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The aim of this paper is to present some generic existence results for nearest and farthest
points in connection with some geometric properties of Banach spaces.

1. Introduction

The aim of this paper is to present some existence results for nearest-point and farthest-
point problems, in connection with some geometric properties of Banach spaces. The
idea goes back to Efimov and Stečkin who, in a series of papers (see [28, 29, 30, 31]), real-
ized for the first time that some geometric properties of Banach spaces, such as strict con-
vexity, uniform convexity, reflexivity, and the Kadec-Klee property, and so forth,
characterize some generic results concerning the uniqueness and existence of nearest
points.

Let X be a real normed linear space and Z a nonempty subset of X . For x ∈ X , put

d(x,Z)= inf
{‖x− z‖ : z ∈ Z

}
,

P(x)= PZ(x)= {z ∈ Z : ‖x− z‖ = d(x,Z)
}

,

E(Z)= {x ∈ X : P(x) �= ∅},

U(Z)= {x ∈ X : cardP(x)≤ 1
}

,

EU(Z)= {x ∈ X : cardP(x)= 1
}
.

(1.1)

The elements (if any) of the set PZ(x) are called nearest points to x in Z. The set Z is
called proximinal if E(Z)= X , antiproximinal if E(Z)= Z, a uniqueness set if U(Z)= X ,
and Chebyshev if EU(Z) = X . If these sets only contain a subset which is Gδ and dense
in X (or, equivalently, if their complements are of the first Baire category in X), then
the set Z is called almost proximinal, an almost uniqueness set, almost Chebyshev, respec-
tively.
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Suppose further that the set Z is bounded and let

q(x,Z)= sup
{‖x− z‖ : z ∈ Z

}
,

Q(x)=QZ(x)= {z ∈ Z : ‖x− z‖ = h(x,Z)
}

,

e(Z)= {x ∈ X : Q(x) �= ∅},

u(Z)= {x ∈ X : cardQ(x)≤ 1
}

,

eu(Z)= {x ∈ X : cardQ(x)= 1
}
.

(1.2)

The elements of the (possibly empty) set QZ(x) are called farthest points from x in Z. The
set Z is called remotal if QZ(x) �= ∅ for every x ∈ X , and uniquely remotal if cardQZ(x)=
1 for every x ∈ X . As in the case of nearest points, the terms almost remotal and almost
uniquely remotal are used to designate the fact that the set X \ e(Z), (resp., X \ eu(Z)) is
of the first Baire category.

In the following proposition, we collect some simple but useful properties of the dis-
tance function and of the projection.

Proposition 1.1. Let Z be a nonempty set of a normed space X , and x, y elements of X .
Then

(1) d(x,Z)= d(x,Z) and d(x,Z)= 0⇔ x ∈ Z;
(2) the function d(·,Z) is nonexpansive, that is,

∀x1,x2 ∈ X ,
∣∣d(x1,Z

)−d
(
x2,Z

)∣∣≤ ∥∥x1− x2
∥∥, (1.3)

hence uniformly continuous on X ;
(3) d(x + y, y + Z) = d(x,Z) and Py+Z(x + y) = PZ(x), d(x,αZ) = |α|d(α−1x,Z), and

PαZ(x)= PZ(α−1x), for α �= 0.

For the convenience of the reader, we will recall some geometric properties of normed
spaces. If X is a normed space, then, for x ∈ X and r > 0, denote by B(x,r) = {y ∈ X :
‖y− x‖ ≤ r} (resp., B′(x,r)= {y ∈ X : ‖y− x‖ < r}) the closed (resp., open) balls in X ,
and let S(x,r) = {y ∈ X : ‖y − x‖ = r} be the sphere of center x and radius r. Let also
BX = B(x,1), B′X = B′(o,1), and SX = S(0,1) be the closed unit ball, the open unit ball,
and the unit sphere of X , respectively.

For x, y ∈ X , denote by [x; y]= {x + t(y− x) : t ∈ [0;1]} the closed interval joining x
and y. The intervals [x; y), (x; y], and (x; y) are defined in an obvious way. The ray R(x, y)
is defined by R(x, y)= {x+ t(y− x) : t ∈ [0;∞)} and the line passing through x and y by
D(x, y)= {x+ t(y− x) : t ∈R}.
Strict convexity. The normed space X is called strictly convex (or rotund) if its unit sphere
SX does not contain nontrivial segments, that is, for every x, y ∈ SX , x �= y, and t ∈ (0;1),
we have ‖(1− t)x + ty‖ < 1, or, equivalently, if the equality ‖(1− t)x + ty‖ = 1 holds for
some x, y ∈ SX and some t ∈ (0;1), then x = y.

The following proposition contains some equivalent conditions for strict convexity.
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Proposition 1.2. For a normed space X , the following conditions are equivalent:
(1) X is strictly convex;
(2) for very x, y ∈ SX with x �= y, ‖x+ y‖ < 2;
(3) for every x, y ∈ X \ {0}, the equality ‖x + y‖ = ‖x‖+ ‖y‖ implies y = αx for some

α > 0.

Proof. Condition (2) follows from (1) taking t = 1/2 in the definition of strict convexity.
The implication (2)⇒(1) follows from the convexity of the function ϕ(t)= ‖x+ t(y− x)‖,
t ∈ [0,1].

(1)⇒(3) Suppose that the equality ‖x+ y‖ = ‖x‖+‖y‖ holds for some nonzero x, y ∈
X . It can be written in the equivalent form

∥∥∥∥∥ ‖x‖
‖x‖+‖y‖ ·

x

‖x‖ +
‖y‖

‖x‖+‖y‖ ·
y

‖y‖

∥∥∥∥∥= 1, (1.4)

which, by the strict convexity of X , implies y = αx with α= ‖y‖/‖x‖.
(3)⇒(2) If ‖x + y‖ = 2 = ‖x‖+ ‖y‖ for some x, y ∈ SX , then y = αx for some α > 0.

Since ‖y‖ = ‖x‖ = 1, it follows α= 1 and y = x. �

Uniform convexity. A normed space X is called uniformly convex (or uniformly rotund) if
for every ε, 0 < ε ≤ 2, there exists δ = δ(ε) > 0 such that for every x, y ∈ BX ,

∥∥∥∥x+ y

2

∥∥∥∥ > 1− δ =⇒ ‖x− y‖ < ε; (1.5)

or, equivalently,

‖x− y‖ ≥ ε =⇒
∥∥∥∥x+ y

2

∥∥∥∥≤ 1− δ. (1.6)

The modulus of convexity of a normed space X is the function δX : [0;2]→ [0;1], de-
fined by one of the following equivalent conditions:

δX(ε)= inf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ SX , ‖x− y‖ ≥ ε
}

= inf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ BX , ‖x− y‖ ≥ ε
}
.

(1.7)

For 0 ≤ ε < 2, equalities of the above type hold also with the condition ‖x− y‖ > ε.
see, for instance, [58, pages 442– 446].

Obviously the spaceX is uniformly convex if and only if δX(ε) > 0 for every ε, 0 < ε≤2.
The modulus of convexity satisfies δX(ε)≤ ε/2 and δX(ε)≤ δX(ε′) if 0≤ ε ≤ ε′. If X

is uniformly convex, then the mutually equivalent conditions (1.5) and (1.6) hold with
δ = δX(ε).
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By the monotonicity of the modulus δX , conditions (1.5) and (1.6) are also equivalent
with

‖x+ y‖ ≤ 2
(
1− δX

(‖x− y‖)) (1.8)

for all x, y ∈ BX , x �= y.
Uniform convexity can be characterized in terms of some sequences in the unit ball

of X .

Proposition 1.3 [58, page 447]. For a normed space X , the following conditions are equiv-
alent:

(1) X is uniformly convex;
(2) if (xn) and (yn) are two sequences in the unit sphere SX of X such that ‖xn + yn‖→ 2

for n→∞, then ‖xn− yn‖→ 0;
(3) if (xn) and (yn) are two sequences in the unit ball BX of X such that ‖xn + yn‖ → 2

for n→∞, then ‖xn− yn‖→ 0;
(4) if (xn) and (yn) are two sequences in X such that (‖xn‖), (‖yn‖), (‖2−1(xn + yn)‖)

all tend to some d > 0 for n→∞, then ‖xn− yn‖→ 0.

