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We will present some of the latest advances that have occurred in the study of weak As-
plund spaces. In particular, we will give an example of a Gâteaux differentiability space
that is not weak Asplund.

1. Introduction

In this paper, we will provide some examples of Banach spaces that are Gâteaux differen-
tiability spaces but not weak Asplund, weak Asplund but not in class(�̃), in class(�̃) but
whose dual space is not weak∗ fragmentable.

We begin with some definitions. A Banach space X is called a weak Asplund space [al-
most weak Asplund] (Gâteaux differentiability space) if each continuous convex function
defined on it is Gâteaux differentiable at the points of a residual [everywhere second cat-
egory] (dense) subset. While it is easy to see that every weak Asplund space is an almost-
weak Asplund space and every almost weak Asplund space is a Gâteaux differentiability
space, it has been a long standing question as to whether there are in fact Gâteaux differ-
entiability spaces that are not weak Asplund.

In the study of weak Asplund spaces, several classes of topological spaces have played a
prominent role; two of which we describe below. A set-valued mapping ϕ : X → 2Y acting
between topological spaces X and Y is called an usco mapping if for each x ∈ X , ϕ(x) is
a nonempty compact subset of Y and for each open set W in Y , {x ∈ X : ϕ(x) ⊆W} is
open in X . An usco mapping ϕ : X → 2Y is called a minimal usco if its graph does not
contain, as a proper subset, the graph of any other usco defined on X .

Below we recall some of the basic properties of minimal uscos.

Proposition 1.1 [2, Proposition 3.1.2]. Let ϕ : X → 2Y be an usco acting between topolog-
ical spaces X and Y . Then ϕ is a minimal usco if and only if, for each pair of open subsets
U of X and W of Y with ϕ(U)∩W �= ∅, there exists a nonempty open subset V of U such
that ϕ(V)⊆W .

Using this characterisation, one can easily deduce the following facts.

Proposition 1.2 [3, Lemma 2]. Let ϕ : X → 2Y be a minimal usco acting between topolog-
ical spaces X and Y .
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(i) If g : Y → Z is a continuous mapping into a topological space Z, then the mapping
(g ◦ϕ) : X → 2Z defined by (g ◦ϕ)(x) := {g(y)∈ Z : y ∈ ϕ(x)} is a minimal usco.

(ii) If U is either a dense subset of X or a nonempty open subset of X then the restriction
of ϕ, denoted by ϕ|U , is a minimal usco.

Given a topological space X and a class � of Baire spaces, we say that X is in Stegall’s
class with respect to � if for every B ∈� and minimal usco ϕ : B→ 2X , ϕ is single valued
at some point of B. If � is stable with respect to taking open subspaces and dense Baire
subsets (taking open subspaces and dense Gδ subsets), then this is equivalent to that for
every B ∈ � and minimal usco ϕ : B→ 2X , ϕ is single-valued at the points of a residual
(everywhere second category) subset of B, [3, Proposition 1].

When � is the class of all Baire (all complete metric) spaces, we simply say that X is
a Stegall (weakly Stegall) space. For us, the significance of this class of topological spaces
stems from the fact that for a Banach space X if (X∗,weak∗) is a Stegall (weakly Stegall)
space, then X is weak Asplund, [2, Theorem 3.2.2] (almost weak Asplund, [6, Theorem
13]).

Note. We will say that a Banach space X belongs to class(�̃) [class(w�̃)] if (X∗,weak∗)
is a Stegall space [weakly Stegall space].

The other class of topological spaces that we will consider in this paper is the class
of fragmentable spaces. A topological space X is said to be fragmentable if there exists a
metric d on X such that for each ε > 0 and nonempty subset Y of X , there exists an open
set U in X such that (i) Y ∩U �= ∅ and (ii) d−diam(Y ∩U) < ε.

As with Stegall spaces, our interest in these spaces emanates from the fact that for
a Banach space X if (X∗,weak∗) is fragmentable, then X is weak Asplund (in fact, if
(X∗,weak∗) is fragmentable, then (X∗,weak∗) is in Stegall’s class, [2, Theorem 5.2.2]).

