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To each closed subset S of a finite-dimensional Euclidean space corresponds a σ-ideal
of sets �(S) which is σ-generated over S by the convex subsets of S. The set-theoretic
properties of this ideal hold geometric information about the set. We discuss the relation
of reducibility between convexity ideals and the connections between convexity ideals and
other types of ideals, such as the ideals which are generated over squares of Polish space
by graphs and inverses of graphs of continuous self-maps, or Ramsey ideals, which are
generated over Polish spaces by the homogeneous sets with respect to some continuous
pair coloring. We also attempt to present to nonspecialists the set-theoretic methods for
dealing with formal independence as a means of geometric investigations.

1. Introduction

This paper has two objectives. Its first objective is to present in a unified way a connected
group of set-theoretic results about convexity in Euclidean spaces [4, 5, 6, 10, 12]. These
investigations concern a generalization of convexity of closed subsets of Euclidean spaces.
We call a set countably convex if it is a countable union of convex sets and uncountably
convex otherwise. A convex cover of a set S is a collection of convex subsets of S which
covers S.

It is fair to say that an uncountably convex set is “less convex” than a countably convex
one. But how does one compare generalized convexity between two uncountably convex
sets? For every set S⊆Rd the collection {{x} : x ∈ S} is a convex cover of S, so for a subset
of Rd it never takes more than continuum many convex subsets to cover it. On the other
hand, a closed uncountable subset ofRd is equinumerous with the continuum. So are not
all uncountably convex closed subsets of Rd for all d ≥ 1 “equally nonconvex”?

Most mathematicians would probably think that the answer to this question is positive,
but this is not so. For each finite dimension d ≥ 1 there exists an uncountably convex
compact set Sd+1 ⊆Rd+1 which is “strictly more convex” than every uncountably convex
S⊆Rd, in the following sense:

(i) for every closed uncountably convex S ⊆ Rd, there is a uniform way for trans-
lating convex covers of S to convex covers of Sd+1. This makes Sd+1 “at least as
convex” as S,
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(ii) there is no proof from the axioms of set theory that for some closed and un-
countably convex S ⊆ Rd it holds that S is at least as convex as Sd+1, because
it is possible that Sd+1 is a union of strictly fewer convex sets than the minimal
number of convex subsets of S required to cover S for every closed uncountably
convex S⊆Rd [6].

The second clause above brings up the second objective of this paper, which is to present
the set-theoretic methodology for dealing with possible different uncountable infinities in
Euclidean spaces and to demonstrate the applicability of this methodology to geometric
investigations. Using the set-theoretic language of formal independence over the axioms
of set theory, one can phrase and prove geometric properties of Rd which are neither
expressible nor provable otherwise.

In Section 2, the convexity ideal of a closed, uncountably convex subset ofRd is defined
and so is the relation of reducibility between σ-ideals, used to compare different convexity
ideals. This relation is a variant of Tukey reducibility (see [2] for a treatment of Tukey
reducibility). Then the sets Sd ⊆Rd are constructed for all d ≥ 1 and are shown to form a
descending sequence in the reducibility relation.

The methodology for showing that the reducibility relations which are presented in
Section 2 are not reversible is presented in Sections 3 and 4 is devoted to consistency
results.

A particularly interesting case is d = 2. The classification of generalized convexity of
closed planar sets leads to some interesting connection to other ideals. Section 5 describes
the connection of convexity ideals in the plane to functions ideals, which are generated
over squares of Polish spaces by graphs and inverses of graphs of continuous self-maps of
the space, to Ramsey ideals, and to the σ-compact ideal over the Baire space.

2. Convexity ideals

2.1. Ideals and covering

Definition 2.1. (i) An ideal of sets is a nonempty collection of sets � which satisfies:
(1) A,B ∈�⇒ A∪B ∈�,
(2) A⊆ B ∈�⇒ A∈�.

