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It is known that every Gδ subset E of the plane containing a dense set of lines, even if it
has measure zero, has the property that every real-valued Lipschitz function on R2 has
a point of differentiability in E. Here we show that the set of points of differentiability
of Lipschitz functions inside such sets may be surprisingly tiny: we construct a Gδ set
E ⊂ R2 containing a dense set of lines for which there is a pair of real-valued Lipschitz
functions on R2 having no common point of differentiability in E, and there is a real-
valued Lipschitz function on R2 whose set of points of differentiability in E is uniformly
purely unrectifiable.

1. Introduction and results

One of the important results of Lebesgue tells us that Lipschitz functions on the real line
are differentiable almost everywhere. This result is remarkably sharp: it is not difficult to
see that for every Lebesgue null set E on the real line there is a real-valued Lipschitz func-
tion which is nondifferentiable at any point of E. The higher-dimensional extension of
Lebesgue’s result, due to Rademacher, says that Lipschitz functions on Rn are also differ-
entiable almost everywhere. Here, however, the sharpness of Lebesgue’s theorem seems
to be lost, as there are null sets in R2 in which every real-valued Lipschitz function has
a point of differentiability. A plethora of such examples may be constructed using the
following statement of [6], where it is proved not only in the plane, but in every Banach
space with a smooth norm. Recall that a set is Gδ if it is an intersection of a sequence of
open sets.

Theorem 1.1. Suppose that E is a Gδ subset of R2 having the property that for any two
points u,v ∈R2 and for any ε > 0 there is a Lipschitz γ : [0,1] �→R2 such that ‖γ(0)−u‖ < ε,
‖γ(1)− v‖ < ε, ∫ 1

0 ‖γ′(t)− (v− u)‖ < ε, and µ{t ∈ [0,1] : γ(t) /∈ E} < ε. Then every real-
valued Lipschitz function defined on a nonempty open subset of the plane is differentiable at
some point of E.

The most well-known examples of sets E satisfying the condition of Theorem 1.1
are constructed by requiring that the curves γ be lines and that the Lebesgue measure
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µ{t ∈ [0,1] : γ(t) /∈ E} be not only small, but the set is in fact empty. They are given by
the formula

E =
∞⋂
n=1

∞⋃
k=n

B
(
Lk,ρk

)
, (1.1)

where B(S,ρ) denotes the set {z : dist(z,S) < ρ} and Lk is a sequence of lines in R2 which
is dense in the space of lines; the latter condition means that for any u,v ∈ R2 and ε > 0
there is k such that both u and v are within distance ε of Lk. The set E has measure zero if∑∞

k=1 ρk <∞ and the set of lines contained in E is always dense in the space of lines. This
may be seen by noting that the sets {(u,v)∈R2×R2 : u �= v, [u+n(u− v),v+n(v−u)]⊂⋃∞
k=n B(Lk,ρk)} are open and dense in R4 and for any (u,v) in their intersection (which is

dense in R4 by the Baire category theorem) the line passing through u,v lies in E.
Here we show that the set of points of differentiability of real-valued Lipschitz func-

tions inside a particular set E of the form described in (1.1), although nonempty by
Theorem 1.1, may still be extremely small.

Our first example will give a pair of real-valued Lipschitz functions on R2 with no
common points of differentiability in E; in other words, we construct a Lipschitz function
f : R2 → R2 which is differentiable at no point of E. The example will even provide a
function which is “uniformly nondifferentiable on E” in the sense that the quantity

ε∗( f ,z)= limsup
r→0+

sup
{∥∥ f (u) + f (v)− 2 f

(
(u+ v)/2

)∥∥ : u,v ∈ B(z,r)
}

r
(1.2)

is, on E, bounded away from zero. In this connection, recall that the only known ana-
logues of Theorem 1.1 for vector-valued functions do not show differentiability, but the
so-called ε-differentiability. (See [3, 4] where the emphasis is on the infinite-dimensional
case and [2] for a considerably more precise result in the finite-dimensional case. Here
we ignore the results of [5] because they are purely infinite dimensional.) The concept of
ε-differentiability measures the nondifferentiability of f :Rm→Rn by the quantity

ε( f ,z)= inf
M

limsup
r→0+

sup
{∥∥ f (u)− f (z)−M(u− z)

∥∥ : u∈ B(z,r)
}

r
, (1.3)

where the infimum is over the set of n×m matrices. An ε-differentiability result for a
set E and a function f would say that E contain points with ε( f ,z) arbitrarily small;
this is (considerably) stronger than requiring that the set E contain points with ε∗( f ,z)
arbitrarily small. Our example therefore shows that ε-differentiability results for vector-
valued functions cannot be extended to all sets for which we have full differentiability
results for real-valued functions.