Although the exact relationship between fragmentable spaces, Stegall spaces, weak As-
plund spaces, and Gâteaux differentiability spaces remains unclear, several partial results
are known. For instance, the authors in [5] have provided an example (with the aid of
some additional set-theoretic assumptions) of a Banach space X such that (X∗,weak∗) is
in Stegall’s class but is not fragmentable while in [4] the author has given an example (also
with the aid of some additional set-theoretic assumptions) of a Banach space X such that
X is weak Asplund but (X∗,weak∗) is not in Stegall’s class. Moreover, in this paper we
give an example (in ZFC) of a Gâteaux differentiability space that is not weak Asplund.

One of the interesting aspects of all these examples is that they are all based upon the
following class of topological spaces.

2. Kalenda compacta

Let A be an arbitrary subset of (0,1) and let

KA := [(0,1]×{0}]∪ [({0}∪A
)×{1}]. (2.1)

If we equip this set with the order topology generated by the lexicographical (dictionary)
ordering (i.e., (s1,s2) ≤ (t1, t2) if and only if either s1 < t1 or s1 = t1 and s2 ≤ t2), then
with this topology KA is a compact Hausdorff space [3, Proposition 2], which we will call
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the Kalenda compact associated with the set A. In the special case of A= (0,1), the Kalenda
compact KA reduces to the well-known “double arrow” space.

Many of the basic properties of the Kalenda compacta may be found in [3]. In partic-
ular, the following results may be found there.

Theorem 2.1 [3, Proposition 3]. Let A be an arbitrary subset of (0,1). Then the following
properties are equivalent:

(i) A is countable;
(ii) KA is metrizable;

(iii) KA is fragmentable.

Theorem 2.2 [3, Proposition 5]. Let A be an arbitrary subset of (0,1). Then the following
properties are equivalent:

(i) every closed subspace of KA contains a dense completely metrizable subspace;
(ii) A is perfectly meagre.

We recall that a subset A⊆R is called perfectly meagre if for every perfect subset P ⊆R
the intersection A∩P is meagre (i.e., first category) in P.

For a compact Hausdorff space K , we will denote by �(K) {�+(K)} [�+
1 (K)] the

space of all Radon measures on K {positive Radon measure on K} [positive Radon mea-
sures on K , with total mass at most one], equipped with the weak topology induced by
the continuous real-valued functions defined on K . By Riesz’s representation theorem,
we know that �(K) {�+(K)} [�+

1 (K)] is homeomorphic to C(K)∗ {the positive linear
functionals in C(K)∗}[the positive linear functionals in C(K)∗ with norm at most one],
equipped with the weak∗ topology.

2.1. Single-valuedness of minimal uscos into �+
1 (KA). The goal of this section is to

present some sufficient conditions for a minimal usco acting from a Baire space into
�+

1 (KA) to be single valued. To accomplish this we will need several (four in fact) techni-
cal results.

For an arbitrary subset A of (0,1), we will denote by πA the natural projection of KA

onto [0,1], defined by πA(t,ε) := t, and we will denote by π∗∗A the natural projection of
�+

1 (KA) onto �+
1 ([0,1]), defined by π∗∗A (µ)(E) := µ(π−1

A (E)) for each Borel subset E of
[0,1]. In both cases the mappings are continuous.

Lemma 2.3. Let A be an arbitrary subset of (0,1) and suppose that µ,ν ∈�+
1 (KA). Then

µ= ν if (and only if) π∗∗A (µ)= π∗∗A (ν) and the restrictions of µ and ν to π−1
A (t) coincide for

each t ∈A.

Proof. Since the functions in C(KA) separate the measures in �+
1 (KA), it is sufficient to

show that ∫
KA

f dµ=
∫
KA

f dν for each f ∈ C
(
KA
)
. (2.2)

To this end, fix f ∈ C(KA) and define g : [0,1]→R by

g(t) :=
 f (t,1) if t = 0,

f (t,0) if t ∈ (0,1].
(2.3)
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Then g is Borel measurable and J := {t ∈ A : g(t) �= f (t,1)} is countable. In particular,
this means that µ and ν coincide on π−1

A (J). On the other hand, f = g ◦πA on KA\π−1
A (J)

and so ∫
KA

f dµ=
∫
KA\π−1

A (J)

(
g ◦πA

)
dµ+

∫
π−1
A (J)

f dµ

=
∫

[0,1]\J
g d
(
π∗∗A (µ)

)
+
∫
π−1
A (J)

f dµ

=
∫

[0,1]\J
g d
(
π∗∗A (ν)

)
+
∫
π−1
A (J)

f dν

=
∫
KA\π−1

A (J)
(g ◦πA)dν +

∫
π−1
A (J)

f dν

=
∫
KA

f dν.

