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In the case of the wave equation, defined on a sufficiently smooth bounded domain of
arbitrary dimension, and subject to Dirichlet boundary control, the operator B∗L from
boundary to boundary is bounded in the L2-sense. The proof combines hyperbolic dif-
ferential energy methods with a microlocal elliptic component.

1. Corrigendum and addendum to [10, Section 5.2]

In this paper, we primarily make reference to [10, Section 5.2, pages 1117–1120]. At the
end, in Section 3 below, we will also examine its impact on [10, Section 7.1], which is a
direct consequence of [10, Section 5.2]. Section 5.2 of [10] deals with the regularity of the
map g → B∗Lg, where v = Lg is the solution of the two-dimensional wave equation [10,
equation (5.2.2)] in the half-space, with zero initial conditions and Dirichlet boundary
control g. (See problem (1.9) below for the general case on a bounded domain in Rn,
n≥ 2.)

The claim made in [10, Section 5.2] that B∗L /∈�(L2(0,T ;U)) is incorrect, due to a
spurious appearance of the symbol “Re” (real part) in [10, equation (5.2.18)]—and, con-
sequently, in [10, equation (5.2.22)]—while in view of the correct [10, equation (5.2.10)],
the symbol “Re” should have been omitted.

Luckily, the same analysis given in [10, Section 5.2], once the spurious symbol “Re” is
omitted from [10, equation (5.2.18)] (as it should be), provides, in fact, a direct proof of
the positive result that

g −→ B∗Lg is continuous on L2(Σ), Σ= (0,T)×Γ. (1.1)

This result in (1.1)—at this step, with the correction noted above, valid just for the two-
dimensional wave equation on the half-space—can, in fact, be generalized to hold true for
the wave equation with Dirichlet boundary control g defined on any bounded, sufficiently
smooth domain in Rn, n≥ 2—see Theorem 1.1 below. The positive conclusion in the case
n= 1 was already noted in [10, Section 4.7 and equation (5.1.19)]. Thus, this note serves a
two-fold purpose: (i) on the one hand, it provides a corrigendum to the counter-example
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in the two-dimensional half space of [10, Section 5.2]; (ii) on the other hand, it provides
its replacement in the addendum—the positive statement of Theorem 1.1 below.

Corrigendum. Reference is made to [10, Section 5.2].
(i) In equation (5.2.18), page 1120, suppress the symbol “Re” (real part).
(ii) As a consequence of (i), in equation (5.2.22), page 1120, suppress the symbol “Re,”

so that the corrected equation becomes, for (σ ,τ)∈�σ ,τ ,

∫∞
0
e−
√

τ2+η2xe−|η|xdx = 1√
τ2 +η2 +η

= 1
A+ iB+η

∼ 1
1 + iσ +η

∼ 1
1 + iη2 +η

∼ 1
η2
∼ 1

σ
.

(1.2)

(iii) As a consequence of (ii), in equation (5.2.23), page 1120, suppress the symbol “Re,”
so that the corrected equation becomes by (1.2), with Σ∞ = (0,∞)×Γ,

∫∫
�ση

σ
∣∣ĝ(σ ,η)

∣∣2
∫∞

0
e−
√

τ2+η2xe−|η|xdx ∼
∫∫

�ση

σ

σ

∣∣ĝ(σ ,η)
∣∣2
dσ dη ≤ C|g|2L2(Σ∞). (1.3)

The very same argument with “Re” omitted, as it should be, instead of a negative result,
gives the positive result in (1.1) in the half-space; in fact, for any n ≥ 2. We will see this
below.

Positive result on a half-space, n ≥ 2. The proof is essentially contained in [10, Section
5.2], modulo the corrections as stated above. We consider the half-space wave equation
problem in [10, equation (5.2.2)]. Let u∈ L2(0,∞;L2(Γ)). Then, the corresponding ver-
sion of [10, equation (5.2.10), page 1119] is

(
e−2γtB∗Lg,u

)
L2(Σ∞) =

1
2π

∫
Rn
σ ,η

(
τ
∫∞

0
e−
√

τ2+|η|2xe−|η|xdx
)
ĝ(τ,η)û(τ,η)dσ dη. (1.4)

Let

H(σ ,η)≡ σ
∫∞

0
e−
√

τ2+|η|2xe−|η|xdx. (1.5)

