x− y|, and µ is a Lebesgue N-measure, then W1LΦ(Ω)=N1

Φ(Ω).

Proof. By Lemma 4.5, W1LΦ(Ω)⊂N1
Φ(Ω). It remains to prove that N1

Φ(Ω)⊂W1LΦ(Ω).
Let u∈N1

Φ(Ω). By Lemma 3.10, u has the property ACCΦ and has a Φ-weak upper gra-
dient ρ in LΦ(Ω). Therefore, u is ACL with the principal directional gradient matrix ∇u
such that by applying the fundamental theorem of calculus and a Lebesgue point argu-
ment, we easily see that |∇u| ≤ ρ almost everywhere. Hence, u has the property ACLΦ

and by Corollary 4.8, u∈W1LΦ(Ω). The proof is complete. �

Definition 4.10. A measure µ is said to be doubling if there is a constant C ≥ 1 such that

µ
(
B(x,2r)

)≤ Cµ(B(x,r)
)

(4.15)

for every x ∈ X and r > 0.
A metric measure space (X ,µ,d) is said to be a doubling space if µ is doubling.

Recall the following result, called Poincaré inequality. See [4, Proposition 3.9].

Proposition 4.11. Let Φ be an �-function. If u∈M1
Φ(X) and E ⊂ X is µ-measurable with

0 < µ(E) <∞, then for every g ∈D(u)∩LΦ(X),

∣∣∥∥u−uE∥∥∣∣LΦ(E) ≤ 2diam(E)|‖g‖|LΦ(E), (4.16)

where uE = (1/µ(E))
∫
E f dµ.
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Now, we have by Hölder inequality,

∫
E

∣∣u−uE∣∣≤ Cdiam(E)|‖g‖|LΦ(E)|‖1‖|LΦ∗ (E). (4.17)

Recall that |‖1‖|LΦ∗ (E) = µ(E)Φ−1(1/µ(X)). This justifies the following definition.

Definition 4.12. Let Φ be an �-function. The space X is said to support a weak (1,Φ)-
Poincaré inequality if there are constants C > 0 and τ ≥ 1 such that for all balls B ⊂ X
and all pairs of functions u and ρ, whenever ρ is an upper gradient of u on τB and u is
integrable on B, the following inequality holds:

1
µ(B)

∫
B

∣∣u−uE∣∣≤ Cdiam(B)|‖g‖|
LΦ

(
τB
)Φ−1

(
1

µ(τB)

)
. (4.18)

When τ = 1, we say that X supports a (1,Φ)-Poincaré inequality.

Proposition 4.13. Let Φ be an �-function and let X be a doubling space. Define the oper-
ator � by

�( f )(x)= sup
B

1
µ(B)

Φ
(|‖ f ‖|LΦ(B)

)
, (4.19)

where the supremum is taken over all balls B ⊂ X such that x ∈ B. Then if f ∈ LΦ,

lim
λ→∞

λµ
{
x ∈ X : �( f )(x) > λ

}= 0. (4.20)

Proof. Define for every R > 0 the operator �R by

�R( f )(x)= sup
B

1
µ(B)

Φ
(|‖ f ‖|LΦ(B)

)
, (4.21)

where the supremum is taken over all balls B ⊂ X such that x ∈ B and diam(B)≤ 2R. Let
f ∈ LΦ and set ERλ = {x ∈ X : �R( f )(x) > λ} and Eλ = {x ∈ X : �( f )(x) > λ}. We have
ERλ ⊂ Eλ. On the other hand, if x ∈ ERλ , there is yx ∈ X and rx > 0 so that x ∈ B(yx,rx) and

1
µ
(
B
(
yx,rx

))Φ(|‖ f ‖|LΦ(B(yx ,rx))
)
> λ. (4.22)

Hence, B(yx,rx) ⊂ ERλ . The set ERλ is covered by such balls B(yx,rx) with radii rx ≤ R.
By the basic covering theorem (see, for instance, [19, Theorem 2.1 and the remark on
page 23]), there exists a countable disjoint subcollection {B(xi,ri)}∞i=1 of this covering
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collection of balls such that ERλ is covered by the collection {B(xi,5ri)}∞i=1. Thus