Local uniform convexity. If for fixed x ∈ SX and every ε, 0 < ε ≤ 2, there exists δ = δ(ε,
x) > 0 such that one of the equivalent conditions (1.5) or (1.6) holds, then the space X is
called locally uniformly convex (or locally uniformly rotund). Obviously uniform convexity
implies local uniform convexity and, in its turn, this implies strict convexity. A modulus
of local uniform convexity can be defined as a localized version of the modulus of uniform
convexity. For x ∈ SX and 0 < ε ≤ 2, put

δX(ε,x)= inf
{
y ∈ SX : ‖x− y‖ ≥ ε}

= inf
{
y ∈ BX : ‖x− y‖ ≥ ε}. (1.9)

Obviously the space X is locally uniformly convex if and only if δX(ε,x) > 0 for every x ∈
SX and every ε, 0 < ε ≤ 2. In this case, conditions (1.5) and (1.6) hold with δ = δX(ε,x).
Condition (1.8) holds also with δX(‖x− y‖,x), x ∈ Sx, y ∈ BX , x �= y, instead of δX(‖x−
y‖).

A theorem similar to Proposition 1.3 but localized, that is, with xn = x ∈ SX , holds for
local uniform convexity too.

Since the unit ball of a normed space X determines the shape of all balls in X , the
conditions of uniform, and of local uniform convexity, can be written for arbitrary balls.

Let B(x0,r) be an arbitrary closed ball in a normed space X .

Proposition 1.4. (1) Suppose that the space X is uniformly convex with modulus of uni-
form convexity δX . Then for every z,z′ ∈ B(x0,r), z �= z′, the following inequality holds:

∥∥z+ z′ − 2x0
∥∥≤ 2r(1− δ), (1.10)

where

δ = δX

(‖z− z′‖
r

)
. (1.11)
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If z,z′ ∈ B(x0,r) satisfy ‖z− z′‖ ≥ ε for some ε ∈ (0;2], then inequality (1.10) holds with
δ = δX(ε/r).

(2) If X is locally uniformly convex with modulus of local uniform convexity δX(·,·) and
z ∈ S(x0,r), z′ ∈ B(x0,r), z �= z′, then inequality (1.10) holds with

δ = δX

(‖z− z′‖
r

,
z− x0

r

)
. (1.12)

If z ∈ S(x0,r) and z′ ∈ B(x0,r) are such that ‖z− z′‖ ≥ ε, for some ε ∈ (0;2], then (1.10)
holds with

δ = δX

(
ε
r

,
z− x0

r

)
. (1.13)

Proof. Applying (1.8) to (z− x0)/r and (z′ − x0)/r, one obtains

∥∥z+ z′ − 2x0
∥∥≤ 2r(1− δ), (1.14)

with δ = δX(‖z− z′‖/r) if X is uniformly convex, (resp., δ = δX(‖z− z′‖/r, (z− x0)/r) if
X is locally uniformly convex).

The assertions involving ε follow from the monotonicity of the moduli of uniform
and of local uniform convexity. �

A normed space X is said to have the Kadec-Klee property provided (xn) tends weakly
to x and ‖xn‖ → ‖x‖ implies ‖xn− x‖ → 0, that is, (xn) tends strongly to x, for every se-
quence (xn) in X and x ∈ X . The space �1(Γ) and any locally uniformly convex space
have the Kadec-Klee property. The Kadec-Klee property is called in [58] the Radon-
Riesz property, motivated by the fact that J. Radon and F. Riesz proved that the space
Lp(Ω,�,µ) has this property for 1 < p <∞.

2. The problem of nearest points

The geometric properties we considered at the end of the preceding section are closely
related to the approximation properties of the space X . First we will examine strict con-
vexity.

Proposition 2.1. For a normed space X , the following conditions are equivalent:
(1) the space X is strictly convex;
(2) every nonempty convex subset of X is a uniqueness set for best approximation;
(3) every nonempty closed convex subset of X is a uniqueness set for best approximation.

Proof. (1)⇒(2) Let Z be a nonempty convex subset of X and suppose that for some x ∈ X ,
there are z1,z2 ∈ Z such that ‖x− z1‖ = ‖x− z2‖ = d(x,Z)= d > 0. Then (z1 + z2)/2∈ Z
and

d ≤
∥∥∥∥x− z1 + z2

2

∥∥∥∥= 1
2

(∥∥x− z1 + x− z2
∥∥)≤ 1

2

(∥∥x− z1
∥∥+

∥∥x− z2
∥∥)= d, (2.1)
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implying ‖x− z1 + x− z2‖ = 2d = ‖x− z1‖+‖x− z2‖. By the strict convexity of X , there
is α > 0 such that x− z2 = α(x− z1). Because ‖x− z1‖ = ‖x− z2‖ = d, it follows that α= 1
and z1 = z2.

The implication (2)⇒(3) is obvious. To prove (3)⇒(1) suppose that X is not strictly
convex. Then there exist x0,x1 ∈ SX , x0 �= x1, such that ‖x0 + x1‖ = 2. The convexity of the
function ϕ(t)= ‖x0 + t(x1− x0)‖, t ∈ [0;1], implies ‖0−ϕ(t)‖ = 1= d(0,[x0;x1]) for all
t ∈ [0;1]. �

In uniformly convex spaces, stronger results on the existence and uniqueness of best
approximation hold.

Proposition 2.2. If Z is a nonempty complete convex subset of a uniformly convex normed
space X , then Z is a Chebyshev set in X .

For the proof, we need a lemma.

Lemma 2.3. Let X be a uniformly convex normed space. If (xn) is a sequence in X such that,
for some d > 0, ‖xn‖ → d for n→∞, and ‖xn + xm‖ → 2d, for n,m→∞, then the sequence
(xn) is fundamental.

Proof. For ε > 0, let δ > 0 be such that (1.5) holds. Take α∈R satisfying the conditions:

0 < α < 1, α < d,
2α
d+α

< δ. (2.2)

By hypothesis, there exists n0 ∈N such that

∀n≥ n0,
∥∥xn∥∥≤ d+α, ∀n,m≥ n0,

∥∥∥∥xn + xm
2

∥∥∥∥≥ d−α. (2.3)

Then x′n = (d+α)−1xn ∈ BX and

∥∥∥∥x′n + x′m
2

∥∥∥∥= 1
d+α

∥∥∥∥xn + xm
2

∥∥∥∥≥ d−α

d+α
= 1− 2α

d+α
> 1− δ, (2.4)

for all n,m≥ n0. It follows that ‖x′n− x′m‖ < ε, so that ‖xn− xm‖ < ε(d+α) < ε(d+ 1) for
all n,m≥ n0. The lemma is proved. �

Proof of Proposition 2.2. For x ∈ X \Z, let d = d(x,Z) > 0 and let (zn) be a minimizing se-
quence in Z, that is, ‖x− zn‖→ d. Reasoning as in the proof of Proposition 2.1, it follows

∥∥∥∥x− zn + x− zm
2

∥∥∥∥=
∥∥∥∥x− zn + zm

2

∥∥∥∥−→ d. (2.5)

By the above lemma, the sequence (x− zn) is fundamental. But then (zn) is also a fun-
damental sequence and, by the completeness of the set Z, it has a limit z ∈ Z. It follows
‖x− z‖ = limn‖x− zn‖ = d(x ·Z). Since every uniformly convex space is strictly convex,
the uniqueness of z follows from Proposition 2.1.

Proposition 2.2 is proved. �
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Stečkin’s results on best approximation by elements of arbitrary sets. In the seminal paper
[76], Stečkin proved some fundamental generic uniqueness and existence results for near-
est points in arbitrary subsets of normed spaces, and posed several open questions. This
drew the attention of mathematicians interested in abstract approximation theory or in
Banach space geometry, to this challenging area of research, leading to a series of papers
dealing with generic existence and uniqueness for the nearest-point and farthest-point
problems in normed spaces.