(2.4)

�

Lemma 2.4. Let A be an arbitrary subset of (0,1) and let ϕ : B → 2�+
1 (KA) be a minimal

usco defined on a Baire space B. Then there exists a dense Gδ subset G of B and continuous
functions (gn : n∈N) from G into [0,1] such that for each x ∈ G, π∗∗A (ϕ(x)) is a singleton
and{

t ∈ [0,1] : π∗∗A (µ)
({t})= µ

(
π−1
A (t)

)
> 0 for some µ∈ ϕ(x)

}⊆ {gn(x) : n∈N}. (2.5)

Proof. Fix for a moment ε > 0, a closed set F, and an open set U with∅ �= F ⊆U ⊆ [0,1].
Let Q(ε,F,U) denote the set of all those µ∈�+

1 (KA) for which there is a ξ ∈ F such that

π∗∗A (µ)
(
U\{ξ})= µ

(
π−1
A

(
U\{ξ}))≤ ε < 2ε ≤ µ

(
π−1
A (ξ)

)= π∗∗A (µ)
({ξ}). (2.6)

Then Q(ε,F,U) is closed and for each µ∈Q(ε,F,U) there is exactly one ξ := ξ(µ)∈ F with the
above property. Moreover, the mapping µ �→ ξ(µ) from Q(ε,F,U) into [0,1] is continuous.
Hence, by Tietze’s extension theorem, this mapping has an extension to �+

1 (KA), which
we call ξ(ε,F,U). By Proposition 1.2(i) and the fact that [0,1] lies in Stegall’s class, we have
that ξ(ε,F,U) ◦ϕ is single-valued (and continuous) at the points of a denseGδ subset G(ε,F,U)

of B. Let � be a countable base for the topology on [0,1] and let

G :=
⋂{

G(ε,V ,U) : ε ∈ (0,∞)∩Q, V ,U ∈� and∅ �=V ⊆V ⊆U
}
. (2.7)

Then if we denote by (gn : n∈N) the functions (though technically they are single-valued
set-valued mappings) in{(

ξ(ε,V ,U) ◦ϕ
)∣∣

G : ε ∈ (0,∞)∩Q, V ,U ∈� and∅ �=V ⊆V ⊆U
}

, (2.8)

ordered into a sequence, then we have the following. If x ∈ G, t ∈ [0,1] and µ∈ ϕ(x) are
such that µ(π−1

A (t)) > 0, then {t} = (ξ(ε,V ,U) ◦ϕ)|G(x) for some (ε,V ,U) and so t = gn(x)
for some n∈N. Moreover, by Proposition 1.2(i) and the fact that �+

1 ([0,1]) is metrizable
(and in particular in Stegall’s class), we may assume, after possibly making G smaller, that
π∗∗A ◦ϕ is single valued on G. �
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The following theorem is essentially a consequence of Lemmas 2.3 and 2.4.

Theorem 2.5. Let A be an arbitrary subset of (0,1) and let ϕ : B→ 2�+
1 (KA) be a minimal

usco defined on a Baire space B. If (gn : n ∈ N) and G are the continuous functions and
Gδ subset of B given in Lemma 2.4, then ϕ is single valued at x ∈ G if for each n ∈N, the
restriction of all the measures in ϕ(x) to π−1

A (gn(x)) coincide.

To achieve our goal in Section 3, we need two more results.
We will say that a subset Y of a topological space X has countable separation in X if

there is a countable family {Cn : n ∈ N} of closed subsets of X such that for every pair
{x, y} with y ∈ Y and x ∈ X\Y , {x, y} ∩Cn is a singleton for at least one n ∈ N. If we
denote by XΣ the family of all subsets of X with countable separation in X , then XΣ is
a σ-algebra that contains all the open subsets of X . Moreover, XΣ is closed under the
Souslin operation. For a mapping g : X → Y acting between topological spaces X and Y ,
we will say that g is separation measurable if g−1(U) has countable separation inX for each
open set U in Y . If the range space Y has countable separation weight (i.e., there exists a
countable open cover � of Y such that for each y ∈ Y ,

⋂{O ∈� : y ∈ O} = {y}), then
separation-measurable mappings have single-valuedness implications for minimal usco
mappings.