µ
(
ERλ
)≤ ∞∑

i=1

µ
(
B
(
xi,5ri

))
≤ C

∞∑
i=1

µ
(
B
(
xi,ri

))
≤ Cλ−1

∞∑
i=1

Φ
(|‖ f ‖|LΦ(B(xi,ri))

)
≤ Cλ−1Φ

( ∞∑
i=1

|‖ f ‖|LΦ(B(xi,ri))

)
.

(4.23)

By the same method as the one in [3, Lemma 3.2], we have

∞∑
i=1

|‖ f ‖|LΦ(B(xi,ri)) ≤ 4|‖ f ‖|LΦ(∪iB(xi,ri)). (4.24)

Hence,

µ
(
ERλ
)≤ Cλ−1Φ

(
4|‖ f ‖|LΦ(∪iB(xi,ri))

)≤ Cλ−1Φ
(
4|‖ f ‖|LΦ(ERλ )

)
. (4.25)

Thus

µ
(
ERλ
)≤ Cλ−1Φ

(
4|‖ f ‖|LΦ(Eλ)

)
. (4.26)

For 0 < R1 < R2, we have ER1
λ ⊂ ER2

λ and Eλ =
⋃
R>0E

R
λ . This implies, by taking the limit

as R→∞, that

µ
(
Eλ
)≤ Cλ−1Φ

(
4|‖ f ‖|LΦ(Eλ)

)
. (4.27)

Hence,

µ
(
Eλ
)≤ Cλ−1Φ

(
4|‖ f ‖|LΦ

)
, (4.28)

and thus limλ→∞µ(Eλ)= 0. Therefore, we get |‖ f ‖|LΦ(Eλ) → 0 as λ→∞, since f ∈ LΦ. By
(4.27) and since Φ is continuous and increasing, we have

lim
λ→∞

λµ
(
Eλ
)= 0. (4.29)

The proof is complete. �

Let x0 be a fixed point and for each positive integer i, consider the following function:

ηi(x)=


1 if d

(
x0,x

)≤ i− 1,

i−d(x0,x) if i− 1 < d
(
x0,x

)
< i,

0 otherwise.

(4.30)

It is easy to see that ηi is 1-Lipschitz.
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Lemma 4.14. Let Φ be an �-function and let u∈N1
Φ(X). Then the function vi = uηi is also

in N1
Φ(X), and furthermore, the sequence (vi)i converges to u in N1

Φ(X).

Proof. If x, y ∈ X , then∣∣vi(x)− vi(y)
∣∣≤ ∣∣ηi(x)u(x)−ηi(x)u(y)

∣∣+
∣∣ηi(x)u(y)−ηi(y)u(y)

∣∣
≤ ∣∣u(x)−u(y)

∣∣+
∣∣u(y)

∣∣∣∣ηi(x)−ηi(y)
∣∣. (4.31)

By Lemma 4.4, if g is an upper gradient of u, then g + 4|u| is also an upper gradient of
vi. Since vi vanishes on X \B(x0, i), by Lemma 3.22, the function gi = (g + 4|u|)χB(x0,i) is a
Φ-weak upper gradient of vi. Since u= vi on B(x0, i− 1) and g + gi is a Φ-weak upper gra-
dient of u− vi, we get by Lemma 3.22 that (g + gi)χX\B(x0,i−1) is a Φ-weak upper gradient
of u− vi. Hence,∣∣∥∥u− vi∥∥∣∣LΦ

≤ ∣∣∥∥u− vi∥∥∣∣LΦ(X\B(x0,i−1)) ≤ 2|‖u‖|LΦ(X\B(x0,i−1)) −→ 0, (4.32)

since u∈ LΦ. Moreover,∣∣∥∥(g + gi
)
χX\B(x0,i−1)

∥∥∣∣
LΦ
≤ 2|‖g‖|LΦ(X\B(x0,i−1)) + 4|‖u‖|LΦ(X\B(x0,i−1)) −→ 0, (4.33)

since g,u∈ LΦ. Hence, |‖u− vi‖|N1
Φ
→ 0 as i→∞. The proof is complete. �

Theorem 4.15. Let Φ be an �-function satisfying the ∆′ condition. If X is a doubling space
supporting a weak (1,Φ)-Poincaré inequality, then Lipschitz functions are dense in N1

Φ(X).