The term “ideal” will always mean “an ideal of sets.”
(ii) The domain of an ideal � is the set dom� :=⋃�. If dom� /∈�, then � is a proper

ideal.
(iii) If the union of every countable subfamily of an ideal � belongs to �, then � is a

σ-ideal.
(iv) A subfamily �⊆� of an ideal � is a covering family of � if

⋃
�= dom�.

(v) If � is a family of sets, then the ideal generated by � is{
X : ∃n∃(A1, . . . ,An

)[
each Ai ∈� and X ⊂

n⋃
i=1

Ai

]}
. (2.1)

(vi) The σ-ideal which is σ-generated by a family � of sets is{
X : ∃(A1,A2, . . .

)[
each Ai ∈� and X ⊂

∞⋃
i=1

Ai

]}
. (2.2)
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In what follows we will be interested in comparing the difficulty of finding covering
families of one ideal to that of finding covering families of another. This will be done with
the following relation of reducibility.

Definition 2.2. A reduction of an ideal � to an ideal � is a function f : dom�→ dom�
such that f −1[Y]∈� for all Y ∈� or, equivalently, such that f [X] /∈� for all X ⊆ dom�
such that X /∈�. An ideal � is reducible to an ideal � if there exists a reduction f of � to
�. Write �≤ � to denote that � is reducible to �. If both �≤ � and �≤ � hold, then �
and � are equivalent.

The relation ≤ on ideals is reflexive and transitive, hence equivalence of ideals is an
equivalence relation.

Claim 2.3. If f : dom�→ dom� is a reduction of � to �, then for every covering family
� ⊆� of �, the family � := { f −1[Y] : Y ∈�} is a covering family of �.

Proof. Since f −1[Y] ∈ � for all Y ∈ �, indeed � ⊆ �. To see that � covers dom�, let
x ∈ dom� be arbitrary. Since � is covering, there is some Y ∈ � so that f (x) ∈ Y ; so
x ∈ f −1[Y]. �

Thus, if �≤�, then every reduction f : dom�→ dom� gives a uniform way of trans-
lating covering families of � to covering families of �.

The simplest example of �≤� is when �⊆� and dom�= dom�, that is, when � is a
subideal of � with the same domain. In this case, the identity function on dom�= dom�
is a reduction of � to �. Things are more complicated when �⊆ � and dom� �= dom�:
a reduction may or may not exist in either direction.

We will be often considering a special case of this latter situation, when � is a restric-
tion of � to a subset A of dom�.

Definition 2.4. Suppose � is an ideal and∅ �= A⊆ dom�. The ideal {X : X ⊆ A, X ∈ �}
= {X ∩A : X ∈�} is denoted by � �A.

Lemma 2.5. Suppose that � is an ideal and that ∅ �= A ⊆ dom�. Then � � A ≤ �. If in
addition dom� \A∈� holds, then �≤� �A holds.

Proof. To see that � � A≤ �, let f : A→ dom� be the identity map on A. For all Y ∈ � �
A, it holds that f [Y]= Y , hence, Y /∈� � A⇒ f [Y] /∈�. This shows that f is a reduction
of � to � �A.

Assume now that dom� \A ∈ �. Let f : dom� → A be any projection, that is, an
onto function which satisfies f 2 = f . Suppose Y ⊆ dom� and Y /∈ �. It holds that Y =
(Y ∩A)∪ (Y \A) and, since (Y \A)⊆ (dom� \A)∈ �, we have (Y \A)∈ �. Therefore,
since Y /∈ �, necessarily (Y ∩A) /∈ �. But (Y ∩A)⊆ f [Y], hence f [Y] /∈ � � A, so f is a
reduction of � � A to �. �

Definition 2.6. A topological space X is Polish if it is homeomorphic to a complete metric
space. A topological space X is perfect if it has no isolated points. For a perfect Polish
space X let �(X) denote the meager, or first category, σ-ideal over X , namely the σ-ideal
which is σ-generated by all (closed) nowhere dense subsets of X .
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If X is a perfect Polish space, then, since X has no isolated points, each singleton {x}
for x ∈ X belongs to �(X), hence dom�(X) = X . By the previous lemma, whenever
A⊆ X is a dense Gδ subset of a perfect Polish space X , it holds that �(X) and �(X) � A
are equivalent.