Lemma 2.6. Let ϕ : B→ 2X be a minimal usco acting from a Baire space B into a topological
space X and let g : X → Y be a separation measurable mapping acting from X into a topolog-
ical space Y with countable separation weight. Then (g ◦ϕ) : B→ 2Y is single valued at the
points of a residual subset of B. In particular, if g is Borel measurable and Y is a separable
metric space, then (g ◦ϕ) : B→ 2Y is single valued at the points of a residual subset of B.

Proof. Let � := {Um : m∈N} be an open cover of Y that separates the points of Y . For
each m∈N, let {C(m,n) : n∈N} be a countable family of closed subsets of X that “sepa-
rate” g−1(Um) from X\g−1(Um) (i.e., if x ∈ g−1(Um) and y �∈ g−1(Um), then there exists
an n∈N such that |C(m,n)∩{x, y}| = 1). For each (m,n)∈N2, consider the dense open
set

O(m,n) := B\ϕ−1(C(m,n)
)∪ intϕ−1(C(m,n)

)= B\∂[ϕ−1(C(m,n)
)]
. (2.9)

By the minimality of ϕ (see Proposition 1.1),

O(m,n) ⊆
{
x ∈ B : ϕ(x)∩C(m,n) =∅ or ϕ(x)⊆ C(m,n)

}
. (2.10)

Note that if x ∈⋂n∈NO(m,n) then either ϕ(x)⊆ g−1(Um) or ϕ(x)∩ g−1(Um)=∅. Let R :=⋂{O(m,n) : (m,n)∈N2}. We will complete the proof by showing that g ◦ϕ is single valued
at the points of R. To see this, consider x ∈ R and suppose that g ◦ϕ is not single-valued
at x. Then there exists an m∈N such that

∅ �= ϕ(x)∩ g−1(Um
) �= ϕ(x). (2.11)

But this is impossible since x ∈⋂n∈NO(m,n). Hence g ◦ϕ is single valued on R. �
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Lemma 2.7. Let A be an arbitrary subset of (0,1), ϕ : B→ 2�+
1 (KA) a minimal usco defined on

a Baire space B, and g : B→ [0,1] a locally constant mapping. Then there exists a dense Gδ

subset G of B such that for each x ∈G the restriction of all the measures in ϕ(x) to π−1
A (g(x))

coincide.

Proof. Let � := {Uα : α ∈ I} be a maximal collection of nonempty disjoint open sub-
sets of B such that g is constant of each Uα, α ∈ I . Such a maximal family exists by
Zorn’s lemma and it is easy to check that U := ⋃α∈I Uα is dense in B. Now, for each
α ∈ I , choose xα ∈ Uα. Then since the restriction mapping ρπ−1

A (g(xα)) from �+
1 (KA) into

�+
1 (π−1

A (g(xα))) is Borel measurable, we have from Lemma 2.6 that ρπ−1
A (g(xα)) ◦ϕ is single-

valued at the points of a dense Gδ subset Gα of Uα. Thus, G :=⋃Gα is the required dense
Gδ set of B. �

3. Distinguishing the Kalenda compacta

In this section of the paper, we will characterise, in terms of the set A, when (C(KA)∗,
weak∗) lies in Stegall’s class. We will also provide an example of a set A for which C(KA)
is a non-weak Asplund Gâteaux differentiability space.

In the proof of the next theorem, we will need the following basic properties of Stegall
spaces. Since the proofs of these assertions are identical to those given in [2, Theorem
3.1.5], we will not repeat them here.

Proposition 3.1. Let X and Y be topological spaces and let � be a class of Baire spaces that
is stable with respect to taking open subspaces and dense Baire subsets.

(i) Let g : X → Y be perfect mapping onto Y . If X is a Stegall space with respect to � then
Y is a Stegall space with respect to �.

(ii) Let {Xn : n∈N} be cover of X . If each Xn is closed and in Stegall’s class with respect
to �, then X is a Stegall space with respect to �.

(iii) If {Xn : n ∈N} are Stegall spaces with respect to �, then Π∞n=1Xn is a Stegall space
with respect to �.

By combining Riesz’s representation theorem with Proposition 3.1, we obtain the fol-
lowing fact.

Corollary 3.2. Let � be a class of Baire spaces that is stable with respect to taking open
subspaces and dense Baire subsets. Then for a compact Hausdorff space K , (C(K)∗,weak∗)
is a Stegall space with respect to � if and only if �+

1 (K) is a Stegall space with respect to �.

