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We consider the positive solutions of a quasilinear elliptic equation with p-Laplacian,
logistic-type growth rate function, and a constant yield harvesting. We use sub-super-
solution methods to prove the existence of a maximal positive solution when the harvest-
ing rate is under a certain positive constant.

1. Introduction

We consider weak solutions to the boundary value problem

−∆pu= f (x,u)≡ aup−1−uγ−1− ch(x) in Ω,

u > 0 in Ω,

u= 0 on ∂Ω,

(1.1)

where ∆p denotes the p-Laplacian operator defined by ∆pz := div(|∇z|p−2∇z); p > 1,
γ(> p), a and c are positive constants, Ω is a bounded domain in RN ; N ≥ 1, with ∂Ω
of class C1,β for some β ∈ (0,1) and connected (if N = 1, we assume Ω is a bounded
open interval), and h : Ω̄→ R is a continuous function in Ω̄ satisfying h(x)≥ 0 for x ∈Ω,
h(x) �≡ 0, maxx∈Ω̄h(x)= 1, and h(x)= 0 for x ∈ ∂Ω. By a weak solution of (1.1), we mean

a function u∈W1,p
0 (Ω) that satisfies∫

Ω
|∇u|p−2∇u ·∇wdx =

∫
Ω

[
aup−1−uγ−1− ch(x)

]
wdx, ∀w ∈ C∞0 (Ω). (1.2)

From the standard regularity results of (1.1), the weak solutions belong to the function
class C1,α(Ω̄) for some α∈ (0,1) (see [4, pages 115–116] and the references therein).

We first note that if a ≤ λ1, where λ1 is the first eigenvalue of −∆p with Dirichlet
boundary conditions, then (1.1) has no positive solutions. This follows since if u is a
positive solution of (1.1), then u satisfies∫

Ω
|∇u|pdx =

∫
Ω

[
aup−1−uγ−1− ch(x)

]
udx. (1.3)
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But
∫
Ω |∇u|pdx ≥ λ1

∫
Ωu

pdx. Combining, we obtain
∫
Ω[aup−1 − uγ−1 − ch(x)]udx ≥

λ1
∫
Ωu

pdx and hence
∫
Ω(a− λ1)updx ≥ ∫Ω[uγ−1 + ch(x)]udx ≥ 0. This clearly requires

a > λ1.
Next if a > λ1 and c is very large, then again it can be proven that there are no pos-

itive solutions. This follows easily from the fact that if the solution u is positive, then∫
Ω[aup−1−uγ−1− ch(x)]dx is nonnegative. In fact, from the divergence theorem (see [4,

page 151]),
∫
Ω

[
aup−1−uγ−1− ch(x)

]
dx =−

∫
∂Ω
|∇u|p−2∇u · νdx ≥ 0. (1.4)

Thus,

c
∫
Ω
h(x)dx ≤

∫
Ω

[
aup−1−uγ−1]dx ≤ a(γ−1)/(γ−p)|Ω|. (1.5)

Here in the last inequality, we used the fact that u(x) ≤ a1/(γ−p) which can be proven by
the maximum principle (see [4, page 173]).

This leaves us with the analysis of the case a > λ1 and c small which is the focus of
the paper.

Theorem 1.1. Suppose that a > λ1. Then there exists c0(a) > 0 such that if 0 < c < c0,
then (1.1) has a positive C1,α(Ω̄) solution u. Further, this solution u is such that u(x) ≥
(ch(x)/λ1)1/(p−1) for x ∈ Ω̄.

Theorem 1.2. Suppose that a > λ1. Then there exists c1(a) ≥ c0 such that for 0 < c < c1,
(1.1) has a maximal positive solution, and for c > c1, (1.1) has no positive solutions.

Remark 1.3. Theorem 1.2 holds even when h(x) > 0 in Ω̄.