It is immediate to show that |H(σ ,η)| is uniformly bounded for all (σ ,η)∈Rn
σ ,η. Indeed,

first notice that

∣∣H(σ ,η)
∣∣≡

∣∣∣∣σ
∫∞

0
e−
√

τ2+|η|2xe−|η|xdx
∣∣∣∣≤ c

|σ|
|A|+ |η|+ |B| ≡ ch(σ ,η) (1.6)

in the notation of [10, equation (5.2.19)], where A+ iB ≡
√
τ2 + |η|2. On the one hand,

considering the hyperbolic region |σ| ≥ 2|η|, A ∼ 1 (see [10, equation (5.2.20)]), |B| ∼
|σ| (see [10, equation (5.2.19b)]), and h(σ ,η)≤ |σ|/|B| ≤ |σ|/|σ| = 1.

On the other hand, in the elliptic region |σ| ≤ 2|η|, we have h(σ ,η) ≤ |σ|/|η| ≤ 2.
Thus,

∣∣H(σ ,η)
∣∣≤ C <∞, ∀σ ∈R

1, η ∈R
n−1. (1.7)



I. Lasiecka and R. Triggiani 627

Then, (1.4) and (1.7) yield the desired conclusion:
∣∣∣(e−2γtB∗Lg,u

)
L2(Σ∞)

∣∣∣≤ C‖g‖L2(Σ∞)‖u‖L2(Σ∞), (1.8)

and thus (1.1) holds true for the wave equation on the n-dimensional half-space n≥ 2.
The argument above is very transparent and shows exactly what is going on in order

to gain the additional derivative on the boundary in the present case.

Addendum. We now state the general positive result.

Theorem 1.1. Let Ω be a sufficiently smooth bounded domain in Rn, n ≥ 2. Consider the
v-problem in [10, equation (5.1.1), page 1114], that is,

vtt −∆v = 0 in Q ≡ (0,T]×Ω, v|Σ = g on Σ≡ (0,T]×Γ, (1.9)

and zero initial conditions: v(0,·)= vt(0,·)= 0 on Ω. Then, in the notation of [10, Section
5.2], the regularity in (1.1) holds true. This is to say, the map (see [10, equations (5.1.8)–
(5.1.10)])

g −→ B∗Lg =D∗vt =−∂z

∂ν
is bounded on L2(Σ). (1.10)

Here, D is the Dirichlet map ϕ=Dg⇔{∆ϕ= 0 in Ω; ϕ|Γ = g in Γ} as in [10, equation
(5.1.6)]. Moreover, z =�−1vt, see [10, equation (5.1.10)], where � is −∆ with Dirichlet
boundary condition (BC) as in [10, equation (5.1.6)].

For future reference in the proof of Section 2, we recall from [10, equations (5.1.3),
(5.1.10), (5.1.13)] that

z ∈ C
(
[0,T];�

(
�1/2)≡H1

0 (Ω)
)
, ∆z =−vt ∈ C

(
[0,T];H−1(Ω)

)
; (1.11)

zt =�−1vtt =�−1[−�v+ �Dg]=−v+Dg ∈ L2
(
0,T ;L2(Ω)

)
. (1.12)

Remark 1.2. The above Theorem 1.1 was first stated in [1] (see estimate (2.7), page 121).
We believe that the proof that we will give below in Section 2 is essentially self-contained
and much simpler than the sketch given in [1]. The idea pursued in [1] is based on a
full microlocal analysis of the fourth-order operator ∆(D2

t − ∆) (where the extra ∆ is
used to eliminate Dg from the z-dynamics ztt = ∆z +Dgt, see [10, equation (5.1.11b)],
as ∆Dgt ≡ 0). The subsequent microlocal analysis of [1] considers, as usual [8], three
regions: the hyperbolic region, the elliptic region, and the “glancing rays” region. The
latter is the most demanding, and it is unfortunate that no details are provided in [1] for
the analysis in the glancing region, except for reference to the author’s Ph.D. thesis.