Proof. Let u∈N1
Φ(X). By Lemma 4.14, we can assume that u vanishes outside a bounded

set. Let g be an upper gradient of u such that g ∈ LΦ(X) and set

Eλ =
{
x ∈ X : �( f )(x) >Φ(λ)

}
. (4.34)

By Proposition 4.13, Φ(λ)µ(Eλ)→ 0 as λ→∞.
Let x ∈ X \Eλ. Since Φ verifies the ∆′ condition, we get for all r > 0,

1
µ
(
B(x,r)

) ∫
B(x,r)

∣∣u−uB(x,r)
∣∣≤ Cr|‖g‖|LΦ(τB(x,r))Φ

−1
(

1
µ
(
τB(x,r)

))≤ Crλ. (4.35)

Hence, for s∈ [r/2,r], we get for x ∈ X \Eλ,
∣∣uB(x,s)−uB(x,r)

∣∣≤ 1
µ
(
B(x,s)

) ∫
B(x,s)

∣∣u−uB(x,r)
∣∣

≤ µ
(
B(x,r)

)
µ
(
B(x,s)

) [ 1
µ
(
B(x,r)

) ∫
B(x,r)

∣∣u−uB(x,r)
∣∣]

≤ Crλ.

(4.36)

By a chaining argument, for any positive s < r, we get for x ∈ X \Eλ,∣∣uB(x,s)−uB(x,r)
∣∣≤ Crλ. (4.37)
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Hence, any sequence (uB(x,ri))i is a Cauchy sequence in R, and hence, is convergent.
This implies that the following function is well defined on X \Eλ:

uλ(x) := lim
r→0

uB(x,r). (4.38)

By [19, Theorem 2.12] or [8, Corollary 2.9.9], almost every point in X is a Lebesgue
point of u since every function in N1

Φ(X) is locally integrable. On the other hand, at
Lebesgue points of u in X \Eλ, we have uλ = u, and since Eλ is open, u− uλ satisfies the
hypotheses of Lemma 3.22. Now, for x, y ∈ X , consider the family of balls {Bi}∞i=−∞ de-
fined by B1 = B(x,d(x, y)) and B−1 = B(y,d(x, y)) and inductively for i > 1, Bi = (1/2)Bi−1

and B−i = (1/2)B−i+1.
For x, y ∈ X \Eλ, by construction, we get

∣∣uλ(x)−uλ(y)
∣∣≤ ∞∑

i=−∞

∣∣uBi −uBi+1

∣∣≤ Cλd(x, y). (4.39)

Thus uλ is Cλ-Lipschitz on X \ Eλ. We extend uλ as a Cλ-Lipschitz extension to the
entire X ; see for instance [20]. Choose an extension such that uλ is bounded by 2Cλ. This
can be done by truncating any Lipschitz extension at Cλ. This truncation do not affect
the uλ on X \ Eλ because for large enough λ, the original function u is bounded on its
Lebesgue points of X \ Eλ, since u is zero outside a bounded set and hence the nonzero
values of uλ in X \Eλ lie within a bounded set which is independent of λ, and uλ is Cλ-
Lipschitz.