We establish Theorem 1.1 by the method of sub-supersolutions. By a supersolution

(subsolution) φ of (1.1), we mean a function φ ∈W1,p
0 (Ω) such that φ= 0 on ∂Ω and

∫
Ω
|∇φ|p−2∇φ ·∇wdx ≥ (≤)

∫
Ω

[
aφp−1−φγ−1− ch(x)

]
wdx, ∀w ∈W , (1.6)

whereW = {v ∈ C∞0 (Ω) | v ≥ 0 in Ω}. Now if there exist subsolutions and supersolutions
ψ and φ, respectively, such that 0 ≤ ψ ≤ φ in Ω, then (1.1) has a positive solution u ∈
W

1,p
0 (Ω) such that ψ ≤ u≤ φ. This follows from a result in [3].
Equation (1.1) arises in the studies of population biology of one species with u repre-

senting the concentration of the species and ch(x) representing the rate of harvesting. The
case when p = 2 (the Laplacian operator) and γ = 3 has been studied in [6]. The purpose
of this paper is to extend some of this study to the p-Laplacian case. In [3], the authors
studied (1.1) in the case when c = 0 (nonharvesting case). However, the c > 0 case is a
semipositone problem ( f (x,0) < 0) and studying positive solutions in this case is signifi-
cantly harder. Very few results exist on semipositone problems involving the p-Laplacian
operator (see [1, 2]), and these deal with only radial positive solutions with the domain Ω
a ball or an annulus. In Section 2, when a > λ1 and c is sufficiently small, we will construct
nonnegative subsolutions and supersolutions ψ and φ, respectively, such that ψ ≤ φ, and
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establish Theorem 1.1. We also establish Theorem 1.2 in Section 2 and discuss the case
when h(x) > 0 in Ω̄.

2. Proofs of theorems

Proof of Theorem 1.1. We first construct the subsolution ψ. We recall the antimaximum
principle (see [4, pages 155–156]) in the following form. Let λ1 be the principal eigenvalue
of −∆p with Dirichlet boundary conditions. Then there exists a δ(Ω) > 0 such that the
solution zλ of

−∆pz− λzp−1 =−1 in Ω,

z = 0 on ∂Ω,
(2.1)

for λ∈ (λ1,λ1 + δ) is positive for x ∈Ω and is such that (∂zλ/∂ν)(x) < 0, x ∈ ∂Ω.
We construct the subsolution ψ of (1.1) using zλ such that λ1ψ(x)p−1 ≥ ch(x). Fix

λ∗ ∈ (λ1,min{a,λ1 + δ}). Let α = ‖zλ∗‖∞, K0 = inf{K | λ1Kp−1z
p−1
λ∗ ≥h(x)}, and K1=

max{1,K0}. Define ψ = Kc1/(p−1)zλ∗ , where K ≥ K1 is to be chosen. Let w ∈W . Then

−
∫
Ω
|∇ψ|p−2∇ψ ·∇wdx+

∫
Ω

[
a(ψ)p−1− (ψ)γ−1− ch(x)

]
wdx

=
∫
Ω

[− cK p−1(λ∗zp−1
λ∗ − 1

)
+ ac

(
Kzλ∗

)p−1− (Kc1/(p−1)zλ∗
)γ−1− ch(x)

]
wdx

≥
∫
Ω

[− cK p−1(λ∗zp−1
λ∗ − 1

)
+ ac

(
Kzλ∗

)p−1− (Kc1/(p−1)zλ∗
)γ−1− c]wdx

=
∫
Ω

[
(a− λ∗)

(
Kzλ∗

)p−1− (Kzλ∗)γ−1
c(γ−p)/(p−1) +

(
Kp−1− 1

)]
cwdx.