Now, we will present Stečkin’s results along with the problems raised by him in [76]. As
Stečkin’s paper is available only in Russian, I will present the proofs, taking into account
some subsequent developments, mainly by De Blasi, Myjak, and Papini [17, 19]. (An
English translation of Stečkin’s paper can be obtained upon request from the author of
the present paper.) A subset Z of a normed space X is called relatively boundedly compact
if its intersection with any closed ball in X is relatively compact or, equivalently, if any
bounded sequence in Z contains a convergent subsequence. If the intersection of Z with
any closed ball is compact, then we call it boundedly compact.

We first present the results concerning uniqueness.

Theorem 2.4. Let X be strictly convex normed space. Then
(1) the set U(Z) is dense in X for any Z ⊂ X ,
(2) if X is Banach and Z is relatively boundedly compact, then X \U(Z) is of the first

Baire category,
(3) if X is Banach and Z is closed and relatively boundedly compact, then X \U(Z) is of

the first Baire category and a Gδ set.

The proof is based on the following simple remark.

Lemma 2.5. Let X be a strictly convex normed space, Z a nonempty subset of X , and x0 ∈
X \Z.

If z0 ∈ PZ(x0), then PZ(x)= {z0} for every x ∈ [z0;x0).

Proof. The assertion is obviously true for x = z0. Let x ∈ (z0;x0) and suppose that there
exists z ∈ Z \ {z0} such that ‖x− z‖ ≤ ‖x− z0‖. If z ∈ (z0;x), then ‖x− z‖ < ‖x− z0‖, a
contradiction. If z does not lie on the line D(z0,x0), then, by the strict convexity of X , we
obtain again a contradiction:

∥∥x0− z
∥∥ < ∥∥x0− x

∥∥+‖x− z‖ ≤ ∥∥x0− x
∥∥+

∥∥x− z0
∥∥= ∥∥x− z0

∥∥. (2.6)
�

Proof of Theorem 2.4.

Proof of assertion (1). If x /∈U(Z), then PZ(x) contains at least two distinct points z1, z2.
By Lemma 2.5, [z1;x)⊂U(Z), implying the density of U(Z) in X .

Because d(x,Z)= d(x,Z), we have X \U(Z)⊂ X \U(Z), so that assertion (2) is a con-
sequence of assertion (3).

Proof of assertion (3). Let Z be a nonempty boundedly compact subset of the strictly
convex space X and let

D(x)= diamPZ(x)= sup
{‖z′ − z′′‖ : z′, z′′ ∈ PZ(x)

}
. (2.7)
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Put Y = X \U(Z) and let

Yn =
{
x ∈ X : D(x)≥ 1

n

}
, n∈N. (2.8)

Since Y =⋃∞n=1Yn, it suffices to prove that each set Yn is closed and nowhere dense.
Yn is closed. Let (xk) be a sequence in Yn converging to an element x ∈ X . Because Z is

boundedly compact, the set PZ(xk) = Z ∩B(xk,d(xk,Z)) is compact for every k ∈N, so
that there exist z′k,z′′k ∈ PZ(xk) such that

∥∥z′k − z′′k
∥∥= diamPZ

(
xk
)≥ 1

n
. (2.9)

The inequalities ‖z′k − x‖ ≤ ‖z′k − xk‖+ ‖xk − x‖, k ∈N, and similarly for z′′k , show that
the sequences (z′k) and (z′′k ) are bounded. The set Z being boundedly compact, they will
contain convergent subsequences. Therefore, without restricting the generality, we can
suppose that there exist z′,z′′ ∈ Z such that z′k → z′ and z′′k → z′′ for k→∞, and ‖z′k −
z′′k ‖ ≥ 1/n, k ∈N. But then

‖z′ − x‖ = lim
k→∞

∥∥z′k − xk
∥∥= lim

k→∞
d
(
xk,Z

)= d(x,Z), (2.10)

and similarly for z′′k and z′′. It follows z′,z′′ ∈ PZ(x) and diamPZ(x)≥ ‖z′ − z′′‖ ≥ 1/n,
showing that x ∈ Yn, that is, the set Yn is closed.

The set Yn is nowhere dense. As the set Yn is closed, this is equivalent to intYn =∅,
where by intA we denote the interior of a set A. To prove this, we will use again Lemma
2.5. If x∈Yn then there are z′,z′′ ∈ PZ(x) with ‖z′ − z′′‖ ≥ 1/n. But then, [z′;x)⊂U(Z)⊂
X \Yn, so that Yn does not contain any ball with center x.

Theorem 2.4 is completely proved. �

The following theorem shows that the density result in the above theorem character-
izes in fact the strict convexity of X .

Theorem 2.6. If X is Banach and U(Z)= X for every Z ⊂ X , then X is strictly convex.

Proof. If the space X is strictly convex, then, by Proposition 2.1, the set U(Z) is dense in
X for any nonempty subset Z of X .

Suppose now that X is not strictly convex, and let x1,x2 ∈ SX , x1 �= x2, such that ‖x1 +
x2‖ = 2. Put x0 = (x1 + x2)/2 and let x∗ ∈ X∗ be such that ‖x∗‖ = 1 and x∗(x0)= ‖x0‖ =
1. It follows x∗(x1)= x∗(x2)= 1. The hyperplane H = {x ∈ X : x∗(x)= 1} is proximinal,
because x∗ attains its norm on SX (at x0). By the well known formula for the distance to a
hyperplane, for every x /∈H , d(x,H) = |x∗(x)− 1| and hk = x− (x∗(x)− 1)xk ∈ PH(x),
k = 1,2. It follows that U(H)=H is not dense in X . �

In the presence of local uniform convexity and of uniform convexity, one obtains bet-
ter topological properties of the sets U(Z) and EU(Z).

Theorem 2.7. If X is locally uniformly convex Banach space, then X \U(Z) is of the first
Baire category for any Z ⊂ X .
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In order to present the result in uniformly convex spaces, we recall the notion of well
posedness. For Z ⊂ X and x ∈ X , denote by min(x,Z) the problem of best approxima-
tion of x by elements in Z: find z0 ∈ Z such that ‖x− z0‖ = d(x,Z). A sequence (zn) in
Z is called a minimizing sequence if limn‖x− zn‖ = d(x,Z). It is clear that minimizing
sequences always exist. We say that the problem min(x,Z) is well posed if it has a unique
solution z0 ∈ Z and every minimizing sequence converges to z0. A thorough presentation
of well posedness in various problems of optimization and optimal control is given in the
monograph by Dontchev and Zolezzi [23].

In uniformly convex Banach spaces, the following remarkable result holds.

Theorem 2.8. If X is a uniformly convex Banach space, then for every nonempty closed
subset Z of X , the complement of the set of all x ∈ X for which the problem min(x,Z) is well
posed is of the first Baire category.

For the proofs of these theorems, we need some results on some special subsets of
locally uniformly convex and of uniformly convex normed spaces.

Let x0 ∈ X , r > 0, 0 < α≤ 1/2, β > 0, and z ∈ S(x0,r). Put x1 = x0 +α(z− x0) and let

Mβ
(
x0,z;α

)= B
(
x1, (1−α)r +β

) \B′(x0,r
)
. (2.11)

Following De Blasi et al. [19], we call a set of this kind a lens, a term suggested by its
geometric shape in the Euclidean space R3.

The inequality from the following proposition will be the key tool in the proofs of
uniqueness and existence results in locally uniformly and uniformly convex space.

Proposition 2.9. Let x1 = x0 + α(x0 − z0) and, for y ∈Mβ(x0,z0;α), let z = x1 + (1−
α)r(y− x1)/‖y− x1‖. Then the following inequality holds:

∥∥y− x0
∥∥≤ r +β− 2αrδ, (2.12)

where

δ = δX

(∥∥z− z0
∥∥

(1−α)r
,
z0− x1

(1−α)r

)
or δ = δX

(∥∥z− z0
∥∥

(1−α)r

)
, (2.13)

according to the fact that X is locally uniformly convex or uniformly convex.