Theorem 3.3 [4, proposition]. Let � be a class of Baire metric spaces that is stable with
respect to taking open subspaces and dense Baire subsets and let A be an arbitrary subset of
(0,1). Then the following assertions are equivalent:

(i) (C(KA)∗,weak∗) is in Stegall’s class with respect to �;
(ii) KA is in Stegall’s class with respect to �;

(iii) for any B ∈� and any continuous function g : B→ A, the function g has at least one
local minimum or local maximum;

(iv) for any B ∈� and any continuous function g : B→ A, there is a nonempty open set
U ⊆ B such that g is constant on U .
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Proof. (i)⇒(ii). This follows from the fact that KA is homeomorphic to a closed subspace
of (C(KA)∗,weak∗).

(ii)⇒(iii). Suppose (ii) holds. Let B ∈� and let g : B→ A be a continuous function. In
order to obtain a contradiction, we assume that g has no local extrema. Then the mapping
ϕ : B→ 2KA defined by, ϕ(t) := {g(t)}× {0,1} is not only an usco but in fact a minimal
usco. Therefore, since KA is in the class of Stegall spaces with respect to �, we have our
desired contradiction since ϕ is everywhere two valued.

(iii)⇒(iv). Suppose that (iii) holds and that there is some B ∈� and some continuous
function g : B→ A that is not constant on any nonempty open subset of B. Fix a metric ρ
generating the topology of B. For each n∈N, define

Emax
n :=

{
x ∈ B : g(x)=max

{
g(x′) : ρ(x,x′) <

1
n

}}
;

Emin
n :=

{
x ∈ B : g(x)=min

{
g(x′) : ρ(x,x′) <

1
n

}}
.

(3.1)

Then clearly both of the sets Emax
n and Emin

n are closed and E := ⋃n∈N[Emax
n ∪ Emin

n ] is
the set of all local extrema of g on B. If one of the sets Emax

n or Emin
n has an interior

point, then g is constant on a neighbourhood of it. Indeed, if x is an interior point of
Emax
n , then Bρ(x;δ)⊆ Emax

n for some 0 < δ < 1/n. Let x′ ∈ B(x;δ). Then both g(x)≥ g(x′)
and g(x′) ≥ g(x) hold and so g(x) = g(x′), which shows that g is constant on B(x;δ).
Hence both of the sets Emax

n and Emin
n are closed and nowhere dense. Therefore E is a first-

category set and B′ := B\E is a dense Baire subspace of B and so it belongs to �. Thus,
by (iii), g|B′ has a local extremum at a point x ∈ B′. Then, by continuity of g and density
of B′ in B, g has a local extremum at x, with respect to B, too. Thus x ∈ E and hence we
have a contradiction.

(iv)⇒(i). By Corollary 3.2, it is sufficient to show that �+
1 (KA) is in Stegall’s class with

respect to �. To this end, let B ∈ � and let ϕ : B→ 2�+
1 (KA) be a minimal usco. Further-

more, let (gn : n∈N) and G be the continuous functions and dense Gδ subset of B given
in Lemma 2.4. Since G ∈ � and the restriction of ϕ to G remains a minimal usco (see,
Proposition 1.2(ii)), we see that there is no loss of generality in assuming that B = G.
Now, by Theorem 2.5, it is sufficient to show that for each n∈N, the set

Gn := {x ∈ B : the restriction of all the measures in ϕ(x) to π−1
A

(
gn(x)

)
coincide

}
(3.2)

is residual in B. To accomplish this, we fix n∈N and let �n be the union of all the open
subsets of B on which gn is constant and let �n := B\�n. By Lemma 2.7 we know that
�n\Gn is first category in B. Hence we need only to show that �n\Gn is first category in
B. In fact, since �n\Gn ⊆ g−1

n (A)∩�n, we need only to show that g−1
n (A)∩�n is first

category in B. Thus, in order to obtain a contradiction, we assume that g−1
n (A)∩�n is

second category in B. Then, by [2, Proposition 3.2.5], there exists a nonempty open subset
U in �n such that U ∩ g−1

n (A) is a dense Baire subset of U . Therefore, U ∩ g−1
n (A) belongs

to � and so by (iv) there is a nonempty open V of U such that gn|(U∩g−1
n (A)) is constant

on V ∩ (U ∩ g−1
n (A)) = V ∩ g−1

n (A). Then, by the continuity of gn and the density of
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g−1
n (A)∩V in V , gn is constant on V . However, V ∩�n =∅ and so we have our desired

contradiction. �

Let A be an arbitrary subset of (0,1) and let � be a class of Baire metric spaces. Then
we will say that a subset A of (0,1) satisfies property (∗) with respect to � if for every
B ∈� and every continuous function f : B→ A there exists a nonempty open set U of B
such that f is constant on U .