Our second example will provide a real-valued Lipschitz function on R2 whose set of
differentiability points inside E is small in the sense of rectifiability. Recall that a subset
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N of R2 is called purely unrectifiable if it meets every rectifiable curve in a set of one-
dimensional measure zero. A somewhat stronger notion of uniform pure unrectifiability
is defined by requiring the existence of an η > 0 such that for every segment I of the unit
circle of length η and for every ε > 0 there is an open set G containing N with the prop-
erty that µ(γ−1(G)) < ε for every Lipschitz γ : [0,1]→ R2 such that γ′(t) ∈ I for almost
every t. Although these are basic concepts, not much appears to be known about them.
In particular, it is not known whether for Gδ sets the notions of pure and uniform pure
unrectifiability coincide or not. Some information will eventually be found in [1]: an
equivalent definition of uniform pure unrectifiability is obtained by fixing the η as any
number less than π, and for us the most relevant point is that uniform pure unrectifiabil-
ity characterises the sets N for which there is a real-valued Lipschitz function having no
directional derivative at any point of N . Using this result, we could have easily obtained
our first example from the second; we have not done it partly because the second exam-
ple is considerably harder but mainly because in this way we would not obtain a uniform
estimate of nondifferentiability of the pair of functions. We explain the reasoning behind
this after stating our result.

Theorem 1.2. There is a Gδ subset E of R2 containing a dense set of lines for which we can
construct

(i) a Lipschitz function f :R2 → R2 which is differentiable at no point of E, and which
even satisfies that, for a fixed ε > 0, f is not ε-differentiable at any point of E,

(ii) a real-valued Lipschitz function on R2 whose set of points of differentiability in E is
uniformly purely unrectifiable.

As we have already pointed out, if we take the function, say h, from (ii) and use the re-
sult from [1] to find a real-valued Lipschitz function g onR2 which is nondifferentiable at
every point of the uniformly purely unrectifiable set N of the points of differentiability of
h in E, the pair (g,h) will provide an example satisfying the first part of (i). However, this
would not easily provide an example of an f : R2 → R2 that is not ε-differentiable on E,
since for every ε > 0 the set of points z ∈ E at which ε(h,z) < ε must be of positive measure
on some lines lying in E. (This is explained in [6] and is behind the ε-differentiability re-
sults alluded to above.) As we do not have any control of the behaviour of g at most
of these points, the proof of ε-nondifferentiability of (g,h) would require further argu-
ments.

Yet another curious difference between the one- and two-dimensional situation arises
in this connection. To explain it, recall (a special case of) the result of Zahorski [7] that
for every Gδ set N ⊂ R of measure zero there is ψ : R→ R with Lip(ψ) ≤ 1, which is
differentiable at every point of R \N , and at the points of N it satisfies

limsup
y→x

ψ(y)−ψ(x)
y− x = 1, liminf

y→x
ψ(y)−ψ(x)

y− x =−1. (1.4)

This result may be used to show that the set of points of differentiability of a real-valued
Lipschitz function h that lie in a set E satisfying the assumptions of Theorem 1.1 cannot
be too small: its Hausdorff (one-dimensional) measure must be positive, since otherwise
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it would project to a null set on the x-axis and a suitable linear combination of h and
Zahorski’s function ψ would provide a Lipschitz function differentiable at no points of E.
(A stronger version of Zahorski’s results is used in [6] to show that the one-dimensional
projections of the set of points of differentiability of a real-valued Lipschitz function that
lie in a set E satisfying the assumptions of Theorem 1.1 have a null complement.) Now, a
seemingly plausible version of Zahorski’s result in the plane may say that for every uni-
formly purely unrectifiable Gδ set N ⊂R2 there is a Lipschitz ψ :R2 →R that is differen-
tiable at every point of R2 \N and satisfies ε(ψ,z) ≥ ε > 0, for all z ∈ N . But this is false
whenever N contains the set of points of the set E from Theorem 1.2 at which the func-
tion h from (ii) is differentiable, because then a suitable linear combination of h and ψ
would be differentiable at no points of E. Notice that there are such uniformly purely un-
rectifiable Gδ sets N since every uniformly purely unrectifiable set is obviously contained
in a uniformly purely unrectifiable Gδ set.

2. Constructions

We first describe the method of the choice of the lines L1,L2, . . . and the half-widths ρk > 0
of the strips B(Lk,ρk) which is common to both examples. In addition to Lk and ρk, we
will also construct functions gk :R2 →R2 in the first example or ϕk :R2 →R in the second
example, and a finite set of lines which we wish to avoid in the future choices of lines; we
denote by Tk the union of these “prohibited” lines. The function f for the first example
will be obtained as a composition of the gk, and the function h for the second example as
a sum of multiples of the ϕk by suitable functions.