Proof. Suppose that X is locally uniformly convex. Since ‖z0− x1‖ = ‖z− x1‖ = (1−α)r,
we have

∥∥z+ z0− 2x1
∥∥≤ 2(1−α)r(1− δ), (2.14)

where

δ = δX

(∥∥z− z0
∥∥

(1−α)r
,
z0− x1

(1−α)r

)
. (2.15)
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Writing

y− x0 = y− z+ z− x1 + x1− x0 = (y− z) +
(
z− x1

)
+

α

1−α

(
z0− x1

)

= (y− z) +
(

1− α

1−α

)(
z− x1

)
+

α

1−α

(
z+ z0− 2x1

)
,

(2.16)

we obtain

∥∥y− x0
∥∥≤ β+

(
1− α

1−α

)
(1−α)r +

2α
1−α

(1−α)r(1− δ)= r +β− 2αrδ. (2.17)

The proof in the uniformly convex case proceeds in the same way, working with δ =
δX(‖z− z0‖/(1−α)r). �

Proposition 2.10. (1) If X is locally uniformly convex, then

lim
β↘0

diamMβ
(
x0,z;α

)= 0. (2.18)

(2) If X is uniformly convex, then for every ε > 0, there exists γ = γ(ε,α) such that

diamMβ
(
x0,z;α

)
< ε (2.19)

for all β, 0 < β ≤ γ, and all z ∈ SX , that is, diamMβ(x0,z;α) tends to zero for β ↘ 0, uniformly
with respect to z ∈ SX .

Proof. (1) Suppose, on the contrary, that there exists ε > 0 and a strictly decreasing se-
quence of real numbers βn ↘ 0 such that

diamMβn

(
x0,z;α

)
> 2ε (2.20)

for all n∈N. Put Mn =Mβn(x0,z;α) and choose yn ∈Mn such that ‖yn− zn‖ > ε. If z′n =
x1 + (1−α)r‖y− x1‖−1(y− x1), then

∥∥z− z′n
∥∥≥ ∥∥z− yn

∥∥−∥∥yn− z′n
∥∥≥ ε−βn >

ε
2

, (2.21)

whenever βn < ε/2, which holds for sufficiently large n. By Proposition 2.9, we have

∥∥yn− x0
∥∥≤ r +βn− 2αrδ, (2.22)

where

δ = δX

(
ε

2(1−α)r
,
z− x1

(1−α)r

)
. (2.23)

Since βn ↘ 0 and δ do not depend on βn, it follows that ‖yn − x0‖ < r for sufficiently
large n, in contradiction to yn ∈Mn ⊂ X \ B′(x0,r) (see the definition (2.11) of Mn =
Mβn(x0,z;α)).
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(2) Proceeding again by contradiction, suppose that there exist ε > 0 and the sequences
(zn) in S(x0,r) and (βn) in R+ with βn ↘ 0, such that

diamMβn

(
xo,zn;α

)
> 2ε, (2.24)

for all n∈N. We can suppose βn < ε/2. Taking

δ = δX

(
ε

2(1−α)r

)
, (2.25)

and reasoning as above, we obtain

∥∥yn− x0
∥∥≤ r +βn− 2αrδ. (2.26)

It follows ‖yn− x0‖ < r for sufficiently large n, in contradiction to yn /∈ B′(x0,r). �

De Blasi et al. [19, Lemma 2.1] gave a quantitative version of Proposition 2.10 and
called it Stečkin’s lens lemma.

Let X be a uniformly convex space with modulus of uniform convexity δX . For σ ∈
(0;1], define δ∗(σ) by

δ∗(σ)= sup
{
ε : 0 < ε ≤ 2, δX(ε)≤ σ

}
. (2.27)

It is immediate that 0 < δ∗(σ)≤ δ∗(σ ′), for 0 < σ ≤ σ ′ ≤ 1, and δ∗(σ)→ 0 for σ ↘ 0.

Proposition 2.11. If X is a uniformly convex space, x0 ∈ X , r > 0, 0 < α≤ 1/2, β > 0, and
z ∈ S(x0,r), then

diamMβ
(
x0,z;α

)≤ 2β+ 2(1−α)rδ∗
(

β

2αr

)
, (2.28)

where Mβ(x0,z;α) is the lens defined by (2.11).

Proof. Let y ∈Mβ(x0,z;α) be such that ‖y − z‖ > β. If z′ = x1 + (1− α)r(y − x1)/‖y −
x1‖, then

‖z− z′‖ ≥ ‖z− y‖−‖y− z′‖ > β−β = 0. (2.29)

By Proposition 2.9,

r ≤ ∥∥y− x0
∥∥≤ r +β− 2rαδX

(‖z− z′‖
2αr

)
, (2.30)

implying

δX

(‖z− z′‖
2αr

)
≤ β

2αr
. (2.31)

By the definition of δ∗, this inequality yields

‖z− z′‖
2αr

≤ δ∗
(

β

2αr

)
, (2.32)
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so that

‖z− z′‖ ≤ (1−α)rδ∗
(

β

2αr

)
,

‖y− z‖ ≤ ‖y− z′‖+‖z′ − z‖ ≤ β+ (1−α)rδ∗
(

β

2αr

)
.

(2.33)

Since this inequality trivially holds for ‖y− z‖ ≤ β, it follows

∥∥y1− y2
∥∥≤ ∥∥y1− z

∥∥+
∥∥z− y2

∥∥≤ 2β+ 2(1−α)rδ∗
(

β

2αr

)
(2.34)

for all y1, y2 ∈Mβ(x0,z;α). �

For x ∈ X , Z ⊂ X , and ε > 0, let

d(x)= d(x,Z), D(x)= diamPZ(x);

PεZ(x)= {z ∈ Z : ‖x− z‖ ≤ ε+d(x)
}= Z∩B

(
x,ε+d(x)

)
;

Dε(x)= diamPεZ(x), D0(x)= lim
ε↘0

Dε(x).
(2.35)

The quantities Dε(x) and D0(x) are closely related to the well posedness of the problem
of best approximation.

The following proposition is taken from De Blasi and Myjak [17].

Proposition 2.12. If Z is a nonempty complete subset of a normed space X , x ∈ X , and
D0(x)= 0, then the problem min(x,Z) is well posed.

Conversely, if Z is a nonempty subset of X such that the problem min(x,Z) is well posed,
then D0(x)= 0.

Proof. Suppose that the set Z is complete and limε↘0Dε(x) = 0. If (zn) is a minimizing
sequence, then for every ε > 0, there exists nε such that zn ∈ PεZ(x) for all n≥ nε, imply-
ing ‖zn− zm‖ ≤ diamPεZ(x)=Dε(x) for all n,m≥ nε. It follows that the sequence (zn) is
fundamental, so that, by the completeness of Z, it converges to an element z0 ∈ Z which
satisfies ‖x− z0‖ = d(x,Z). If x has two distinct elements of best approximation z0, z′0 in
Z, then z0,z′0,z0 · z′0, . . . is a minimizing sequence which is not fundamental, in contradic-
tion with the fact we have just proved.

Suppose now that the problem min(x,Z) is well posed. If zn,z′n ∈ P1/n
Z (x), then the

sequences (zn) and (z′n) are both minimizing and converge to z0—the solution of the
problem, so that ‖zn − z′n‖ → 0. It follows diamP1/n

Z (x)→ 0 for n→∞, and limε↘0 diam
PεZ(x)= 0. �

Consider the sets

Yn =
{
x ∈ X : D(x)≥ 1

n

}
, Fn =

{
x ∈ X : D0(x)≥ 1

n

}
. (2.36)

The sets Yn were used in the proof of Theorem 2.4. Because PZ(x) ⊂ PεZ(x), we have
D(x) ≤ Dε(x), so that D(x) ≤ D0(x). It follows Yn ⊂ Fn, and Yn = Fn if Z is boundedly
compact.
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The sets Fn have a better topological behavior than the sets Yn.

Proposition 2.13. If X is a Banach space, then the set Fn is closed for every n∈N.

Proof. Let (xk) be a sequence in Fn converging to an element x0 ∈ X . For a given ε > 0, let
k0 ∈N be such that ‖xk − x0‖ ≤ ε/3 for all k ≥ k0.

Then for all k ≥ k0,

d
(
xk
)≤ ∥∥xk − x0

∥∥+d
(
x0
)≤ ε

3
+d
(
x0
)
, (2.37)

implying

B
(
xk,
ε
3

+d
(
xk
))⊂ B

(
xk,

2ε
3

+d
(
x0
))⊂ B

(
x0,ε+d

(
x0
))

,

Pε/3Z

(
xk
)⊂ PεZ

(
x0
)
.