Corollary 3.4 [4, Theorem 1]. (i) If there is an uncountable subset A of (0,1) that satis-
fies property (∗) with respect to the class of all Baire metric spaces, then (C(KA)∗,weak∗)
belongs to Stegall’s class but is not fragmentable.

(ii) If there is an uncountable subset A of (0,1) that satisfies property (∗) with respect to
the class of all Baire metric spaces of density at most card(A), then C(KA) is a weak Asplund
space but (C(KA)∗,weak∗) is not fragmentable.

(iii) If there is a subset A of (0,1) that satisfies property (∗) with respect to the class of all
Baire metric spaces of density at most card(A), but not property (∗) with respect to the class
of all Baire metric spaces, then C(KA) is a weak Asplund space but (C(KA)∗,weak∗) is not
in Stegall’s class.

Proof. (i) From Theorem 2.1, it follows that KA is not fragmentable. On the other hand,
it is shown in [5, Theorem 3] that for a Banach space X , (X∗,weak∗) is in Stegall’s class
if and only if it is in Stegall’s class with respect to the class of all Baire metric spaces. The
result then follows from Theorem 3.3.

(ii) Again from Theorem 2.1 it follows that KA is not fragmentable. To show that
C(KA) is weak Asplund, we need the result [2, Theorem 3.2.2] that for a Banach space
X if (X∗,weak∗) is in the class of Stegall spaces with respect to the class of all Baire metric
spaces with density at most equal to the density of X , then X is weak Asplund. The result
then follows from Theorem 3.3 and the fact that the density of C(KA) equals card(A).

(iii) As mentioned in part (ii), if (C(KA)∗,weak∗) is in the class of Stegall spaces with
respect to the class of all Baire metric spaces with density at most equal to the density of
C(KA), then C(KA) is weak Asplund. The fact that (C(KA)∗,weak∗) is not a Stegall space
follows directly from Theorem 3.3. �

Remark 3.5. Up to this point, we have not dwelt upon the question of whether there are in
fact subsets of (0,1) that satisfy any of the hypotheses of Corollary 3.4. For a discussion on
this see [3, 4]. We mention here, though, that in all cases additional set-theoretic axioms
are required.

If � is a proper σ-ideal of subsets of 2N and N is a subset of a metric space M, then we
will say that N is �-negligible if γ−1(N)∈� for each γ belonging to a residual subset RN

of C(2N;M)—the continuous functions from 2N into M equipped with the topology of
uniform convergence.

Note. The residual set RN will in general depend upon the set N .
For each n∈N and t ∈ 2n, we define Ct := {t′ ∈ 2N : t′|n = t} and C∅ := 2N. Further,

for each n ∈ N, we will let Γn := {γ ∈ C(2N;M) : γ is constant on Ct for each t ∈ 2n}. A
simple compactness argument shows that for each n∈N,

⋃
k≥nΓk is dense in C(2N;M).
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Lemma 3.6. Let (M,d) be a metric space. (i) If U is a dense open subset of M, then {γ ∈
C(2N;M) : γ(2N)⊆U} is a dense open subset of C(2N;M). (ii) If g : U → X is a continuous
function acting from a nonempty open subset U of M into a completely regular topological
space X that is not constant on any nonempty open subset of U , then there exists a residual
subset of C(2N;M) such that for each γ in this set, g ◦ γ is 1-to-1 on γ−1(U) and γ−1(U) is
clopen (i.e., both open and closed) in 2N.

Proof. (i) Firstly, it is easy to see that {γ ∈ C(2N;M) : γ(2N) ⊆ U} is open in C(2N;M).
Thus, it remains to show that it is dense. For each n∈N, let Γn(U) := {γ ∈ Γn : γ(2N)⊆
U}. It follows from the density of U in M and the already mentioned fact that

⋃
n≥1Γn is

dense in C(2N;M) that
⋃

n≥1Γn(U) is dense in C(2N;M) (and a subset of {γ ∈ C(2N;M) :
γ(2N)⊆U}).