The recursive construction will run as follows. We order a countable dense subset of
R4 into a sequence (uk,vk) and start the induction by choosing L0 and ρ0 arbitrarily and
letting T0 = ∂B(L0,ρ0). Whenever Lj , ρ j , gj or ϕj , and Tj have been defined for j < k, we
choose a line Lk not lying inTk−1 which passes within 1/k of both uk and vk (and satisfying
another simple condition in the first example). Then we define ρk by requirements that
make it small compared to the data we have so far and continue by defining the functions
gk or ϕk. These functions will be piecewise affine, and we choose a finite union of lines
Tk ⊃ Tk−1∪ ∂B(Lk,ρk) so that they are affine on every component of R2 \Tk; in the first
example, we also require that several other functions obtained by composition of gj , j ≤
k, be affine on every component of R2 \Tk. Although the particular requirements on the
various choices will be somewhat different in the two constructions; it is clear that we
can satisfy both of them at the same time and so get the same set E (which is, of course,
defined by (1.1)).

The notation we use is either mostly standard or easy to understand, such as 〈u,v〉
for the scalar product of the vectors u and v. On two occasions, we find it convenient to
use the less standard notation for the cutoff function, which is defined by cutoff(x, y)=
min(max(x,−y), y) for x ∈R and y ≥ 0.

2.1. Proof of Theorem 1.2(i). For this example, we additionally require that the line
Lk do not pass through any meeting point of two different lines of Tk−1, and that it is
not perpendicular to any line of Tk−1. The choice of ρk is subject to the conditions that
ρk ≤ ρk−1/12 and that, for any z ∈ Lk, B(z,ρk) meets no more than one of the lines of
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which Tk−1 consists. The function gk :R2 →R2 will be defined by

gk(z)= z− 2cutoff
(〈
z,vk

〉−αk,ρk
)
vk, (2.1)

where vk is a unit vector perpendicular to Lk and αk = 〈u,vk〉 for u∈ Lk. Geometrically,
this definition says that, in the strip B(Lk,ρk), gk is the reflection about Lk, and each of
the remaining half-planes is shifted perpendicularly to Lk so that each of the two lines
forming the boundary ∂B(Lk,ρk) of the strip is mapped onto the other one. Finally, Tk ⊃
Tk−1 ∪ ∂B(Lk,ρk) is chosen so that all compositions gj ◦ gj+1 ◦ ··· ◦ gk, where j ≤ k, are
affine on every component of R2 \Tk.

For j ≤ k, we let

f j,k = gj ◦ gj+1 ◦ ··· ◦ gk−1, (2.2)

with the usual convention that the composition of an empty sequence of functions is the
identity. Noting that gk is an (affine) isometry on each of the three regions into which the
plane is divided by ∂B(Lk,ρk), we see that f j,k+1 is an affine isometry on each component
of R2 \Tk.

Since ‖gj(z)− z‖ ≤ 2ρ j for every z ∈R2, we have, for j ≤ k ≤ l and u∈R2,

∥∥ fk,l(u)−u∥∥≤ l−1∑
i=k

∥∥gi( fi+1,l(u)
)− fi+1,l(u)

∥∥≤ l−1∑
i=k

2ρi ≤ 3ρk,

∥∥ f j,k(u)− f j,l(u)
∥∥≤ ∥∥ fk,l(u)−u∥∥≤ 3ρk.

(2.3)

So the limits

f j = lim
k→∞

f j,k (2.4)

exist and, since Lip(gi)≤ 1 for each i, we have Lip( f j)≤ 1. Moreover, for each j ≤ k,

f j = f j,k ◦ fk = f j,k ◦ gk ◦ fk+1. (2.5)

We show that f = f1 is the required function. For this, assume that z ∈ E and consider
any k such that z ∈ B(Lk,ρk). Let u ∈ Lk and v1,v2 ∈ ∂B(Lk,ρk), v1 �= v2, lie on the line
through z perpendicular to Lk. By the choice of ρk, [v1,v2] may meet at most one line of
Tk−1, hence the interior of one of the segments [u,v1], [u,v2] does not cross any line of
Tk−1. Choose the notation so that it is [u,v1] and define v = u+ 2(v2−u). Then f1,k is an
affine isometry on gk([u,v])= [u,v1] and hence by (2.3) and (2.5),

∥∥∥∥ f (u) + f (v)− 2 f
(

(u+ v)
2

)∥∥∥∥
≥
∥∥∥∥ f1,k

(
gk(u)

)
+ f1,k

(
gk(v)

)− 2 f1,k

(
gk

(
(u+ v)

2

))∥∥∥∥− 12ρk+1

=
∥∥∥∥gk(u) + gk(v)− 2gk

(
(u+ v)

2

)∥∥∥∥− 12ρk+1

= 2ρk − 12ρk+1 ≥ ρk.

(2.6)
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Since the distance of the points u,v from z is not more than 3ρk, this means that ε∗( f ,z)≥
1/3.