By contrast, our proof in Section 2 below invokes, for the most critical part, the sharp
regularity of the wave equation from [5]—which is obtained via differential, rather than
pseudodifferential/microlocal analysis methods. In addition, standard elliptic (interior
and) trace regularity of the Dirichlet mapD is used. Thus, by simply invoking these results
in (1.12) above for zt, we obtain—by purely differential methods—the critical result on
∂zt/∂ν of Step 1, (2.3). This then provides automatically the desired regularity of ∂z/∂ν
microlocally outside the elliptic sector of the D’Alambertian �=D2

t −∆, where the time
variable dominates the tangential space variable in the Fourier space, see (2.11) below.
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Thus, the rest of the proof follows from pseudodifferential operator (PDO) elliptic
regularity of the localized problem.

2. Proof of Theorem 1.1

Step 1. Let g ∈ L2(Σ). Then, the following interior and boundary sharp regularity for
the v-problem (1.9) is known [5, Theorem 2.3, page 153; or else Theorem 3.3, page 176
(interior regularity) plus Theorem 3.7, page 178 (boundary regularity)]:

{
v,vt

}∈ C
(
[0,T];L2(Ω)×H−1(Ω)

)
,

∂

∂ν
v
∣∣∣∣
Σ
∈H−1(Σ) (2.1)

continuously in g (as noted in [10, equation (5.1.3)]). Moreover, elliptic regularity of the
Dirichlet map gives Dg ∈ L2(0,T ;H1/2(Ω)), and thus [2]

∂

∂ν
Dg ∈ L2

(
0,T ;H−1(Γ)

)
. (2.2)

Next, using (2.1) and (2.2) in (1.12) yields

∂

∂ν
zt =− ∂

∂ν
v+

∂

∂ν
Dg ∈H−1(Σ). (2.3)

The above relation provides us with the desired regularity of ∂z/∂ν microlocally outside
the elliptic sector of the D’Alambertian �=D2

t −∆; that is, when the dual Fourier vari-
able σ (corresponding to time) dominates the dual Fourier variable |η| (corresponding
to the space tangential variable). A quantitative statement of this is given in (2.11) below.

Step 2. It remains to show that the L2 regularity of ∂z/∂ν holds also in the elliptic sec-
tor. This is done by standard arguments using localization of the PDO symbols. We
use standard partition of unity procedure and local change of coordinates by which Ω
and Γ can be identified (locally) with Ω̃ ≡ {(x, y) ∈ Rn, x ≥ 0, y ∈ Rn−1}, Γ̃ ≡ {(x, y) ∈
Rn, x = 0, y ∈ Rn−1}. The second-order elliptic operator ∆ is identified in local coor-
dinates (Melrose-Sjostrand) with ∆̃ = D2

x + r(x, y)D2
y + lot, where lot (which result from

commutators) are first-order differential operators and r(x, y)D2
y stands for the second-

order tangential (in the y variable) strongly elliptic operator. Since solutions v satisfy zero
initial data, we can also extend v(t) by zero for t < 0. For t > T we multiply the solution
by a smooth cutoff function φ(t)= 0, t ≥ (3/2)T , φ(t)= 1, t ≤ T . Thus, in order to obtain
the desired solution, it amounts to consider the following problem:

wtt = ∆̃w = ∆0w+ lot(v) in Q̃, w|Γ̃ = g,

w(0,·)=wt(0,·)= 0 in Ω̃, suppw ∈ [0,2T],
(2.4a)

where ∆0 = D2
x + r(x, y)D2

y is the principal part of ∆̃ and v is the original solution v =
Lg of problem (1.9). Below, we will write w = u+ y, where u, y satisfy (2.5) and (2.6),
respectively. As a consequence, we will obtain

{
w,wt

}∈ C
(
[0,T];L2(Ω̃)×H−1(Ω̃)

)
continuously in g ∈ L2(Σ̃). (2.4b)
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Below we will denote by u the solution of

utt = ∆0u in Q̃, u|Σ̃ = g; u(0,·)= ut(0,·)= 0 in Ω̃, (2.5a){
u,ut

}∈ C
(
[0,T];L2(Ω̃)×H−1(Ω̃)

)
continuously in g ∈ L2(Σ̃), (2.5b)

the counterpart regularity statement of (2.1) for v in Ω. Likewise, we introduce the fol-
lowing nonhomogenous problem:

ytt = ∆0y + f in Q̃, y|Σ̃ = 0, y(0,·)= yt(0,·)= 0 in Ω̃, (2.6)

where f = lot(v) results from the presence of the lower-order terms applied to the original
variable v in (2.4), that is, in (1.9). Thus, recalling that v ∈ C([0,T];L2(Ω)) by (2.1), we
obtain

f ∈ C
(
[0,T];H−1(Ω̃)

)
, hence

{
y, yt

}∈ C
(
[0,T];L2(Ω̃)×H−1(Ω̃)

)
(2.7)

[5, Theorem 2.3, page 153] continuously in g ∈ L2(Σ).
By the principle of superposition, we have w = u+ y, as announced above.