Claim 2.7. All meager ideals over all perfect Polish spaces are equivalent to each other.

Proof. Suppose X and Y are perfect Polish spaces and fix countable dense sets A ⊆ X
and B ⊆ Y . Since X and Y are perfect, both A and B are dense in themselves and thus
homeomorphic to each other. Fix a homeomorphism f ′ : A→ B. By Lavrentiev’s the-
orem (see [9, Theorem 3.9]), there are Gδ sets A′ ⊆ X , B′ ⊆ Y so that A ⊆ A′, B ⊆ B′

and a homeomorphism f : A′ → B′ (which extends f ′, but this is not needed here). The
homeomorphism f and its inverse f −1 demonstrate the equivalence of �(Y) � B with
�(X) � A. Since �(X) � A is equivalent to �(X) and �(Y) � B is equivalent to �(Y),
the equivalence of �(Y) with �(X) follows. �

Since up to equivalence there is just one meager ideal over a perfect Polish space, we
use the symbol � alone to denote the meager ideal.

2.2. Convexity ideals. A subset of a real vector space is countably convex if it is a union of
countably many convex sets and is uncountably convex otherwise. Let d ≥ 1 be a natural
number and let Rd denote the d-dimensional Euclidean space with the usual Euclidean
norm.

Definition 2.8. Suppose S⊆Rd. Let �(S) be the σ-ideal which is σ-generated over S by all
convex subsets of S. Explicitly,

X ∈�(S)⇐⇒∃(c0,c1, . . .
)[

each ci ⊆ S is convex and X ⊆
⋃
i

ci

]
. (2.3)

The σ-ideal �(S) is proper if and only if S is uncountably convex. In the case that S is
closed, the closure in Rd of a convex subset of S is contained in S, and is convex. Thus,
when S is closed, �(S) is σ-generated by the closed convex subsets of S.

Claim 2.9. Suppose S ⊆ Rd. Then the union of all relatively open subsets of S which
belong to �(S) belongs to �(S).

Proof. Let A :=⋃{u∩ S : u⊆Rd is open and u∩ S∈ �(S)}. A is an open subset of S. We
need to show that A∈�(S).

For every x ∈ A there is some open set u ⊆ Rd so that x ∈ u and u∩ S ∈ �(S). Since
u is open and x ∈ u, there is some rational ball B, that is a ball of rational radius and
rational coordinates of its center, so that x ∈ B ⊆ u, and hence B∩ S∈�(S).

We have shown that A=⋃{B∩ S : B is a rational ball and B∩ S∈ �(S)}. For each ra-
tional ball B which satisfies B∩ S∈�(S) fix convex subsets of S,cB0 ,cB1 , . . . , so that B∩ S⊆⋃

i c
B
i .

Now

A=
⋃{

B∩ S : B is a rational ball and B∩ S∈�(S)
}

⊆
⋃{

cBi : B is a rational ball and B∩ S∈�(S)
}
.

(2.4)
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Since there are only countably many rational balls in Rd, the collection {cBi : B is a
rational ball and B∩ S∈ �(S)} is countable, and so A is contained in a countable union
of convex subsets of S. Thus A∈�(S). �
Definition 2.10. For S⊆Rd let A(S) be the union of all relatively open sets in �(S) and let
K(S) := S \A(S).

Claim 2.11. Suppose S⊆Rd is closed and uncountably convex. Then K(S) is nonempty
and perfect.