(2.38)

It follows

1
n
≤Dε/3

(
xk
)≤Dε

(
x0
)
. (2.39)

Letting ε ↘ 0, we get D0(x0)≥ 1/n, that is, x0 ∈ Fn. �

Now we are able to prove Theorem 2.7.

Proof of Theorem 2.7. Let Z be a nonempty subset of the locally uniformly convex space
X . We have X \U(Z) =⋃∞n=1Yn, so it suffices to show that each Yn is nowhere dense in
X , that is, that intYn =∅ for every n ∈N. This is equivalent to the fact that Yn is not a
neighborhood of any point x ∈ X . In its turn, this is equivalent to

∀x ∈ X , ∀r > 0, ∃y ∈ B(x,r), ∃r′ > 0 such that B(y,r′)∩Yn =∅. (2.40)

Let x ∈ X and r > 0. If B(x,r)∩Yn =∅, then there is nothing to prove. Suppose that
there is an element x0 ∈ B(x,r)∩Yn. It follows x0 /∈ Z.

If z0 ∈ PZ(x0) and y ∈ (x0;z0), then, by Lemma 2.5, PZ(y)= {z0} and d(x,Z)= ‖x0−
y‖+d(y,Z). For ε > 0,

PεZ(y)⊂ B
(
y,ε+d(y,Z)

) \B′(x0,d
(
x0,Z

))=Mε
(
x0,z0;α

)
, (2.41)

where α= ‖y− x0‖/‖z0− x0‖.
We have Dε(y)= diamPεZ(y)≤ diamMε(x0,z0;α), so that, by Proposition 2.10, Dε(y)

→ 0 for ε ↘ 0. It follows D0(y)= 0 < 1/n, showing that y /∈ Fn. But, by Proposition 2.13,
the set X \ Fn is open, so that there exists r′ > 0 such that B(y,r′) ⊂ X \ Fn ⊂ X \ Yn.
Theorem 2.7 is proved. �

Theorem 2.8 is an immediate consequence of the following result from [76] and of
Proposition 2.12.

Theorem 2.14. If X is a uniformly convex Banach space, then for every nonempty subset Z
of X , the set {x ∈ X : D0(x)= 0} is Gδ and dense in X .
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Proof. If F0 = {x ∈ X : D0(x)= 0}, then F0 =
⋂∞

n=1(X \Fn), so that

X \F0 =
∞⋃
n=1

Fn. (2.42)

Since, by Proposition 2.13, every set Fn is closed, we have only to show that the set Fn is
nowhere dense for every n∈N, meaning that B(x,r)∩ (X \Fn) �= ∅, for every x ∈ Fn and
every r > 0. For x ∈ Fn, let d = d(x,Z) > 0 and consider a ball B(x,αd), with 0 < α≤ 1/2.
By Proposition 2.10, there exists β0 > 0 such that

diamMβ(x, y;α) <
1
n

(2.43)

for all β, 0 < β ≤ 2β0, and all y ∈ S(x,αd). Let z ∈ P
β0

Z (x), that is, z ∈ Z and d ≤ ‖x− z‖ ≤
d+β0, and put y = x+αdz/‖z‖. We have

d(y,Z)≤ ‖y− z‖ = ‖x− z‖−‖x− y‖ ≤ (1−α)d+β0, (2.44)

implying

P
β0

Z (y)⊂M2β0 (x, y;α). (2.45)

It follows diamP
β0

Z (y)≤ diamM2β0 (x, y;α) < 1/n, that is, y ∈ B(x,αd)∩ (X \Fn). �

The following problems were raised in Stečkin’s paper [76]. A normed space X is called
strongly convex if

lim
t→d

diam
(
Z∩ tBX

)= 0 (2.46)

for any convex subset Z of X , where d = d(0,Z) and BX denotes the closed unit ball of X .

Stečkin’s problems. (1) Does assertion (2) of Theorem 2.4 remain true for an arbitrary
subset Z of X? Also, if X is Banach and U(Z)= X (or X \U(Z) is of the first Baire cate-
gory) for every compact subset Z, then must X be strictly convex?

(2) Is Theorem 2.7 true for strongly convex Banach spaces?
(3) Is the conclusion of Theorem 2.8 true for locally uniformly convex Banach spaces?
We mention also some related existence results obtained by Borwein and Fitzpatrick

[9].

Theorem 2.15 (see [9]). Let X be a reflexive Banach space. Then the following assertions
hold:

(1) the complement of every open convex proper subset of X is almost proximinal,
(2) if {Ui : i∈ I} is a collection of mutually disjoint open convex subsets of X , then the set

X \⋃{Ui : i∈ I} is almost proximinal in X , provided it is nonempty.

Approximative compactness and Efimov-Stečkin spaces. A reflexive Banach space having
the Kadec-Klee property is called an Efimov-Stečkin (ES) space.
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A point x ∈ X is called a point of approximative compactness for Z ⊂ X if every mini-
mizing sequence for d(x,Z) contains a convergent subsequence. The set of points of ap-
proximative compactness for the set Z is denoted by AC(Z). The set Z is called approxi-
matively compact if AC(Z)= X .

The notion of approximative compactness was introduced by Efimov and Stečkin [31],
in connection with the problem of convexity of Chebyshev sets. It was also used by Reich
[68] to study continuity properties of the metric projection with applications to fixed
point theorems of Ky Fan type.

Although, at the first glance, this notion looks a little tautological, it turned to be a
very useful one in the study best approximation problems. It differs from the notion of
compactness: Borodin [6] has shown that every separable infinite-dimensional Banach
space contains a bounded approximatively compact set which is not compact. In [7],
he showed that every reflexive Banach space contains a noncompact bounded convex
approximatively compact set.

Efimov and Stečkin proved the following.

Theorem 2.16. Let X be a uniformly convex smooth Banach space and Z a Chebyshev
subset of X .

The set Z is convex if and only if it is approximatively compact.

The term Efimov-Stečkin space was proposed by Singer [74].
There are several conditions equivalent to the ES property.

Theorem 2.17 (see Singer [74] and Konyagin and Tsar’kov [49]). For a Banach space X ,
the following conditions are equivalent:

(1) X is an ES space;
(2) X is reflexive and Kadec-Klee;
(3) any sequentially closed subset of X is compact;
(4) every weakly closed subset of X is compact.

There are also some characterizations of ES spaces in terms of approximative com-
pactness.

Theorem 2.18 (see Singer [74] and Konyagin and Tsar’kov [49]). For a Banach space X ,
the following conditions are equivalent:

(1) X is an ES space;
(2) every weakly sequentially closed subset of X is approximatively compact;
(3) every weakly closed subset of X is approximatively compact;
(4) every closed convex set is approximatively compact;
(5) every weakly sequentially closed set is an existence set with lower semicontinuous met-

ric projection;
(6) every weakly closed set is an existence set with lower semicontinuous metric projection;
(7) every weakly sequentially closed set is an existence set with lower semicontinuous met-

ric projection;
(8) every closed convex set is an existence set with lower semicontinuous metric projection.

Condition (2) from the above theorem was taken by Singer [74] as the definition of ES
spaces.
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ES spaces are also important in the study of generic existence for best approximation.
Denote by �cl(X) the family of all nonempty closed subsets of a normed space X .

Theorem 2.19 (see Konyagin and Tsar’kov [49]). For a Banach space X , the following
conditions are equivalent:

(1) X is an ES space;
(2) for all Z ∈�cl(X), the set AC(Z) is residual in X ;
(3) for all Z ∈�clB(X), the set AC(Z) is dense in X ;
(4) for all Z ∈�cl(X), the set E(Z) is residual in X ;
(5) for all Z ∈�cl(X), the set E(Z) is dense in X ;
(6) for all Z ∈�cl(X), the set E(Z) is weakly dense in X ;
(7) for all Z ∈�clB(X), the set AC(Z) is connex;
(8) for all Z ∈�cl(X), the set E(Z) connex.
(9) for every Z ∈�cl(X), there exists a residual set A such that A ⊂ E(Z) and the set-

valued map PZ|A is continuous;
(10) for every Z ∈�clB(X), there exists a residual set B such that the set-valued map PZ

has a continuous selection on B.