Hence, ∣∣∥∥u−uλ∥∥∣∣LΦ
= ∣∣∥∥u−uλ∥∥∣∣LΦ(Eλ) ≤ |‖u‖|LΦ(Eλ) +

∣∣∥∥uλ∥∥∣∣LΦ(Eλ). (4.40)

Since limλ→∞µ(Eλ) = 0, we see that limλ→∞|‖u‖|LΦ(Eλ) = 0. Now, since Φ verifies
the ∆′ condition, it satisfies also the ∆2 condition (see [16, 21]). Hence,

∫
EλΦ(uλ)dµ ≤∫

EλΦ(Cλ)dµ≤ C′Φ(λ)µ(Eλ)→ 0 as λ→∞. Thus |‖uλ‖|LΦ(Eλ) → 0 as λ→∞. This implies
|‖u− uλ‖|LΦ → 0 as λ→∞. By Lemma 3.22, the function (Cλ+ g)χEλ is a Φ-weak upper
gradient of u−uλ. Hence, u−uλ ∈N1

Φ(X) and also uλ ∈N1
Φ(X). Since∫

X
Φ
(
CλχEλ

)
dµ≤ C′Φ(λ)µ

(
Eλ
)−→ 0 as λ−→∞, (4.41)

we get |‖CλχEλ‖|LΦ → 0 as λ→∞. For gχEλ , we have∣∣∥∥gχEλ∥∥∣∣LΦ
= |‖g‖|LΦ(Eλ) −→ 0 as λ−→∞, (4.42)

since g ∈ LΦ(X) and µ(Eλ) → 0 as λ → ∞. Thus the sequence (uλ) converges to u in
N1

Φ(X). The proof is complete. �

By Corollary 3.20 and Theorem 4.15 we obtain the following corollary.

Corollary 4.16. Let Φ be an �-function satisfying the ∆′ condition. If X is a doubling
space supporting a weak (1,Φ)-Poincaré inequality, then for each function u inN1

Φ(X), there
are open sets of arbitrarily small Φ-capacity such that u is continuous in the complement of
these sets.
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5. The MECΦ criterion and other capacities

In this section, we show that N1
Φ(X) is strictly smaller than the Orlicz space LΦ(X), and

we give comparisons between some capacities.

Definition 5.1. Let Φ be an �-function and let ρ be a nonnegative Borel function in X
such that ρ ∈ LΦ(X). Define the equivalence relation �ρ by x�ρ y, for x, y ∈ X , if either
x = y or there is a path γ ∈ Γrect connecting x to y such that

∫
γ γds <∞.

It is easily seen that �ρ is an equivalence relation partitioningX into equivalent classes.

Definition 5.2. Let Φ be an �-function. A metric measure space is said to admit the
MECΦ if each nonnegative Borel function ρ inX , belonging to LΦ(X), generates an equiv-
alent class Gρ, called the main equivalence class of ρ, such that µ(X \Gρ)= 0.

Proposition 5.3. Let Φ be an �-function and let X be an MECΦ space containing two
disjoint open sets. For any subset E ⊂ X , the following equivalence holds:

ModΦ
(
ΓE
)= 0⇐⇒ CΦ(E)= 0. (5.1)

Proof. By Lemma 3.17, if CΦ(E) = 0, then ModΦ(ΓE) = 0. Now, let E ⊂ X be such that
ModΦ(ΓE) = 0. Then by Lemma 3.6, there exists a nonnegative Borel function ρ on X
belonging to LΦ(X) such that for all γ ∈ ΓE,

∫
γ ρds =∞. By the MECΦ property of X , ρ

has a main equivalence class Gρ. Since X contains two disjoint open sets and the open
sets have positive measure, Gρ has more than one element. Let x ∈ E and y ∈ Gρ with
y �= x; then any path connecting x to y is in ΓE. Thus, by the choice of ρ, we get that x is
not equivalent to y via the relation �ρ. Hence, E is a subset of X \Gρ, which implies that
µ(E)= 0. Therefore, the function u= χE is in LΦ(X) and is absolutely continuous on all
the paths in Γrect that are not in ΓE. Since the zero function is a Φ-weak upper gradient of
u, u∈N1

Φ(X). Then

CΦ(E)≤ |‖u‖|N1
Φ
= 0. (5.2)

The proof is complete. �
In the proof of the above lemma we have shown the following proposition.