Proof. Since A(S) ∈ �(S) and �(S) is proper, A(S) �= S hence K(S) �= ∅. Since A(S) is
open in S, K(S) is closed in S, and, since S is closed, K(S) is closed in Rd. We argue
that no point x ∈ K(S) is isolated in K(S). Suppose to the contrary that s ∈ K(S) and
an open u � x are given so that K(S)∩ u = {x}. Then (u∩ S) \ {x} ⊆ A(S) and hence it
belongs to �(S). Since {x} is convex, also (u∩ S) \ {x} ∪ {x} = u∩ S belongs to �(S).
Thus, u∩ S⊆ A(S). But since x ∈ S \A(S), this is a contradiction. �

Definition 2.12 (the convexity ideal of a closed uncountably convex set). Suppose that
S⊆Rd is closed and uncountably convex. Let �(S) be the ideal �(S) � K(S)= {X ∩K(S) :
X ∈ �(S)}. Equivalently, �(S) is the σ-ideal σ-generated over K(S) by all intersections
C∩K(S) of all closed and convex C ⊆ S with K(S). The ideal �(S) is called the convexity
ideal of S.

Claim 2.13. For a closed uncountably convex S⊆Rd, the ideals �(S) and �(S) are equiv-
alent.

Proof. By Lemma 2.5, since S \K(S)= A(S)∈�(S). �

Claim 2.14. Suppose S ⊆ Rd is closed and uncountably convex. Then for every convex
C ⊆ S, the intersection C∩K(S) is nowhere dense in K(S).

Proof. Suppose to the contrary that C ⊆ S is convex and that C∩K(S) is dense in K(S)∩
u for some open u with u∩K(S) �= ∅. Since the closure in Rd of C is convex and is
contained in S, K(S)∩u∈ �(S) and hence S∩u∈ �(S). This contradicts A(S)∩K(S)=
∅. �

Corollary 2.15. For a closed, uncountably convex S⊆ Rd, it holds that �(S)⊆�(K(S))
and that dom�(S)= dom�(K(S))= K(S). Thus, � ≤�(S) for every closed, uncountably
convex S⊆Rd for all d ≥ 1.

Proof. If X ⊆ S is countably convex and X ⊆⋃n cn, where each cn ⊆ S is convex, then X ∩
K(S)⊆⋃n cn∩K(S). By the previous claim, cn∩K(S) is nowhere dense in K(S) for each
n, hence X ∩K(S)∈�(K(S)). This shows the �(S)⊆�(K(S)). Also, every singleton in
K(S) is a convex set, hence dom�(S) = K(S). Thus �(S) is a subideal of �(K(S)) with
the same domain, and is reducible to it. �

A covering family of �(S), for a closed and uncountably convex S ⊆ Rd, corresponds
naturally to a covering of S by convex subsets. The reducibility � ≤ �(S) which was just
established shows that to cover a closed, uncountably convex set by convex subsets is at
least as hard as covering a perfect Polish space by nowhere dense sets.
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2.3. The structure of convexity ideals under reducibility. In this section, we will ex-
amine the relation of reducibility on convexity ideals. We will construct, for each d ≥ 1, a
closed and uncountably convex set Sd ⊆Rd whose convexity ideal �(Sd) is identical with a
combinatorially described ideal �d. We will see that for every closed, uncountably convex
S⊆Rd, it holds that

�d+1 =�
(
Sd+1

)≤�(S). (2.5)

We first describe the ideals �d combinatorially, using the standard metric on spaces of
sequences, and prove that �d+1 ≤�d for all d ≥ 1. Then we show how to realize each ideal
�d as a convexity ideal of a compact subset of Rd. The concatenation of a sequence ν to a
sequence η is denoted by ηˆν.

For every d ≥ 2, let dN denote the space of all sequences over the d distinct symbols
0,1, . . . ,d− 1. Let 〈·〉 denote the empty sequence, let 〈x0, . . . ,xn−1〉 denote a sequence of
length n, and let 〈xm : m∈N〉 denote an infinite sequence.