(2.2)

Define H(y)= (a− λ∗)yp−1− yγ−1c(γ−p)/(p−1) + (Kp−1− 1). Then ψ(x) is a subsolution if
H(y)≥ 0 for all y ∈ [0,Kα]. ButH(0)= Kp−1− 1≥ 0 sinceK ≥ 1 andH′(y)= yp−2[(a−
λ∗)(p− 1)− c(γ−p)/(p−1)(γ− 1)yγ−p]. Hence H(y)≥ 0 for all y ∈ [0,Kα] if H(Kα)= (a−
λ∗)(Kα)p−1− (Kα)γ−1c(γ−p)/(p−1) + (Kp−1− 1)≥ 0, that is, if

c ≤
((

a− λ∗
)
(Kα)p−1 +

(
Kp−1− 1

)
(Kα)γ−1

)(p−1)/(γ−p)

. (2.3)

We define

c1 = sup
K≥K1

(
(a− λ∗)(Kα)p−1 +

(
Kp−1− 1

)
(Kα)γ−1

)(p−1)/(γ−p)

. (2.4)

Then for 0 < c < c1, there exists K̄ ≥ K1 such that

c <

((
a− λ∗

)
(K̄α)p−1 +

(
K̄ p−1− 1

)
(
K̄α
)γ−1

)(p−1)/(γ−p)

(2.5)

and hence ψ(x)= K̄c1/(p−1)zλ∗ is a subsolution.
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We next construct the supersolution φ(x) such that φ(x)≥ ψ(x). Let G(y)= ayp−1−
yγ−1. Since G′(y)= yp−2[a(p− 1)− (γ− 1)yγ−p], G(y)≤ L = G(y0), where y0 = [a(p−
1)/(γ− 1)]1/(γ−p). Let φ be the positive solution of

−∆pφ = L in Ω, (2.6)

φ = 0 on ∂Ω. (2.7)

Then for w ∈W ,

∫
Ω
|∇φ|p−2∇φ ·∇wdx =

∫
Ω
Lwdx

≥
∫
Ω

[
aφp−1−φγ−1]wdx

≥
∫
Ω

[
aφp−1−φγ−1− ch(x)

]
wdx.

(2.8)

Thus φ is a supersolution of (1.1). Also since−∆pψ ≤ aψp−1−ψγ−1− ch(x)≤ L=−∆pφ,
by the weak comparison principle (see [4, 5]), we obtain φ ≥ ψ ≥ 0. Hence there exists

a solution u ∈W
1,p
0 (Ω) such that φ ≥ u ≥ ψ. From the regularity results (see [4, pages

115–116] and the references therein), u∈ C1,α(Ω̄). �

Remark 2.1. If ũ is any C1,α(Ω̄) solution of (1.1), then by the weak comparison principle,
‖ũ‖∞ ≤ ‖φ‖∞, where φ is as in (2.6).

Proof of Theorem 1.2. From Theorem 1.1, we know that for c small, there exists a positive
solution. Whenever (1.1) has a positive solution u, (1.1) also has a maximal positive so-
lution. This easily follows since φ in (2.6) is always a supersolution such that φ ≥ u. Next
if for c = c̃, we have a positive solution uc̃, then for all c < c̃, uc̃ is a positive subsolution.
Hence again using φ in (2.6) as the supersolution, we obtain a maximal positive solution
for c. From (1.3), it is easy to see that for large c, there does not exist any positive solu-
tion. Hence there exists a c1(a) > 0 such that there exists a maximal positive solution for
c ∈ (0,c1) and no positive solution for c > c1. �

Remark 2.2. The use of the antimaximum principle in the creation of the subsolution
helps us to easily modify the proof of Theorem 1.1 to obtain a positive maximal solution
for all c < c2(a)= supK≥1(((a− λ∗)(Kα)p−1 +

(
Kp−1− 1

)
)/(Kα)γ−1)(p−1)/(γ−p) even in the

case when h(x) > 0 in Ω̄. Here c2(a)≥ c0(a). (Of course when h(x) > 0 in Ω̄, our solution
does not satisfy u(x)≥ (ch(x)/λ1)1/(p−1) for x ∈ Ω̄.) Hence Theorem 1.2 also holds in the
case when h(x) > 0 in Ω̄.
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