Strongly convex spaces. This notion was introduced by Šmulian [75] and, for further
properties, one can consult also the paper by Fan and Glicksberg [32]. As we have al-
ready mentioned, Stečkin used it in his paper [76] on approximation properties of Banach
spaces. Recall that a Banach space X is called strongly convex if limt→d diam(Z∩ tBX)= 0,
for any convex subset Z of X .

Sometimes the strong convexity (or strong rotundity) is denoted by (K), the fact that
X is Banach and satisfies (K) is denoted by (D), and the Kadec-Klee property by (H).
In fact, in [32], there is a list of geometric properties that a normed space could satisfy,
labelled from (A) to (H), and the Kadec-Klee property is labelled as (H).

The following proposition puts in evidence some connections of this notion with other
geometric properties of Banach spaces.

Theorem 2.20. The following assertions hold:
(1) if X is uniformly convex, then X is strongly convex;
(2) if X is reflexive and locally uniformly convex, then X is strongly convex;
(3) if X is strongly convex, then X is strictly convex and Kadec-Klee,
(4) if X is Banach, then X is strongly convex if and only if it is reflexive strictly convex

and Kadec-Klee.

For a good presentation of these results and of other geometric properties of Banach
spaces, one can consult, for instance, Megginson [58, Section 5.3].

The following theorem contains some equivalent characterizations of strongly convex
spaces.

Theorem 2.21. For a normed space X , the following conditions are equivalent:
(1) X is strongly convex;
(2) for every x∗ ∈ SX∗ , limε→0+ diam{x ∈ BX : x∗(x)≥ 1− ε} = 0;
(3) if (xn)⊂ SX and x∗(xn)→ 1, for some x∗ ∈ SX∗ , then (xn) is a Cauchy sequence;
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(4) for every convex subset Z of X and x ∈ X , every minimizing sequence (zn) ⊂ Z is a
Cauchy sequence.

If X is Banach, then the above conditions are also equivalent to the following one:
(5) every nonempty closed convex subset of X is an approximatively compact Chebyshev

set.

Some definitive results concerning the problems raised by Stečkin were obtained by
Konyagin [42, 43, 44, 45, 46, 47] and Konyagin and Tsar’kov [49]. A good account is
given in the survey paper [48]. In the following theorem, we collect some of these results.

Theorem 2.22. For a Banach X , the following conditions are equivalent:
(1) for all Z ⊂ X , the set E(Z) is dense in X ;
(2) for all Z ⊂ X , the set E(Z) is residual in X ;
(3) for all Z ⊂ X , the set AC(Z) is dense in X ;
(4) for all Z ⊂ X , the set AC(Z) is residual in X ;
(5) X is an ES space.

The implication (5)⇒(1) was proved by Lau [51] and the implication (1)⇒(5) by
Konyagin [42]. The others are trivial.

Konyagin [42] (see also [9]) proved the following result.

Theorem 2.23. Let X be a Banach space that is neither reflexive nor Kadec-Klee. Then there
exists a closed bounded set Z of X and an open nonempty subset U of X \Z such that

(i) no x ∈U has a nearest point in Z;
(ii) the distance function d(·,Z) is affine on U , so that, in particular, d(·,Z) is Fréchet

differentiable on U .

Konyagin [42] has also proved.

Theorem 2.24. For a Banach space X , the following conditions are equivalent:
(1) for all Z ⊂ X ,EU(Z) is dense in X ;
(2) for all Z ⊂ X ,EU(Z) is residual in X ;
(3) X is strictly convex and ES.

A point x of a closed bounded convex subset Z of a Banach space X is called an exposed
point of Z if x is the only point of Z for which x∗(x) = supx∗(Z), for some x∗ ∈ X∗,
x∗ �= 0. One says that the functional x∗ exposes the point x. The point x is called a strongly
exposed point of Z if it is an exposed point of Z with exposing functional x∗ and, for every
sequence (zn) in Z such that x∗(zn)→ supx∗(Z), we have zn → x in the norm topology
of X . This is equivalent to diamS(Z,x∗,ε) → 0 for ε → 0+, where, for β = supx∗(Z),
S(Z,x∗,ε) = {z ∈ Z : x∗(z) > β− ε}. The notion of exposed point is due to Straszewicz
[77].

The notion of exposed point is closely related to two other geometric properties of
Banach spaces—the Radon-Nikodým property and Asplund property. Let (Ω,�,µ) be a
finite measure space, that is, Ω is a set, � a σ-algebra of subsets of Ω, and µ : �→ [0;∞)
a σ-additive finite positive measure on �. One says that a Banach space X has the Radon-
Nikodým property with respect to the measure space (Ω,�,µ) if for every σ-additive vec-
tor measure G : �→ X , there exists g ∈ L1(µ,X) such that G(A) = ∫A gdµ, A ∈�. The
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Banach space X has the Radon-Nikodým property if it has the Radon-Nikodým property
with respect to every finite measure space (Ω,�,µ). The classic on Radon-Nikodým prop-
erty is the book by Diestel and Uhl [22] (see also [11]). A Banach space X is said to have
the Asplund property if every continuous convex function defined on a nonempty open
subset Z of X is Fréchet differentiable on a dense Gδ subset of Z. The term was chosen to
honor Asplund [2], who made important contributions to the subject. A good presenta-
tion of the results concerning differentiability properties of convex functions on Banach
spaces can be found in the books [33, 67].

Denote by near(Z) the set of all z ∈ Z such that ‖x− z‖ = d(x,Z) for some x ∈ X .
Let also spt(Z) denote the set of all support points of the set Z, that is, those points
z ∈ Z for which there exists a nonzero x∗ ∈ X∗ such that x∗(z) = supx∗(Z). It follows
near(Z)⊂ spt(Z)⊂ bd(Z).

The problem of the existence of convex sets Z such that near(Z) �= spt(Z) was investi-
gated by Godini [34], Borwein and O’Brien [10], and Borwein [8].

Theorem 2.25. If the Banach space X has the Radon-Nikodým property, then
(1) co(near(Z))= Z for every closed convex subset Z of X ,
(2) the same relation holds for any weakly compact convex subset Z of an arbitrary Ba-

nach space X .

Borwein and O’Brien [10] constructed an example of a proximinal set Z in a non-
reflexive Banach space X such that bd(Z) = spt(Z) �= near(Z), where bd stands for the
topological boundary of a set in a topological space.

A Banach space X is said to have the property (σ) if every closed bounded convex
subset of X is the closed convex hull of its strictly exposed points. A remarkable result in
the Banach space theory says that a Banach space X has the property (σ) if and only if
it has the Radon-Nikodým property (see [67, Theorem 5.21]). A point x∗ of a subset Z
of a conjugate Banach space Y = X∗ is called strongly w∗-exposed if there exists x ∈ X
such that x∗(x)= supZ(x) and if (z∗n ) in Z satisfies z∗n (x)→ x∗(x), then z∗n → x∗ in the
norm topology. We mention also the following important result: a Banach space X is an
Asplund space if and only if every nonempty w∗-compact convex subset of X∗ is the
w∗-closed convex hull of its strongly w∗-exposed points (see [67, Theorem 5.12]). Since
a Banach space X is an Asplund space if and only if its dual space X∗ has the Radon-
Nikodým property (see [67, Theorem 5.7]), it follows that the dual of an Asplund space
has the property (σ), a result contained in [25, Proposition 2.2].

Some interesting connections between the existence of nearest points and of strongly
exposed points was established by Edelstein [25].

Theorem 2.26. If Z is a closed bounded convex subset of a Banach space having the property
(σ), then the set E(Z) of all x ∈ X having a nearest point in Z is weakly dense in X .

Moreover, E(Z) contains infinitely many rays emanating from points of Z.