Step 3. In this step, we handle the y-problem (2.6). We first recall from (1.10) that our
original objective is showing that D∗vt ∈ L2(Σ) continuously in g ∈ L2(Σ). Moreover, we
recall that v in Ω is transferred into w = u+ y, on the half-space Ω̃ (locally). Thus, by
(2.6), (2.7), what suffices to show for y is the following regularity property:

f −→D∗yt : continuous L2
(
0,T ;H−1(Ω̃)

)−→ L2
(
0,T ;L2(Γ̃)

)
, (2.8)

whereby D∗yt is ultimately continuous in g ∈ L2(Σ). However, the above property (2.8)
is known from [5, Theorem 3.11, page 182] and has been used in the past several times.
In fact, set A = −∆0, with �(A) = H2(Ω̃)∩H1

0 (Ω̃) and rewrite (2.6) abstractly as ytt =
−Ay + f . Apply A−1 throughout and set Ψ= A−1y ∈ C([0,T];�(A)) via (2.7). Moreover,
A−1 f ∈ L2(0,T ;H1

0 (Ω̃)), again by (2.7). Thus, Ψ solves the problem

Ψtt = ∆0Ψ+A−1 f in Q̃, Ψ|Σ̃ = 0, Ψ(0,·)=Ψt(0,·)= 0 in Ω̃. (2.9)

We further have that A−1yt ∈ C([0,T];H1
0 (Ω̃)), again by (2.7). Finally we recall that

D∗AA−1yt =−(∂/∂ν)Ψt (see [9], [10, equation (5.1.9)]). One can simply quote [5, Theo-
rem 3.11, page 182] or [9, equation (10.5.5.11), page 952] to obtain the desired regularity
(2.8):

D∗yt =− ∂

∂ν
Ψt ∈ L2(Σ̃) continuously in g ∈ L2(Σ). (2.10)
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Step 4. Having accounted for the lot(v) in Step 3—which are responsible for the y-
problem—we may in this step set y ≡ 0 and thus identify w with u : w ≡ u. Thus it re-
mains to consider problem (2.5) in u, involving only the principal part of the
D’Alambertian. Let � ∈ S0(Q̃) denote the PDO operator �(x, y, t) with smooth symbol
of localization χ(x, y, t,σ ,η) supported in the elliptic sector of � ≡ D2

t −D2
x − r(x, y)D2

y ,
where the principal part of the D’Alambertian is written in local coordinates. The dual
variables σ ∈R1, η ∈Rn−1 correspond to the Fourier’s variables of t→ iσ , η→ iη. Thus,
suppχ ∈ {(x, y, t,σ ,η) ∈ Q̃×R1×Rn−1, σ2− r(0, y)|η|2 < 0}. The established regularity
(2.3) and the fact that |σ| ≥ c|η| on suppχ imply that

(I −�)
∂

∂ν
z ∈ L2(Σ), (2.11)

a statement that |σ|(∂z/∂ν), and thus a fortiori |η|(∂z/∂ν), are in L2 in time and space in
the (hyperbolic) sector |σ| ≥ c|η|. On the other hand, returning to problem (2.5) for u,
rewritten as �u= 0 and applying �, we see that the variable �u satisfies

��u=−[�,�]u∈H−1(Q̃), (2.12)

where henceforth we take for Q̃ an extended cylinder based on Ω̃× [−T ,2T]. Indeed, this
last inclusion follows from [�,�] ∈ S1(Q̃) and the priori regularity (2.5b) for u imply-
ing u ∈ L2(Q̃), which jointly lead to [�,�]u ∈ H−1(Q̃). Moreover, �u|Γ = �g ∈ L2(Σ̃).
Furthermore, still by (2.5b) and the fact that suppu∈ [0,(3/2)T], we have, by the pseu-
dolocal property of pseudodifferential operators, that (�u)(2T) ∈ C∞(Ω̃), (�u)(−T) ∈
C∞(Ω̃). We conclude that �u|∂Q̃ ∈ L2(∂Q̃), a boundary condition to be associated to
(2.12). Since �� is a pseudodifferential elliptic operator, classical elliptic theory, applied
to ��u∈H−1(Q̃), �u|∂Q̃ ∈ L2(∂Q̃)—the elliptic problem obtained above—yields