2.2. Proof of Theorem 1.2(ii). Here we do not need any further conditions on the choice
of Lk, k ≥ 1. Before choosing ρk, we let Sk = Lk ∩Tk−1, denote by sk the number of ele-
ments of Sk and choose 0 < δk < 2−k−3/sk. We also choose a unit vector ek parallel to
Lk and denote αk = 〈z,e⊥k 〉 where z ∈ Lk; we use the notation u⊥ = (−u2,u1) for u =
(u1,u2). We subject ρk to the conditions ρk < 16−k−3 sin(π/36), ρk ≤ ρk−1/32, and ρk <
2−k−1 dist(z,Tk−1) for z ∈ B(Lk,ρk) \B(Sk,δk). The last assumption implies

B
(
z,4ρk

)∩Tk−1 =∅ for z ∈ B(Lk,ρk
) \B(Sk,δk

)
. (2.7)

Finally, we define Tk ⊃ Tk−1∪ ∂B(Lk,ρk) so that the function

ϕk(z)= cutoff
(〈
z,e⊥k

〉−αk,min
(
ρk,2−k dist

(
z,Tk−1

)))
(2.8)

is affine on each component of R2 \Tk.
We let

Ck =
k−1∑
j=0

2− j(4 j + 24); (2.9)

these constants will be used to control the Lipschitz constant of a sequence of functions
approximating the desired function h. We list here the inequalities involving δk and ρk in
a form that will be actually used:

∞∑
j=k

(
3δjs j + 2ρ j csc

(
π

36

))
< 2−k,

∞∑
j=k+1

4ρ j <
ρk
4

,
∞∑
j=k

3 j−16ρ j < 4−k. (2.10)

We start our construction by defining four sequences of functions that describe various
aspects of the geometry of the strips B(Lk,ρk). Each of them will have the property that

the kth function is constant on each component of R2 \⋃k
j=1 ∂B(Lj ,ρ j).

(1) Let k0(z)= 0 and kp(z)=min{k > kp−1(z) : z ∈ B(Lk,ρk)}; this formula is under-
stood to imply that kp(z)=∞ if z /∈⋃k>kp−1(z)B(Lk,ρk).

(2) Put σj(z)= (−1)p if kp(z)≤ j < kp+1(z).
(3) ChooseW ⊂ {z ∈R2 : ‖z‖ = 1} having five elements so that for every line L there is

w ∈W whose angle with L is no more than π/9. We also pick w0 ∈W and let w0(z)=w0.
If U is a component of B(Lk,ρk) \⋃k−1

j=1 ∂B(Lj ,ρ j) on which the angle between wk−1(z)
and Lk is bigger than 2π/9 (notice that this angle does not depend on z ∈U , since wk−1 is
constant on U), then we choose w ∈W whose angle with Lk is no more than π/9 and let
wk(z)=w for z ∈U . In all other cases, we let wk(z)=wk−1(z).

(4) Put ζk(z)= 1/〈ek+1,wk(z)〉 if |〈ek+1,wk(z)〉| ≥ 1/2 and ζk(z)= 0 otherwise.
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The functions hk approximating h will be defined as a combination of the functions
ϕk defined in (2.8). Notice that ϕk is continuous on R2, affine on each component of
R2 \Tk, |ϕk(z)| ≤ ρk, ‖ϕ′k(z)‖ ≤ 1, and ‖ϕ′k(z)‖ ≤ 2−k for z /∈ B(Lk,ρk). Note also that ϕk
is zero on Tk−1, on the components of the complement of which both σk−1, and ζk−1 are
constant.

The coefficients of the required combination of the ϕk will depend on yet another
sequence mk of integer-valued functions on R2; these functions will be constant on the
components of R2 \Tk and, similarly to the ϕk, the functions hk approximating h will be
continuous on R2 and affine on each such component. These functions are defined by
requiring that

(i) m0(z)= 0 and h0(z)= 0 for all z ∈R2;
(ii) hk(z)= hk−1(z) + 2−mk−1(z)σk−1(z)ζk−1(z)ϕk(z);

(iii) mk(z)=mk−1(z) + 1 if z /∈ Tk and ‖h′k(z)‖ > Cmk−1(z);
(iv) mk(z)=mk−1(z) in all other cases.

The function with a small set of points of differentiability is defined by

h(z)=
∞∑
k=1

2−mk−1(z)σk−1(z)ζk−1(z)ϕk(z)= lim
k→∞

hk(z); (2.11)

the series converges since |ζk−1(z)| ≤ 2 and so its terms are bounded by 2ρk, where
∑

k ρk
converges.

Notice that mk−1 is constant on each component of R2 \Tk−1 and that ϕk is zero on
Tk−1, so hk is continuous on R2 and affine on each component of R2 \Tk. In particular,
the functions hk are Lipschitz. To show that h is Lipschitz as well, we show that

∥∥h′k(z)
∥∥≤ Cmk for every z /∈ Tk. (2.12)

This clearly holds for k = 0 and, if it holds for k− 1, then either ‖h′k(z)‖ ≤ Cmk−1 ≤ Cmk or
mk was defined in (iii), somk =mk−1 + 1 and ‖h′k(z)‖ ≤ Cmk−1 + 2−mk−1+1 ≤ Cmk−1+1 = Cmk .

Since the sequence Cj is bounded, (2.12) implies that the Lipschitz constants of hk are
bounded by a constant independent of k and hence h is Lipschitz.