The actual status of Stečkin’s problems. Concerning problem (3), it was shown by Cobzaş
[12, 13] (see also [26]) that the space c0 equipped with Day’s locally uniformly convex
norm contains a closed bounded symmetric antiproximinal convex body Z, that is, such
that no point outside Z has a nearest point in Z, showing that Theorem 2.8 does not
hold, in general, for locally uniformly convex Banach spaces. A complete solution to this
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problem and to the related one, problem (2), was given by Konyagin: strongly convex
Banach spaces are exactly those for which Theorem 2.8 is true.

Problem (2) is still open. We will expose, following [48], some progress made towards
the solution of “the most intriguing of the Stečkin’s problems,” as Konyagin calls it in [48],
and on the closely related problem (1). There are some particular cases when the answer
to problem (2) is yes as, for instance, if the strongly convex space X is separable (see
[41, 79]), or if there exists a Fréchet differentiable bump function on X (see [42]). These
results were obtained independently by Zhivkov [83, 84], who proved that the answer is
yes for a class of strictly convex Banach spaces, containing the weakly compactly generated
Banach spaces. Stečkin [76] proved that if Z is a boundedly compact subset of a strictly
convex Banach space X , then X \U(Z) is of the first Baire category. Kenderov [38, 39, 40]
extended this result to more general classes of subsets by proving it for approximatively
compact subsets of a strictly convex Banach space. Konyagin [42] proved that in a strictly
convex Banach space, the set AC(Z) \U(Z) is of the first Baire category for any subset
Z, but this property does not characterize strictly convex Banach spaces, because, as it
was shown by Kamuntavichyus [36], this property holds in the space L1(Ω,�,µ) with a
nonatomic measure µ, and these spaces are not strictly convex.

3. The problem of farthest points

Generic existence of farthest points for closed bounded sets was proved by Edelstein [24]
for uniformly convex spaces, by Asplund [1] for reflexive locally uniformly convex spaces,
and by Lau [50] for weakly compact subsets of arbitrary Banach spaces.

Theorem 3.1 (see Lau [50]). If Z is a weakly compact subset of a Banach space X , then the
set X \ e(Z) is of the first Baire category.

Deville and Zizler [21] proved a kind of converse of this result.

Theorem 3.2. Let X be a Banach space and Z a closed convex subset of X . If the set Z is
almost ‖ · ‖1-remotal for any equivalent norm ‖ · ‖1 on X , then the set Z is weakly compact.

Edelstein and Lewis [27] have shown that there exists a closed bounded convex subset
Z of �2 such that no point in the dense subspace �0, of all finitely supported sequences,
has a farthest point in Z. Also no point in �0 has a farthest point in Z∩ �0.

Interesting connections between the existence of farthest points and Mazur intersec-
tion property were established. One says that a Banach space X has the Mazur intersec-
tion property (MIP in short) if any bounded closed convex subset of X can be written as
an intersection of closed balls. Mazur [57] proved that MIP holds in finite-dimensional
Euclidean spaces. Phelps [66] gave a dual characterization of finite-dimensional Banach
normed spaces which have the MIP and proved that Banach spaces with Fréchet differen-
tiable norm have the MIP, resuscitating the interest to this important geometric property.
The property turned out to have very interesting connections with other geometric prop-
erties of Banach spaces, from which we will emphasize only those related to the existence
of farthest points.

As in the case of nearest points, denote by far(Z) the set of all points z ∈ Z such that
z ∈QZ(x) for some x ∈ X . Recall that QZ(x) denotes the set of farthest points from x in
Z.
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Theorem 3.3. (1) If X has MIP, then co(far(Z))= Z for any w-compact convex subset Z of
X .

(2) If X is reflexive, then X has MIP if and only if cofar(Z)= Z for any closed convex set
Z ⊂ X .

Remark 3.4. The first assertion of the above theorem was proved by Edelstein [24] and
the second one by Lau [50]. Some extensions of these results as well as a discussion on the
relations between w∗-MIP and the existence of farthest points of w∗-compact subsets of
the dual space X∗ of X were done by Bandyopadhyay [4].

Concerning the existence of farthest points of w∗-compact subsets of dual Banach
spaces, we mention the following result of Deville and Zizler [21].

Theorem 3.5. If the Banach space X has the Radon-Nikodým property, then every w∗-
compact subset of X∗ is almost remotal.

As in the case of nearest points, the strict convexity of the space X guarantees the den-
sity of the elements having a unique farthest point in a subset. More exactly, the following
theorem holds.

Theorem 3.6 [21]. Suppose that X is a strictly convex Banach space and Z is a norm closed
bounded subset of X , such that the set e(Z) is dense in X . Then the set eu(Z) is also dense in
X .

Another interesting question is that of the relations between farthest points and ex-
posed points. In a locally uniformly convex Banach space, every farthest point of Z is a
strongly exposed point of Z, and this was the method used by Straszewicz [77] to obtain
exposed points of sets. Also, in a smooth Banach space X , we have exp(Z) ⊂ far(Z), for
any compact convex subset Z of X . The relations between farthest points and exposed
point is complicated enough, as was shown by Bernau [5] and Edelstein and Lewis [27].
Bernau [5] has shown that every normed space of dimension greater than one contains a
compact convex set Z for which exp(Z) is not a subset of far(Z). Edelstein and Lewis [27]
constructed two-dimensional compact convex sets Z with far(Z)∩ exp(Z)=∅.

Deville and Zizler [21] proved that the set

Z =
{
x ∈ �1 :

∞∑
n=1

(∣∣xn∣∣+
∣∣xn∣∣2

)
≤ 1

}
(3.1)

is a w∗-compact convex subset of the Banach space �1 which has no farthest points in �1,
that is, QZ(x)=∅ for all x ∈ �1. Since the space �1 has the Radon-Nikodým property, the
set Z is the closed convex hull of its strongly exposed points, so it furnishes an example
of a set having strongly exposed points but without farthest points. For results concern-
ing strongly exposed points and Radon-Nikodým property, one can consult the book by
Bourgin [11].

A bounded subset Z of a normed space X is called uniquely remotal if, for all x ∈ X ,
cardQZ(x) = 1, that is, any point in X has a unique farthest point in Z. An important
problem in the study of farthest points is the following one: under what conditions on
the space X is every uniquely remotal subset of X a singleton? This problem is closely
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connected with the problem of convexity of Chebyshev sets. Both these problems are
unsolved till now, and there are some opinions (see, e.g., [61]) that the solution of one
of them will lead to the solution of the other one too. For instance, and this is the most
challenging question, it is unknown whether every Chebyshev subset of a Hilbert space
must be convex. A new approach was proposed by Ricceri in [73] (see also [37]). Good
survey papers on the convexity of Chebyshev sets are those by Vlasov [78], Balaganskiı̆
and Vlasov [3], and Narang [60], and, for the problem of farthest points, Narang [59,
61].

4. Other results

De Blasi, Myjak, and Papini [20] extended the problems of nearest and farthest points to
subsets A,Z ⊂ X . Let

λAZ = inf
{‖x− z‖ : x ∈A, z ∈ Z

}
,

µAZ = sup
{‖x− z‖ : x ∈ A, z ∈ Z

}
.

(4.1)

The problem min(A,Z) (resp., max(A,Z)) consists in finding x0 ∈ A and z0 ∈ Z such
that ‖x0− z0‖ = λAZ (resp., ‖x0− z0‖ = µAZ).

Denote by �(X) the family of all nonempty closed bounded subsets of the normed
space X , by �(X) the family of all nonempty closed bounded convex subsets of X , and
by �(X) the family of all nonempty compact convex subsets of X . If X is a Banach space,
then �(X), �(X), and �(X) are all complete with respect to the Pompeiu-Hausdorff

metric H (see [35]). For A∈�(X), let

�A(X)= cl
{
Z ∈�(X) : λAZ > 0

}
, (4.2)

where the closure cl is taken with respect to the Pompeiu-Hausdorff metric H , and let
�A(X) = �(X)∩�A(X). In the following, all the topological notions concerning the
spaces �(X), �(X), �(X) will be considered with respect to the Pompeiu-Hausdorff

metric H .
One says that the problem min(A,Z) is well posed if it has a unique solution (y0,z0) and

every minimizing sequence (i.e., a sequence (yn,zn)∈ A×Z such that ‖yn− zn‖ → λA,Z)
converges to (y0,z0). The well posedness of the problem max(A,Z) is defined similarly.