For distinct η,ν ∈ dN let ∆(η,ν) := min{n : η(n) �= ν(n)} and let ρ(η,ν) := 1/2∆(η,ν)

(and let ρ(η,η) = 0 for all η). The function ρ is a metric with which dN is a compact
metric space. There are equidistant sets of size d in dN with respect to ρ but no equidis-
tant sets of size d + 1. An open ball with center η is the set of all ν so that ∆(η,ν)≥ k for
some constant k. If a set X ⊆ dN is somewhere dense in dN, it must contain an equidistant
subset of size d.

Definition 2.16. For every d ≥ 3, let �d be the σ-ideal over dN which is σ-generated by all
subsets which do not contain a set of d equidistant points.

The ideal �d is contained in �(dN) for all d ≥ 3 by what we observed.
We remark that it makes sense to apply the definition of �d also to d = 2—one gets

in this case the σ-ideal of countable subsets of 2N. However, we denote the σ-ideal of
countable subsets of 2N by �1 and reserve the notation �2 for the following ideal.

Definition 2.17. Let �2 be the σ-ideal which is σ-generated over 2N by all subsets X ⊆ 2N

which satisfy the following: ∆(η,ν) is even for all distinct η,ν∈ X , or ∆(η,ν) is odd for all
distinct η,ν in X .

The following claim follows from Theorem 2.20 and Claim 2.19 below; but it also has
a direct, short proof.

Claim 2.18. �d+1 ≤�d for all d ≥ 1.

Proof. The identity map on 2N is a reduction of �1 to �2, since every countable subset of
2N belongs to �2.

A reduction of �2 to �3 is achieved as follows: let g(0) = 〈0,0〉, g(1) = 〈1,0〉, and
g(2)= 〈1,1〉. Now define f (η)= 〈g(η(m)) : m∈N〉, that is, the successive concatenation
of g(η(i)). Suppose that {η0,η1,η2} is an equidistant triple in 3N with ∆(ηi,ηj) =m for
all i < j < 3 and suppose that ηi(m)= i. Then ∆( f (η0, f η1))= 2m and ∆( f (η1), f (η2))=
2m+ 1. Therefore, whenever in Y ⊆ 2N all ∆’s are odd or all ∆’s are even, f −1[Y] does not
contain an equidistant triple. Since f −1 (on sets) commutes with taking unions, for every
Y ∈�2, it holds that f −1[Y]∈�3.
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For the case d ≥ 3, let g(i) = i if i < d and let g(d) = d− 1. Define f (η) = 〈g(η(m)) :
m ∈ N〉. Every equidistant (d + 1)-tuple in (d + 1)N is mapped via f to an equidistant
d-tuple. Thus, f is a reduction of �d to �d+1. �

Claim 2.19. For every closed and uncountably convex S⊆Rd, it holds that �d+1 ≤�(S).

Proof. A uniformly continuous 1-1 function f : (d+ 1)N→ K(S) is defined as follows. For
every finite sequence η ∈ (d+ 1)m, define F(η)⊆ K(S) to be a closed ball of positive radius
less than or equal to 1/(m+ 1) and so that F(η î) ⊆ F(η) for all i ≤ d. Then f (η) for an
infinite η ∈ (d+ 1)N is defined as the unique point which satisfies { f (η)} =⋂mF(η �m).

Let F(〈·〉) be any ball of radius 1 in K(S).
Suppose F(η) is defined for all η ∈ (d + 1)m and let η ∈ (d + 1)m be given. Since

conv(K(S)∩ F(η) �⊆ S, it follows, by Caratheodory’s theorem (Caratheodory’s theorem
states that a point in the convex hull of S⊆Rd belongs to the convex hull of d + 1 points
from S), that there are y0, . . . , yd ∈ K(S)∩ F(η) so that conv(y0, . . . , yd) �⊆ S. Since S is
closed, there is a sufficiently small r > 0 so that for every choice of xi ∈ B(yi,r) for i≤ d,
it holds that conv(x0, . . . ,xd) �⊆ S. Let f (η î)= B(yi,r).

Every equidistant (d + 1)-tuple in (d + 1)N is mapped via f to a (d + 1)-tuple in K(S)
whose convex hull is not contained in S. Thus, f is a reduction. �

Finally, we show that �d is realized as a convexity ideal in Rd.