We need to show that the set of the points of differentiability of h in E is uniformly
purely unrectifiable. We choose η = π/18 in the definition of uniform pure unrectifiabil-
ity, and let I be an arc of the unit circle of length π/18. Denote by I1 and I2 the arcs of the
unit circle concentric with I of length π/9 and 5π/9, respectively. These angles fit with the
definition of wk: they are chosen so that the angle between any vector e ∈ I1 and w ∈ I2 is
no more than π/3 and if the angle between some e ∈ I1 and w does not exceed π/9, then
w ∈ I2 and the angle between w and any e ∈ I1 does not exceed 2π/9.

For n= 1,2, . . ., denote

Gn =
⋃

k≥n,±ek /∈I1
B
(
Lk,ρk

)∪⋃
k≥n

B
(
Sk,δk

)
,

Hn =
{
z : sup

k
mk(z) > n+ 1

}
.

(2.13)
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These sets are open: for Gn this is obvious and for Hn it follows by observing that the
functions mk are lower semicontinuous. It is our intention to show that the sets Gn∪Hn

form the required open covers of the set of points of differentiability of h in E. For this
purpose, we fix n and start with proving the following statement.

Claim 2.1. Let z ∈ R2 \Gn and simplify the notation by writing kp for kp(z) and wk for
wk(z). Then for any p such that kp ≥ n,

(i) ekq ∈±I1 for q ≥ p,
(ii) ϕkq(z)= 〈z,e⊥kq〉−αkq for q ≥ p,

(iii) wk ∈±I2 for all k ≥ kp,
and there is r ≥ p such that

(iv) wk =wkp for kp ≤ k < kr , and wk =wkr for k ≥ kr ,
(v) ζkq−1(z)= 1/〈ekq ,wkp〉 for p < q < r, and ζkq−1(z)= 1/〈ekq ,wkr 〉 for q > r.

The statement (i) follows immediately from z ∈ B(Lkq ,ρkq) and z /∈ Gn, and the state-
ment (ii) follows from z ∈ B(Lkq ,ρkq) \B(Skq ,δkq) since for such zwe have ρkq < 2−kq dist(z,
Tkq−1). For the remaining statements, first notice that wk stays constant for kq−1 ≤ k < kq
and that the angle between wkq and Lkq never exceeds 2π/9. Hence, by (i) and the defi-
nition of I2, wkq ∈ ±I2 for q ≥ p, and so wk ∈ ±I2 for all k ≥ kp as claimed in (iii). The
statement (iv) is obvious by letting r = p if wk = wkp for all k ≥ kp. If this is not the case,
take the least index after kp, which must necessarily be of the form kr , for whichwkr �=wkp .
Then wk = wkp for kp ≤ k < kr , and the definition of wkr gives that the angle between wkr

and Lkr does not exceed π/9. Since by (i) ekq ∈ ±I1, the angle between wkr and any ekq ,
q ≥ r, never exceeds 2π/9. Hence, wkq = wkr for q ≥ r and (iv) follows. From (i) and (iii),
we infer that the angle between ekq and wkq−1 = wkp did not exceed π/3, and (v) follows
from (iv).

We now show that h is nondifferentiable at any point z ∈ E \ (Gn∪Hn). Indeed, since
z ∈ E, kp(z) <∞ for all p. So, since z /∈ Hn, there is an index p such that kp ≥ n and
m := mkp(z) = mj(z) for all j ≥ kp. By Claim 2.1, wk(z) ∈ ±I2 for all k ≥ kp(z), and
ekq(z) ∈ ±I1 for q ≥ p. Consider any q > p and denote k = kq(z). Since the angle be-
tween wk−1(z) and Lk does not exceed π/3, |ζk−1(z)| ≥ 1 and there are u ∈ Lk and v ∈
∂B(Lk,2ρk) so that v− u is a multiple of wk−1(z)⊥ and z lies on the line segment [u,v];
moreover, ‖v − u‖ ≤ 4ρk. So, deducing from (2.7) that hk−1 is affine on B(z,4ρk) and
that ϕk(u) = 0 and ϕk(v) = ϕk((u + v)/2) and they are either both ρk or both −ρk, we
use that

∑∞
j=k+1 |ϕj(u) +ϕj(v)− 2ϕj((u+ v)/2)| ≤∑∞

j=k+1 4ρ j ≤ ρk/4 to estimate |h(u) +
h(v)− 2h((u + v)/2)| ≥ 2−m(|ϕk(u) + ϕk(v)− 2ϕk((u + v)/2)| − ρk/2) = 2−m−1ρk, which
means that ε∗(h,z)≥ 2−m−3 > 0.

It follows that the proof will be finished once we find εn → 0 (independent of γ) so
that µ(γ−1(Gn∪Hn))≤ εn. Since Gn∪Hn is open, it suffices to verify this inequality for a
dense set of γ (in the topology of uniform convergence), so we may and will assume that
γ intersects each Tk in at most finitely many points and so all hj are differentiable at γ(t),
for almost every t ∈ [0,1].