The following results were proved in [20].

Theorem 4.1. Let X be a uniformly convex Banach space.
(1) For A∈�(X), the set of all Z ∈�A(X) for which the problem min(A,Z) is well posed

is Gδ and dense in �A(X).
(2) For A∈�(X), the set of all Z ∈�(X), for which the problem max(A,Z) is well posed

is Gδ and dense in �(X).

Li [52] proved similar results for the family �(X) of all nonempty compact convex
subsets of a strongly convex Banach spaces X . Recall that, by Theorem 2.20(4), a Banach
space is strongly convex if and only if it is reflexive, strictly convex, and Kadec-Klee.

For A∈�(X), put �A(X)=�(X)∩�A(X).
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Theorem 4.2 [52]. Let X be a strongly convex Banach space.
(1) If A is a nonempty closed subset of X , then the set of all Z ∈�A(X) for which the

problem min(A,Z) is well posed contains a dense Gδ subset of �A(X).
(2) If A is a nonempty closed bounded subset of X , then the set of all Z ∈�(X) for which

the problem max(A,Z) is well posed contains a dense Gδ subset of �(X).

Li [52] has also shown that the property (1) in the above theorem characterizes
strongly convex spaces.

Theorem 4.3. Let X be a Banach space. If for every nonempty closed set A the set of all
Z ∈ �A(X) for which the problem min(A,Z) is well posed contains a dense Gδ subset of
�A(X), then the space X is strongly convex.

The same is true with “Gδ dense” replaced by “dense” in the above assertion.

Supposing the set A relatively boundedly weakly compact (i.e., its intersection with
any ball is relatively weakly compact), Li and Xu [54] succeeded in dispensing with the
reflexivity of the space X .

Theorem 4.4. Let X be a strictly convex Banach space satisfying the Kadec-Klee condition.
(1) If A is a relatively boundedly compact subset of X , then the family of all Z ∈�A(X)

for which the problem min(A,Z) is well posed is a Gδ dense subset of �A(X).
The same is true for the family �A(X).

(2) If A is a nonempty closed relatively weakly compact bounded subset of X , then the
family of all Z ∈�A(X) for which the problem max(A,Z) is well posed is a dense Gδ

subset of �A(X).
The same is true for the family �(X).

Porosity results. Many of the above generic existence results can be strengthened by using
the notion of porosity. A subset Z of a metric space X is called porous if there exist α,
0 < α ≤ 1, and r0 > 0 such that for every x ∈ X and 0 < r ≤ r0, there is y ∈ X such that
B′(y,αr)⊂ B′(x,r) \Z. Here B′(x,r) denotes the open ball of center x and radius r. One
obtains the same thing if we replace in the above definition “for every x ∈ X” by “for every
x ∈ Z.” A set Z is called σ-porous if it is a countable union of porous subsets ofX . A porous
set is nowhere dense in X , so that a σ-porous set is of the first Baire category. In general
(e.g., if X is a Banach space), the family of sets of the first Baire category strictly contains
the family of all σ-porous sets and, if X = Rn, then a σ-porous set is also of Lebesgue
measure zero. Since Rn can be written as the union of a set of the first Baire category and
of a set of Lebesgue measure zero, it follows that there are sets of Lebesgue measure zero
which are not σ-porous. A good account of various questions related to porosity is given
in the survey papers by Zajı́ček [80, 81]. Remark that for what we call here “porous,”
Zajı́ček uses the term “uniformly very porous,” in his definition of porosity, the number
α may depend on x.

De Blasi et al. [19] proved porosity existence results for nearest- and farthest-point
problems in uniformly convex Banach spaces, extending some known generic existence
results.

As in the case of the problem of nearest points, one says that, for x ∈ X and a bounded
subset Z of X , the problem of farthest points max(x,Z) is well posed if it has a unique
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solution z(x) and every maximizing sequence (zn) ⊂ Z converges to z(x). Denote by
nwp(Z) and fwp(Z) the set of all points x ∈ X for which the problem of nearest points
(resp., of farthest points) is well posed.

A result similar to Proposition 2.12 holds for the problem of farthest points too. Sup-
pose that (e(x,Z)= sup{‖x− z‖ : z ∈ Z} > 0. For 0 < ε < e(x,Z), let

QεZ(x)= Z∩B
(
x,e(x,Z)− ε). (4.3)

Proposition 4.5 [17]. For a Banach space X , a bounded subset Z of X , and x ∈ X , the
problem max(x,Z) is well posed if and only if limε↘0 diamQεZ(x)= 0.

De Blasi et al. [19] proved the following result.

Theorem 4.6. Let X be a uniformly convex Banach space.
(1) If Z is a nonempty closed subset of X , then X \nwp(Z) is a σ-porous subset of X .
(2) If Z is nonempty bounded closed subset of X , then X \ fwp(Z) is a σ-porous subset of

X .

Lau [51] proved that for very closed subset Z of a reflexive Banach space X satisfying
the Kadec-Klee property, the set E(Z) is Gδ and dense in X . Concerning the problem of
farthest points, he proved in [50] that for very weakly compact subset Z of an arbitrary
Banach space X , the set of all points in X having a farthest point in Z is Gδ and dense in
X .

In connection with these results, the following questions naturally arise.

Problems. (1) Does the first assertion of Theorem 4.6 remain true for a reflexive Banach
space satisfying the Kadec-Klee property?

(2) The same question is for the second assertion and a weakly compact subset of an
arbitrary Banach space X .

Li and Xu [54] proved some porosity results for the well posedness with respect to
families of subsets of a Banach space equipped with the Pompeiu-Hausdorff metric.

Theorem 4.7 (see De Blasi et al. [19]). Let X be a uniformly convex Banach space.
(1) If A is a nonempty closed subset of X and minwp(A) denotes the family of all sets

Z ∈ �A(X) for which the problem min(A,Z) is well posed, then the set �A(X) \
minwp(A) is σ-porous in �A(X).

(2) If A is a nonempty bounded closed subset of X and maxwp(A) denotes the family of
all Z ∈�(X) for which the problem max(A,Z) is well posed, then �(X) \maxwp(A)
is σ-porous in �(X).

The proof of assertion (1) uses in an essential way Stečkin’s lens lemma and Proposition
2.11.

Final remarks. I tried to give a general idea about some questions and results on the
existence of nearest- and farthest-points for arbitrary subsets of Banach spaces, with em-
phasis on genericity and porosity results. Of course, a lot of interesting related questions
were not included. Beside the results mentioned here, there are many other ones by De
Blasi and Myjak, De Blasi and Zhivkov, De Blasi and Kenderov who, for a long period
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of time, systematically investigated various generic properties concerning nearest- and
farthest-points problems. Reich and Zaslavski [69, 70, 71, 72] have recently also made
contributions in this area. Penot [63, 64, 65] obtained results on generic existence in op-
timization in connection with convex and nonsmooth analysis. There are also negative
results, meaning the existence of closed convex and bounded antiproximinal sets in Ba-
nach spaces. A survey on this topic is given in [14] (see also [16]).

Another direction of investigation, very active lately, is that of the study of the so-
called generalized optimization problems. One considers an absorbing convex subset C
of a normed space X and the Minkowski functional

pC(x)= inf{λ > 0 : x ∈ λC}, x ∈ X. (4.4)

The functional pC is subadditive and positive, but not necessarily absolutely homoge-
neous, since the set C need not be symmetric. If C is also radially bounded, then one calls
pC an asymmetric norm on X . A study of analogs of the geometric properties of a Banach
space in the case of a space with asymmetric norm was done by Zanco and Zucchi [82].
Contributions to existence results for optimization problems with respect to asymmetric
norms have been made by De Blasi and Myjak [18], Li and Ni [53], Ni [62], and Maâden
[55, 56].

Acknowledgment

I want to express my warmest thanks to the organizers of the International Workshop on
Small Sets in Analysis which was held during June 25–30, 2003, at the Technion, Haifa,
Israel, for their support.

References

[1] E. Asplund, Farthest points in reflexive locally uniformly rotund Banach spaces, Israel J. Math. 4
(1966), 213–216.
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