Theorem 2.20. For every d ≥ 1, there exists a compact set Sd ⊆Rd so that �(S)= �d. For
d ≥ 3, Sd is star-like with respect to a point in its interior, namely there is some x0 ∈ intSd so
that [x0, y]⊆ Sd for all y ∈ Sd, and therefore Sd is contractible for all d ≥ 3.

Proof. We start with the case d = 3. Take a spherical soup bowl and place three closed
spherical caps and an open pyramid on its bottom so that

(1) any point in one of the spherical caps can see any point in any other spherical
cap;

(2) any choice of one point from each cap spans a triangle that meets the pyramid.
(See Figure 2.1.)

Repeat this construction ad infinitum inside each of the three caps. When finished,
fill the bowl with soup and freeze it. The frozen soup is a compact subset of R3 which we
denote by S3. Clearly, S3 is star-like with respect to the center of the sphere, which belongs
to the interior of S3.

The set K(S3) consists of all points in S3 which belong to infinitely many caps. The
set K(S3) is thus naturally homeomorphic to 3N. Whenever X ⊆ 3N does not contain an
equidistant triple, it corresponds via the natural homeomorphism to a subset of K(S)
whose convex hull is contained in S. If X does contain an equidistant triple, then their
corresponding points in K(S) are in three caps that separated from each other simultane-
ously at some stage of the construction, so their convex hull meets one of the pyramids,
and is thus not contained in S3. We have shown that �(S3)=�3.

A straightforward generalization of this construction gives a contractible, compact
Sd ⊆Rd so that �(Sd)=�d for all d ≥ 3.

In R2 the construction is different. Let C denote the standard middle-third Cantor
set, namely, the set of all points in [0,1] whose base-3 expansion omits the digit 1. Fix
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Figure 2.1

a continuously differentiable function f : C→R with the following property: for all x1 <
x2 in C,

(1) f ′(x1) < ( f (x2)− f (x1))/(x2 − x1) < f ′(x2) if and only if the first position in
which x1 and x2 have different digits in their base-3 expansions is even,

(2) f ′(x1) > ( f (x2)− f (x1))/(x2 − x1) > f ′(x2) if and only if the first position in
which x1 and x2 have different digits in their base-3 expansions is odd.

Such a function can be defined as a uniformly continuous limit of piece-wise linear
functions.

Let S2 be the union of all convex hulls of triangles {(x1, f (x1)),(x2, f (x2)),(x3, f (x3))}
for x1 < x2 < x3 in C for which either all three pairs (xi,xj) for 0 < i < j < 3 satisfy condi-
tion (1) or all three pairs satisfy condition (2) above. Call such a triangle homogeneous.

It is not hard to verify that S2 is closed, and uncountably convex and that K(S) is
exactly the graph of f , and is thus naturally homeomorphic to 2N. Furthermore, the
convex hull of a subset of K(S) is contained in S if and only if all triangles from the subset
are homogeneous, which means that the set itself is homogeneous. This establishes that
�(S2)=�2.

Finally, �1, the ideal of countable subsets of 2N, is the convexity ideal of the standard
Cantor set. �

We point out the following.

Fact 2.21. If S⊆R1 is closed and uncountably convex, then �1 ≤�(S).

Thus, up to equivalence, there is exactly one convexity ideal of a closed subset of R.
The following pattern of reducibility among convexity ideals is seen now in Figure 2.2:

there is a single ideal in R1. In each dimension d + 1 there is single set Sd+1 so that all
convexity ideals in Rd are reducible to its convexity ideal, �d+1. All convexity ideals are
reducible to the meager ideal.

3. Expanding the methodology: proofs, cardinals, models, and consistency

If one wishes to know the structure of reducibility among convexity ideals up to equiva-
lence, then one must answer the following.
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I1

I2

Id

Id+1

M

...

...

Figure 2.2

Question 3.1. Which of the reducibility relations in Figure 2.2 are reversible?