Proposition 5.4. Let Φ be an �-function and let X be an MECΦ space containing two
disjoint open sets. If E ⊂ X and ModΦ(ΓE)= 0, then µ(E)= 0.

Corollary 5.5. Let Φ be an �-function and let X be an MECΦ space containing two
disjoint open sets. Then ModΦ(Γrect) > 0.

Proof. We haveCΦ(X)>0, since µ(X) > 0. Recall that |‖1‖|Φ = 1/Φ−1(1/µ(X)) and hence,
|‖1‖|Φ > 0. Now, let u∈N1

Φ(X) and u≥ 1. Then

|‖u‖|N1
Φ
≥ |‖1‖|Φ. (5.3)

Thus

CΦ(X)≥ |‖1‖|Φ > 0. (5.4)

Proposition 5.3 implies that ModΦ(Γrect) > 0. The proof is complete. �
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The following proposition gives conditions onX under whichN1
Φ(X) is strictly smaller

than LΦ(X).

Proposition 5.6. Let Φ be an �-function and let X be an MECΦ space containing at least
two distinct points. Then there exists an equivalence class of functions in LΦ(X) such that no
function u in this equivalence class is in an equivalence class of N1

Φ(X). In particular, N1
Φ(X)

is strictly smaller than LΦ(X).

Proof. Under the hypothesis, there exists an open ball B ⊂ X such that µ(B) > 0 and
µ(X \B) > 0. Let u= χB and [u] its equivalence class in LΦ(X). We know that |‖χB‖|Φ =
1/Φ−1(1/µ(B)) <∞. Suppose that v is a function in this equivalence class such that v ∈
Ñ1

Φ. Then v(x) = 1 for almost all x ∈ B and v(x) = 0 for almost all x ∈ X \ B. Let E =
{x ∈ X : u(x) �= v(x)} and let Γv be the collection of paths on which v is not absolutely
continuous. Hence, µ(E)= 0 which implies by Lemma 3.10 that ModΦ(Γ+

E ∪ Γv)= 0. By
Lemma 3.6, there is a nonnegative Borel function ρ on X belonging to LΦ(X) such that
for all γ ∈ Γ+

E ∪ Γv,
∫
γ ρds=∞. Since X is an MECΦ space, ρ has a main equivalence class

G with µ(X \G)= 0. Hence, there is x ∈ B and y ∈ X \B so that x, y ∈ G: there is a rec-
tifiable path γ connecting x to y so that

∫
γ ρds <∞. On the other hand, γ /∈ Γ+

E ∪ Γv, and
hence v is absolutely continuous on γ and

�1
(|γ|∩B∩E)= 0=�1

(|γ|∩ (X \B)∩E). (5.5)

Let x0 be the point in |γ| at which γ first leaves the closed set X \B (such a point exists
since |γ| is compact). The function v cannot be continuous at x0 as every neighbourhood

in |γ| of x0 contains points at which v is zero and also points at which v is 1. Thus v /∈ Ñ1
Φ.

This completes the proof. �

Definition 5.7. Let Φ be an �-function. For a set E ⊂ X , define DΦ(E) by

DΦ(E)= infu|‖u‖|N1
Φ

, (5.6)

where the infimum is taken over all u∈N1
Φ(X) such that for Φ-almost all paths γ inter-

secting E, the limit of u ◦ γ(t) along γ, as γ(t) converges to any intersecting point in E,
exists and is not smaller than 1.

This definition in the setting of Sobolev spaces on metric spaces is used in [22], and
for Sobolev spaces in the Euclidean spaces in [2].

Definition 5.8. Let Φ be an �-function. For a set E ⊂ X , define GΦ(E) by

GΦ(E)= inf
{|‖u‖|N1

Φ
: u∈�(E)

}
, (5.7)

where �(E)= {u∈N1
Φ : u|E ≥ 1 in a neighbourhood of E}.
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Remark 5.9. It is easily seen that if δ ∈R and u∈N1
Φ, then the function v =min{u,δ} ∈

N1
Φ with any Φ-weak upper gradient of u also being a Φ-weak upper gradient of v. Hence,

the condition u|E ≥ 1 in a neighbourhood of E can be replaced by the condition u|E = 1
in a neighbourhood of E. By the same reasoning, it can also be assumed that these test
functions are nonnegative.