The estimate of the measure of γ−1(Gn) is straightforward. Since I has length π/18, and
2δ sec(π/36) < 2δ sec(π/4) < 3δ, the γ-preimage of any disk of radius δ is contained in an
interval of length at most 3δ and, if ek /∈±I1, the γ-preimage of B(Lk,ρk) is contained in
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an interval of length at most 2ρk csc(π/36). Hence,

µ
(
γ−1(Gn

))≤ ∞∑
k≥n

∑
z∈Sk

µ
(
γ−1(B(z,δk

)))
+

∞∑
k≥n,ek /∈±I1

µ
(
γ−1(B(Lk,ρk

)))

≤
∞∑
k=n

(
3δksk + 2ρk csc

(
π

36

))
< 2−n.

(2.14)

To estimate µ(γ−1(Hn \Gn)), we have to work a little bit more. Let Σp be the least σ-
algebra of subsets of [0,1] with respect to which the functions kq ◦ γ, 0≤ q ≤ p are mea-
surable. Then the conditional expectations βp = E(γ′ | Σp) form anR2-valued martingale
such that ‖βp‖∞ ≤ 1.

For any k, the set B(Lk,ρk) \⋃ j<k ∂B(Lj ,ρ j) has at most 3k−1 components. Let P denote
one of these components. Then there is an index p so that k = kp(z) for all z ∈ P. We show
that ∫

γ−1(P)

∣∣〈βp(t),e⊥k
〉∣∣dt =

∣∣∣∣
∫
γ−1(P)

〈
γ′(t),e⊥k

〉
dt
∣∣∣∣≤ 6ρk. (2.15)

Since all kq ◦ γ, 0≤ q ≤ p are constant on γ−1(P), so is βp. Hence,

∫
γ−1(P)

∣∣〈βp(t),e⊥k
〉∣∣dt =

∣∣∣∣
∫
γ−1(P)

〈
βp(t),e⊥k

〉
dt
∣∣∣∣, (2.16)

and the equality follows from the definition of conditional expectations. The inequality
is obvious if P does not meet γ or if the angle between Lk and all vectors from I is at least
π/6, since then γ−1(P) is contained in an interval of length at most 4ρk. When the angle
between Lk and some vector from I is less than π/6, the function t→ 〈γ(t),ek〉 is strictly
monotonic. Let a = inf{〈z,ek〉 : z ∈ P} and b = sup{〈z,ek〉 : z ∈ P}. Since P is an open
convex set, there are functions ψ− and ψ+ on (a,b) such that ψ− is convex, ψ+ is concave,
ψ− < ψ+, and ∂P ∩{z : a < 〈z,ek〉 < b} is the union of the graphs of ψ− and ψ+ (in the
coordinate system ek,e⊥k ). By our assumption on γ, ∂P meets γ only in a finite set, hence
γ−1(P) is the union of finitely many intervals, say (a1,a2),(a3,a4), . . . , (a2d−1,a2d), where
〈γ(a1),ek〉,〈γ(a2),ek〉, . . . is strictly monotonic and for each 1 ≤ i ≤ d − 1 both points
γ(a2i) and γ(a2i+1) lie either on the graph of ψ− or on the graph of ψ+. Since ψ− is
convex and oscillates between αk − ρk and αk + ρk, the sum of 〈γ(a2i+1)− γ(a2i),e⊥k 〉 =
ψ−(〈γ(a2i+1),ek〉)−ψ−(〈γ(a2i),ek〉) over those i for which the first case occurs is at most
2ρk. Similarly, we obtain the same estimate of the sum of 〈γ(a2i+1)− γ(a2i),e⊥k 〉 over those
i for which the second case occurs. Hence,

∣∣∣∣∣
d∑
i=1

〈
γ
(
a2i
)− γ(a2i−1

)
,e⊥k
〉∣∣∣∣∣

≤ ∣∣〈γ(a2d
)− γ(a1

)
,e⊥k
〉∣∣+

∣∣∣∣∣
d−1∑
i=1

〈
γ
(
a2i+1

)− γ(a2i
)
,e⊥k
〉∣∣∣∣∣≤ 6ρk,

(2.17)

and (2.15) is proved.
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For any fixed p, by summing (2.15) first over those components P of B(Lk,ρk) \⋃
j<k ∂B(Lj ,ρ j) for which kp(z)= k on P, which gives no more than 3k−1 terms, and then

over k, which starts only from p, we get that

∫
Ap

∣∣〈βp(t),e⊥kp(γ(t))

〉∣∣dt ≤ ∞∑
k=p

3k−16ρk < 4−p, (2.18)

where Ap = {t : kp(γ(t)) <∞}.
Hence, letting

Dp := {t : kp
(
γ(t)

)
<∞ and

∣∣〈βp(t),e⊥kp(γ(t))

〉∣∣ > 2−p
}

, (2.19)

we conclude from the Markov inequality that

µ
(
Dp
)
< 2−p. (2.20)