(ii) Let V :=U ∪M\U (which is a dense open subset of M), and for each n∈N, let

Γ∗n := {γ ∈ Γn(V) : (g ◦ γ)(t) �= (g ◦ γ)(t′) if t, t′ ∈ γ−1(U) and t|n �= t′|n
}
. (3.3)

It is easy to check that for each n∈N,
⋃

k≥nΓ∗k is dense in C(2N;M). Now, for each n∈N
and γ̂ ∈ Γ∗n , choose rn(γ̂) > 0 so that

(i) B(γ̂(t);rn(γ̂))⊆U for all t ∈ γ̂−1(U);
(ii) B(γ̂(t);rn(γ̂))⊆M\U for all t ∈ γ̂−1(M\U);

(iii) g(B(γ̂(t);rn(γ̂)))∩ g(B(γ̂(t′);rn(γ̂))) = ∅ for all t, t′ ∈ γ̂−1(U) such that t|n �=
t′|n.

One can now check that the set

⋂
n∈N

(⋃
k≥n

{
γ ∈ C

(
2N;M

)
: there exists a γ̂ ∈ Γ∗k with max

t∈2N

[
d
(
γ(t), γ̂(t)

)]
< rk(γ̂)

})
(3.4)

is residual in C(2N;M) and has the desired properties. �

From the previous lemma, we can deduce that for any proper σ-ideal � of subsets of
2N, the �-negligible sets form a σ-ideal of subsets of M that contains all the first category
subsets of M. In addition, if M is a complete metric space and N ⊆M has the Baire
property, then one can show that N is �-negligible if and only if N is first category in M.
Thus, the interesting �-negligible sets are necessarily among those subsets of M that are
not very topologically respectable.

Given a proper σ-ideal � of subsets of 2N and a topological space X , we say that X is
nearly Stegall with respect to � if for every complete metric space M and minimal usco
ϕ : M → 2X , {x ∈M : ϕ(x) is not a singleton} is �-negligible. Thus, for any proper σ-
ideal � of subsets of 2N and any topological space X , if X is nearly Stegall with respect to
�, then X is weakly Stegall.

As with Proposition 3.1, the proof of the following result is identical to that given in
[2, Theorem 3.1.5] and thus not presented here.

Proposition 3.7. Let X and Y be topological spaces and � a proper σ-ideal of subsets of
2N.
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(i) Let g : X → Y be a perfect mapping onto Y . If X is nearly Stegall with respect to �,
then Y is nearly Stegall with respect to �.

(ii) Let {Xn : n∈N} be a cover of X . If each Xn is closed and nearly Stegall with respect
to �, then X is nearly Stegall with respect to �.

(iii) If {Xn : n ∈ N} are nearly Stegall with respect to �, then π∞n=1Xn is nearly Stegall
with respect to �.

By combining Riesz’s representation theorem with Proposition 3.7, we obtain the fol-
lowing fact.

Corollary 3.8. Let � be a proper σ-ideal of subsets of 2N. Then for a compact Hausdorff

space K , (C(K)∗,weak∗) is nearly Stegall with respect to � if and only if �+
1 (K) is nearly

Stegall with respect to �.

Theorem 3.9. Let � be a proper σ-ideal of subsets of 2N and let A be any subset of (0,1)
such that γ−1(A)∈� for each homeomorphic embedding of 2N into [0,1]. Then (C(KA)∗,
weak∗) is nearly Stegall with respect to �. In particular, (C(KA),‖ · ‖∞) is a Gâteaux dif-
ferentiability space.

Proof. By Corollary 3.8, it is sufficient to show that �+
1 (KA) is nearly Stegall with respect

to �. To this end, let ϕ : M → 2�+
1 (KA) be a minimal usco acting from a complete metric

space M into �+
1 (KA). Furthermore, let (gn : n ∈N) and G be the continuous functions

and dense Gδ subset of M given in Lemma 2.4. Since C(2N;G) is a residual subspace of
C(2N;M) and the restriction of ϕ to G is still a minimal usco (see, Proposition 1.2(ii)),
there is no loss of generality in assuming that M =G. Now, by Theorem 2.5, it is sufficient
to show that for each n∈N, the complement of the set

Gn := {x ∈M : the restriction of all the measures in ϕ(x) to π−1
A

(
gn(x)