Lemma 5.10. Let Φ be an �-function. If E ⊂ X , then

DΦ(E)≤ CΦ(E)≤GΦ(E). (5.8)

Proof. Let u∈N1
Φ(X) be such that u|E ≥ 1. Then by Lemma 3.10, u is ACCΦ and hence it

is also an admissible test function in determining DΦ(E). The second inequality in (5.8)
is evident. This completes the proof. �

Proposition 5.11. Let Φ be an �-function and let X be such that Lipschitz functions are
dense in N1

Φ(X). If E ⊂ X , then

GΦ(E)= CΦ(E). (5.9)

Proof. It suffices to show that GΦ(E) ≤ CΦ(E). Let 1 > ε > 0 and let u ∈ N1
Φ(X) be such

that 0 ≤ u ≤ 1, u|E = 1, and CΦ(E) ≥ |‖u‖|N1
Φ
− ε. By Corollary 4.16, the function u is

Φ-quasicontinuous. Thus there is an open set Fε ⊂ X such that CΦ(Fε)≤ ε and u is con-
tinuous on X \ Fε. Hence, there exists an open set Oε ⊂ X such that u|Oε\Fε ≥ 1− ε and
E ⊂Oε. Let wε ∈N1

Φ(X) be such that wε|Oε = 1, 0≤wε ≤ 1, and |‖wε‖|N1
Φ
≤ 2ε. Define vε

by vε = u/(1− ε) +wε. Then vε|Oε ≥ 1, vε ∈N1
Φ(X), and

GΦ(E)≤ ∣∣∥∥vε∥∥∣∣N1
Φ
≤ 1

1− ε |‖u‖|N1
Φ

+
∣∣∥∥wε

∥∥∣∣
N1
Φ
. (5.10)

Hence,

GΦ(E)≤ 1
1− ε

(
CΦ(E) + ε

)
+ 2ε. (5.11)

We get the result by letting ε→ 0. �

Proposition 5.12. Let Φ be an �-function. If X is an MECΦ space, then for all E ⊂ X ,

CΦ(E)=DΦ(E). (5.12)

Proof. It suffices to prove that CΦ(E)≤DΦ(E). Let u∈N1
Φ(X) be such that for Φ-almost

every path γ ∈ ΓE,

lim
γ(t)→|γ|∩E

(
u◦ γ(t)

)≥ 1. (5.13)

Let E1 = {x ∈ E : u(x) < 1}. Then for each γ ∈ ΓE1 , either limγ(t)→|γ|∩E1 (u ◦ γ(t)) < 1 or
else, either the limit does not exist or the limit exists and is greater than or equal to 1, while
u is less than 1 at the limiting point in |γ| ∩ E1. That is, u is not absolutely continuous
on γ. By the choice of u and by Lemma 3.10, ModΦ(ΓE1 ) = 0. By Lemma 3.6 and since
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X is an MECΦ space, it follows that µ(E1)= 0. Hence, the value of u can be adjusted on
E1 to be greater than or equal to 1 to obtain a function in N1

Φ(X) in the same N1
Φ(X)-

equivalence class as u, but with the property of being greater than or equal to 1 on all of
E. Thus CΦ(E)≤DΦ(E). The proof is complete. �

Corollary 5.13. Let Φ be an �-function and let X be such that Lipschitz functions are
dense in N1

Φ(X). If X is an MECΦ space, then for all E ⊂ X ,

CΦ(E)=DΦ(E)=GΦ(E). (5.14)
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Noureddine Aı̈ssaoui: Département de Mathématiques, Ecole Normale Supérieure, 5206 Ben
Souda, Fès, Morocco

E-mail address: n.aissaoui@caramail.com

mailto:n.aissaoui@caramail.com