�u∈H1/2(Q̃) +H1(Q̃)⊂H1/2(Q̃), (2.13)

where the first containment on the right-hand side of (2.13) is due to the boundary term,
and the second to the interior term. Next, we return to the elliptic problem ∆z =−vt in
Q, z|Σ = 0 from (1.11), with a priori regularity noted in (1.11). The counterpart of the
above elliptic problem in the half-space Q̃ (locally) is ∆̃z = −ut in Q̃, z|Σ̃ = 0 (we retain
the symbol z in Q̃), as we are identifying w with u in the present Step 4 (due to the results
of Step 3). Applying � throughout yields

∆̃�z =−�ut + [∆̃,�]z =− d

dt
�u+

[
d

dt
,�
]
u+ [∆̃,�]z. (2.14)

Note [∆̃,�]∈ S1(Q̃) and [d/dt,�]∈ S0(Q̃). Hence, by the a priori regularity in (2.5b) for
u and in (1.11) for z, we conclude

[
d

dt
,�
]
u+ [∆̃,�]z ∈ L2(Q̃). (2.15)
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Moreover, by virtue of (2.13), (d/dt)�u∈H(0,−1/2)(Q̃) where we have used the aniso-
tropic Hörmander’s spaces [3, Volume III, page 477], H(m,s)(Q̃), where m is the order in
the normal direction to the plane x = 0 (which plays a distinguished role) and (m+ s) is
the order in the tangential direction in t and y. Via (2.15), we are thus led to solving the
problem

∆̃�z ∈H(0,−1/2)(Q̃) +L2(Q̃), (�z)|Γ̃ = 0. (2.16)

By elliptic regularity (note that ∆̃� is elliptic in Q̃), we obtain again

�z ∈H3/2(Q̃),
∂

∂ν
�z ∈ L2(Σ̃). (2.17)

Combining (2.17) and (2.11) yields the final conclusion

∂

∂ν
z = (I −�)

∂

∂ν
z+ �

∂

∂ν
z ∈ L2(Σ̃), (2.18)

and Theorem 1.1 is proved.

3. Impact on [10, Section 7.1]

Theorem 1.1 and the decomposition argument in [10, Section 7.1, page 1129] allow one
to deduce the analogous positive result valid for the Kirchhoff plate with moment con-
trols. Indeed, with reference to the model in [10, equations (7.1.1)], we have the following
theorem.

Theorem 3.1. Let Ω be as in Theorem 1.1, and let v be a solution to [10, equations (7.1.1)],
that is,

vtt − γ∆vtt +∆2v = 0 in Q, v = 0, ∆v = g on Σ, v(0)= vt(0) in Ω. (3.1)

Then the map g → (∂/∂ν)vt is continuous on L2(Σ).

This positive result replaces [10, Section 7.1].

4. From the regularity of B∗L to the regularity of L [10, Appendix]

Consider the system [10, equation (1.1)]: yt = Ay +Bu ∈ [�(A∗)]′, y(0) = y0 ∈ Y , un-
der the preliminary assumption stated in [10, page 1069]: (i) A : Y ⊃ D(A)→ Y is the
infinitesimal generator of a strongly continuous (s.c.) semigroup eAt in the Hilbert space
Y , t ≥ 0; (ii) B ∈�(U ; [�(A∗1/2

)]′), where U is another Hilbert space. Define as in [10,
equation (1.2b)]

(Lu)(t)=
∫ t

0
eA(t−s)Bu(s)ds, LTu=

∫ T

0
eA(T−s)Bu(s)ds. (4.1)

The following result was stated in [10, Appendix, Proposition A.1, page 1132].
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Proposition 4.1. In addition to the standing hypotheses (i) and (ii) above, assume that (a)
A is skew adjoint: A∗ = −A, so that eA

∗t = e−At, t ∈R, and (b)

B∗L∈�
(
L2(0,T ;U)

)
. (4.2)

Then, in fact,

L is continuous : L2(0,T ;U)−→ C
(
[0,T];Y

)
. (4.3)