)
coincide

}
(3.5)

is �-negligible in M. To this end, we fix n ∈ N and let the �n be the union of all the
open subsets of M on which gn is constant and let �n :=M\�n. By Lemma 2.7, we know
that �n\Gn is first category in M and so �-negligible. Hence we need only show that
�n\Gn is �-negligible since M\(�n ∪�n) is a closed nowhere dense subset of M and
thus an �-negligible subset. In fact, since �n\Gn ⊆ g−1

n (A)∩�n, we need only to show
that g−1

n (A)∩�n is �-negligible. By Lemma 3.6, the set of all γ ∈ C(2N;M) for which (i)
γ(2N)⊆ �n∪�n and (ii) (gn ◦ γ) is 1-to-1 on Dn

γ := γ−1(�n) is residual in C(2N;M). For
any such γ we have

γ−1(g−1
n (A)∩�n

)= (gn ◦ γ)−1
(A)∩Dn

γ ∈� (3.6)

since (i) (gn ◦ γ) is 1-to-1 on the clopen set Dn
γ and (ii) every continuous 1-to-1 mapping

from a clopen subset of 2N into [0,1] can be extended to be a homeomorphic embedding
of 2N into [0,1]. Thus, g−1

n (A)∩�n is �-negligible. �

Lemma 3.10. There exists an everywhere second category subset A of (0,1) and a proper σ-
ideal � of subsets of 2N such that γ−1(A)∈� for each homeomorphic embedding γ : 2N →
[0,1].
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Proof. Let κ be the least ordinal of cardinality 2ℵ0 , let {(γαn : n∈N) : α < κ} be an enumer-
ation of all the sequences of continuous one-to-one functions from 2N into [0,1] and let
{Eα : α < κ} be an enumeration of all the nonmeagre Borel subsets of (0,1). Inductively,

we may choose aα ∈ Eα\{γβn(xβ) : n∈N and β < α} and xα ∈ 2N such that γαn(xα) �= aβ for
any n∈N and β ≤ α.

Set A := {aα : α < κ}. Then A is everywhere second category in (0,1) and for any se-
quence (γn : n ∈ N) of continuous one-to-one functions from 2N into [0,1], (γ−1

n (A) :
n ∈N) does not form a cover of 2N. So, if we take � to be the σ-ideal generated by the
inverse images, γ−1(A), as γ runs over all the continuous one-to-one functions from 2N

into [0,1], then � will be a proper σ-ideal of subsets of 2N such that γ−1(A)∈� for each
1-to-1 mapping γ from 2N into [0,1]. �
Corollary 3.11. There exists a Banach space (X ,‖ · ‖) such that (X∗,weak∗) is weakly
Stegall but (X ,‖ · ‖) is not weak Asplund. In particular, (X ,‖ · ‖) is a Gâteaux differentia-
bility space that is not weak Asplund.

Proof. Let A be the set constructed in Lemma 3.10 and let � be the corresponding σ-
ideal on 2N. Then A satisfies the hypotheses of Theorem 3.9 with respect to �. Hence
(C(KA),weak∗) is nearly Stegall with respect to � and so weakly Stegall. On the other
hand, if (C(KA),‖ · ‖∞) is weak Asplund, then by [1], every closed subset of KA contains
a dense completely metrizable subspace. However, by Theorem 2.2 this implies that A is
meagre (in fact perfectly meagre), which is not the case. Therefore, (C(KA),‖ · ‖∞) is not
weak Asplund. �

3.1. Open problems. (i) Is (C(KA),‖ · ‖∞) weak Asplund if and only if A is perfectly
meagre? Certainly, if (C(KA),‖ · ‖∞) is weak Asplund, then A must be perfectly mea-
gre. On the other hand, it follows from Theorem 3.9 that if A is perfectly meagre, then
(C(KA),‖ · ‖∞) is almost weak Asplund.

(ii) Is every Gâteaux differentiability space almost weak Asplund? Our example from
Corollary 3.11 does not answer this question as it is almost weak Asplund. The natural
candidate for a counterexample to this question is the space (C(K(0,1)),‖ · ‖∞) which is
not almost weak Asplund (as the supremum norm is Gâteaux differentiable only on a first
category subset of C(K(0,1))) but which may well be a Gâteaux differentiability space.
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[1] M. M. Čoban and P. S. Kenderov, Generic Gâteaux differentiability of convex functionals in C(T)
and the topological properties of T , Proceedings of 15th Spring Conference of the Union of
Bulgarian Mathematicians, SljanĈev Brjag, 1986, pp. 141–149.
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