For each v ∈ I2, we infer from γ′(t)∈ I ⊂ I1 that 1/2≤ 〈γ′(t),v〉 ≤ 1. Hence,

µv(A) :=
∫
A

〈
γ′,v

〉
dt∫ 1

0

〈
γ′,v

〉
dt

(2.21)

is a well-defined probability measure on [0,1]. Since E(〈γ′,v〉|Σp) = 〈βp,v〉 and E(〈γ′,
v⊥〉|Σp)= 〈βp,v⊥〉,

E

(〈
βp,v⊥

〉
〈
βp,v

〉 · 〈γ′,v〉
∣∣∣∣∣Σp

)
=
〈
βp,v⊥

〉 ·E(〈γ′,v〉∣∣Σp
)

〈βp,v〉 = 〈βp,v⊥
〉

= E(〈γ′,v⊥〉∣∣Σp
)= E

(〈
γ′,v⊥

〉
〈
γ′,v

〉 · 〈γ′,v〉
∣∣∣∣Σp

)
.

(2.22)

Therefore, 〈βp,v⊥〉/〈βp,v〉 is a real-valued martingale with respect to the measure µv

and filtration Σp. Since both 〈βp,v⊥〉 and 〈βp,v〉 are in the interval [1/2,1], the martingale
is bounded by 2. From this, it follows that the L2(µv) norm of the martingale is bounded
by 2, moreover,

∥∥∥∥
〈
β0,v⊥

〉
〈
β0,v

〉 ∥∥∥∥
2

L2(µv)
+

∞∑
p=1

∥∥∥∥−
〈
β2p−1,v⊥

〉
〈
β2p−1,v

〉 +

〈
β2p,v⊥

〉
〈
β2p,v

〉 ∥∥∥∥
2

L2(µv)
≤ 4. (2.23)

Let

βvp =
p∑

q=0

(−1)q
〈
βq,v⊥

〉
〈
βq,v

〉 . (2.24)

Then βv2p−1 is a µv martingale with respect to the σ-algebras Σ2p−1 with L2(µv)-norm
bounded by 2. By Kolmogorov’s martingale inequality, µv{t : supp |βv2p−1| > n} < 4/n2.
Since the terms of the series defining βvp are bounded by 2, we conclude that supp |βvp| ≤
supq |βv2q−1| + 2 and so µv{t : supp |βvp| > n + 2} ≤ 4/n2 whenever v ∈ I2. Since µ ≤ 2µv,
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the Lebesgue measure of these sets is at most 8/n2. The same estimate holds also for
v ∈−I2, since β−vp = βvp. Hence, denoting

B =
{
t : sup

p

∣∣∣∣∣
p∑

q=0

(−1)q
〈
βq,v⊥

〉
〈
βq,v

〉
∣∣∣∣∣ > n+ 2 for some v ∈W ∩±I2

}
, (2.25)

we have

µ(B)≤ 40
n2
. (2.26)

We show that

µ

(
γ−1(Hn \Gn

) \
(
B∪

∞⋃
p=n

Dp

))
= 0. (2.27)

By (2.20) and (2.26), this will give µ(γ−1(Hn \Gn)) < 2−n+1 + 40/n2, and so finish the
proof.

To establish (2.27), suppose that t ∈ (0,1) \ (B∪⋃∞p=nDp) is such that z = γ(t)∈Hn \
Gn and all hj are differentiable at z and simplify the notation by denoting mk(z) =mk,
wk(z)=wk, and kp(z)= kp. We will need an estimate, for any k < l, of

∥∥h′l (z)−h′k(z)
∥∥=

∥∥∥∥∥
l∑

j=k+1

2−mj−1σj−1(z)ζj−1(z)ϕ′j(z)

∥∥∥∥∥. (2.28)

Let p be the least index such that kp > k and let q be the largest index such that kq ≤ l.
Recall that |σj−1(z)| = 1, |ζj−1(z)| ≤ 2, ‖ϕ′j(z)‖ ≤ 1, and mj−1 ≥mk for all k + 1 ≤ j ≤ l.
Hence, the norm of each term of the series is trivially estimated by 2−mk+1. If z /∈ B(Lj ,ρ j),
we also have ‖ϕ′j(z)‖ ≤ 2− j , and so the contribution of the terms for which z /∈ B(Lj ,ρ j)
is at most

l∑
j=k+1

2−mk
∣∣ζj−1(z)

∣∣∥∥ϕ′j(z)
∥∥≤ 2−mk

l∑
j=k+1

2− j+1 ≤ 2−mk+1. (2.29)

Using this, the trivial estimate for j = kp and j = kq, the simple fact that σks−1(z) =
(−1)s−1, and noting that the untreated indices j are of the form j = ks, where p < s < q,
we get

∥∥h′l (z)−h′k(z)
∥∥≤ 6 · 2−mk +

∥∥∥∥∥
∑
p<s<q

2−mks−1 (−1)s−1ζks−1(z)ϕ′ks(z)

∥∥∥∥∥
≤ 2−mk+3 +

∥∥∥∥∥
∑
p<s<q

2−mks−1 (−1)s−1ζks−1(z)ϕ′ks(z)

∥∥∥∥∥.
(2.30)

A simple corollary of this is thatmkr ≤ r for all r. Indeed, since ‖h′kr (z)‖ ≤ Cmkr
for all r by

(2.12), we get from (2.30) with k = kr and l ≤ kr+1 that ‖h′l (z)‖ ≤ Cmkr
+ 2−mkr +3 ≤ Cmkr +1
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for all kr < l ≤ kr+1. By the definition of ml, this gives ml ≤mkr + 1 for all kr < l ≤ kr+1; in
particular, mkr+1 ≤mkr + 1. Since this holds for all r, mkr ≤ r.