Proof. Let u∈ L2(0,T ;U). Set

x(t)=
∫ t

0
e−AsBu(s)ds. (4.4)

By (a) and (b), we then estimate via (4.4), (4.1),

CT‖u‖2
L2(0,T ;U) ≥

∫ T

0

((
B∗Lu

)
(t),u(t)

)
Udt =

∫ T

0

(∫ t

0
eA(t−s)Bu(s)ds,Bu(t)

)
Y
dt

=
∫ T

0

(∫ t

0
e−AsBu(s)ds,e−AtBu(t)

)
Y
dt =

∫ T

0

(
x(t),

d

dt
x(t)

)
Y
dt

= 1
2

∫ T

0

d

dt

(
x(t),x(t)

)
Ydt =

1
2

∥∥x(T)
∥∥2
Y =

1
2

∥∥∥∥
∫ T

0
e−AsBu(s)ds

∥∥∥∥
2

Y

= 1
2

∥∥∥∥e−AT
∫ T

0
eA(T−s)Bu(s)ds

∥∥∥∥
2

Y
∼
∥∥∥∥
∫ T

0
eA(T−s)Bu(s)ds

∥∥∥∥
2

Y

= cT
∥∥LTu∥∥2

Y .

(4.5)

Then (4.5) says that

LT : continuous L2(0,T ;U)−→ Y (4.6)

and (4.6) is well known [6, 9] to yield (4.3). �

Remark 4.2. Proposition 4.1 can be extended to A of the form A= iS+ kI , with S a self-
adjoint operator on Y and k ∈R, so that A∗ = −A+ 2kI and eA

∗t = e−Ate2kt. In this case,
we start with (B∗Lu,u1)U , with u1 = e−2ktu(t), u∈ L2(0,T ;U).

Remark 4.3. The above direct proof replaces the one given in [10, Appendix], which while
driven by the same idea is less direct, and, moreover, has however a computational flaw
in [10, equation (A.7), page 1133].

Remark 4.4. An alternative, perhaps more insightful, proof of Proposition 4.1 is as fol-
lows. For u smooth, we have, via (4.1) for L and its adjoint L∗ [9],

(
B∗Lu

)
(t)=

∫ t

0
B∗eA(t−τ)Bu(τ)dτ,

(
L∗Bu

)
(t)=

∫ T

t
B∗eA

∗(τ−t)Bu(τ)dτ =
∫ T

t
B∗eA(t−τ)Bu(τ)dτ,

(4.7)
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using the assumption A∗ = −A. Thus, adding up (4.7) yields, using again skew-
adjointness,

(
B∗Lu

)
(t) +

(
L∗Bu

)
(t)=

∫ T

0
B∗eA(t−τ)Bu(τ)dτ

= B∗eA(t−T)
∫ T

0
eA(T−τ)Bu(τ)dτ

= B∗eA
∗(T−t)

∫ T

0
eA(T−τ)Bu(τ)dτ.

(4.8)

Finally, recalling LT in (4.1) and its adjoint L∗T [9], we rewrite (4.8) in the following at-
tractive form:

B∗Lu+L∗Bu= L∗TLTu, u smooth, (4.9)

(from which (4.5) follows, by taking the L2(0,T ;U)-inner product with u). Equation (4.9)
shows the implication (4.5)⇒(4.3).

Remark 4.5. Another negative example where uniform stabilization is known, yet the
operator B∗L /∈ �(L2(0,T ;U), is given by the Euler-Bernoulli plate equation with
boundary control only on the “moment” ∆w|Σ, as considered in [7, 4]. Here the class
of controls is L2(0,T ;H1/2(Γ)), and the space of exact controllability and uniform sta-
bilization is Y = [H2(Ω)∩H1

0 (Ω)]× L2(Ω). Exact controllability (without geometrical
conditions) is established in [7], while uniform stabilization is proved in [7] (under geo-
metrical conditions) and in [4] (without geometrical conditions). Optimal regularity of
L is given in [9, page 1023 and page 1029]: it shows that it would take the class H1/2,1/2(Σ)
of controls—thus with an extra 1/2-derivative in time—to obtain L continuous into
C([0,T];[H2(Ω) ∩ H1

0 (Ω)] × L2(Ω)). Thus, by Proposition 4.1, B∗L /∈ �(L2(0,T ;
H1/2(Γ)).
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