We now turn our attention to the estimate of the sum in (2.30) under the special as-
sumptions that for all p < s < q, wks = wkp and mks =mkp ≥ n. Since kp ≥mkp ≥ n, Claim
2.1 shows that ϕ′ks(z) = e⊥ks and ζks−1(z) = 1/〈eks ,wkp〉. Hence, we wish to estimate the
norm of the vector

u= up,q :=
∑
p<s<q

2−mks−1 (−1)s−1ζks−1(z)ϕ′ks(z)

=
∑
p<s<q

2−mkp (−1)s−1
e⊥ks〈

eks ,wkp

〉 . (2.31)

Since |〈u⊥,wkp〉| = |
∑

p<s<q(−1)s−12−mkp | ≤ 2−mkp ≤ 2−n, we will establish this by esti-
mating |〈u⊥,w⊥kp〉|. For this, we switch from eks to βs(t); recall that by Claim 2.1, eks ∈±I1,
wkp ∈ ±I2, γ′(t) ∈ I ⊂ I1, therefore |〈eks ,wkp〉| ≥ 1/2, |〈βs(t),wkp〉| = |E(〈γ′,wkp〉|Σs)| ≥
1/2, ‖βs(t)‖ ≥ 1/2, and βs(t)/‖βs(t)‖ ∈ I1. We also have |〈βs(t),e⊥ks〉| ≤ 2−s since s > p ≥
mkp ≥ n and so t /∈Ds, and ks(γ(t)) <∞. Hence,

∣∣∣∣∣
〈
βs(t),w⊥kp

〉
〈
βs(t),wkp

〉 −
〈
eks ,w

⊥
kp

〉
〈
eks ,wkp

〉
∣∣∣∣∣=

∣∣∣∣∣
〈
βs(t),e⊥ks

〉
〈
eks ,wkp

〉〈
βs(t),wkp

〉
∣∣∣∣∣≤ 2−s+2, (2.32)

and we see from t /∈ B that

∣∣〈u⊥,w⊥kp
〉∣∣≤ 2−mkp

(∣∣∣∣∣
∑
p<s<q

(−1)s−1

〈
βs(t),w⊥kp

〉
〈
βs(t),wkp

〉
∣∣∣∣∣+

∑
p<s<q

2−s+2

)

≤ 2−mkp
(
2(n+ 2) + 2−p+2)

≤ 2−n(2n+ 6).

(2.33)

Consequently,

∥∥up,q
∥∥≤ 2−n(2n+ 7). (2.34)

After this digression, we are ready to finish the argument. Sincem0 = 0,mj+1 ≤mj + 1,
and sup j mj ≥ n+ 2, there are indices j0 and j1 such that mj0−1 = n, mj = n+ 1, for j0 ≤
j < j1, and mj1 = n+ 2. Let r0 and r1 be the least indices such that kr0 ≥ j0 and kr1 ≥ j1.
We note that kr0 ≥mkr0 ≥mj0−1 = n. Hence, Claim 2.1 implies that there is r2 ≥ r0 so that
wk(z) = wkr0 (z) for kr0 ≤ k < kr2 , and wk(z) = wkr2 (z) for k ≥ kr2 . Let r3 =min(r1,r2). It
follows that (2.34) can be used with p = r0 and q = r3 as well as with p = r3 and q = r1,
and we get

∥∥h′j1 (z)−h′j0−1(z)
∥∥≤ 2−n+3 +

∥∥ur0,r3

∥∥+ 2−n+1 +
∥∥ur3,r1

∥∥≤ 2−n(4n+ 24). (2.35)

Since mj0−1 = n, ‖h′j0−1(z)‖ ≤ Cn and so

∥∥h′j1 (z)
∥∥≤ Cn + 2−n(4n+ 24)≤ Cn+1 = Cmj1−1 . (2.36)
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But this means that n+ 2=mj1 =mj1−1 = n+ 1, which is the contradiction we desired to
prove (2.27), finishing the proof of the theorem.
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of Lipschitz mappings between infinite-dimensional Banach spaces, Proc. London Math. Soc.
(3) 84 (2002), no. 3, 711–746.

[4] J. Lindenstrauss and D. Preiss, Almost Fréchet differentiability of finitely many Lipschitz functions,
Mathematika 43 (1996), no. 2, 393–412.
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