This seemingly innocent question involves formal independence over the axioms of set
theory. The usual axioms of mathematics do not decide the reversibility or irreversibility
of any of the reducibilities in this figure. The next section will present the relevant facts
about formal independence.

Meanwhile we begin by showing that if one assumes the continuum hypothesis as
an additional axiom, then all convexity ideals (and many other ideals) are equivalent to
each other, and thus, with the CH, the whole figure collapses to a single point modulo
equivalence. Since the CH is a consistent axiom [6], this shows the inability to prove
without additional assumptions that there are two inequivalent convexity ideals.

Theorem 3.2. If the continuum hypothesis holds, then every proper σ-ideal on the contin-
uum which is σ-generated by continuum many generators is reducible to �1, the ideal of
countable subsets of 2N.

Proof. Assuming CH, we identify the continuum with the ordinal ω1 = {α : α < ω1}.
Given a proper σ-ideal � with dom� = ω1 which is σ-generated by ω1 generators, fix
an enumeration 〈Xα : α < ω1〉 of a set of generators of X .

Now for each α < ω1, let f (α) :=min(ω1 \
⋃

γ≤αXγ). Since � is a proper σ-ideal, ω1 \⋃
γ≤αXγ is nonempty, and the definition makes sense.
Suppose that Y ∈ �. Since {Xα : α < ω1} σ-generates �, there is a countable set {αn :

n ∈ N} ⊆ ω1 so that A ⊆⋃nXαn . Every countable subset of ω1 is bounded in ω1, hence
α= sup{αn : n∈N} < ω1. Thus, for all α < β < ω1 it holds that f (β) /∈ Y . In other words,
f −1[Y]⊆ α, and is therefore countable. Thus f is a reduction of � to the ideal of count-
able subsets of ω1. �

Corollary 3.3. The CH implies that all convexity ideals, the meager ideal, and the Lebesgue
null ideal are equivalent to the ideal of countable sets, and therefore to each other.
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Proof. The ideal of countable sets is trivially reducible to each convexity ideal, to the
meager ideal, and to the Lebesgue null ideal. Since each convexity ideal in question is
σ-generated by closed sets, and there are exactly continuum many closed subsets of any
perfect Polish space, each of these ideals is σ-generated by continuum many generators,
and by the previous theorem is reducible to the ideal of countable sets under CH. �

We will argue soon that it is impossible to prove that �d ≤�d+1 for any d ≥ 1. This will
necessitate a broadening of the methodology. We will need to make precise what a proof
is and how one shows that a certain statement has no proof. We will also introduce the
notion of a cardinal invariant.

3.1. What is a proof? We adopt the notion of a formal proof from the Zermelo-Fraenkel
axioms of set-theory with the axiom of choice (ZFC). A formal proof from a set of axioms
in some formal language � is a sequence of formulas, each of which is either an axiom in
the set or is derived from earlier formulas in the sequence by some logical inference rule. A
formula with no free variables is a sentence. A proof of a sentence φ is a proof whose last
formula is φ. This (Hilbertian) notion of formal proof encompasses all proof methods
which are accepted by mathematicians. A formal proof itself is a finite string of symbols.
Now that a formal proof is a finite mathematical object, the existence or nonexistence of
a certain formal proof can be discussed mathematically.

The ZFC set of axioms are sentences in the language of set theory, which contains,
apart from the logical symbols∀,∃,∧,∨,→,¬, the relation symbols = and ∈. ZFC is the
standard axiomatization of set theory. Within ZFC all of mathematics can be formalized.
By this we mean the following: every mathematical object and relation can be represented
as a set and every proof can be represented as a formal proof from the ZFC axioms.

We need now to clarify how one proves that a proof of a certain sentence from ZFC
does not exist. This can be true only if a contradiction cannot be proved from ZFC, since
the inference rules easily allow one to produce a proof of any sentence from a proof of a
contradiction. A set of axioms from which no contradiction is provable is called consis-
tent.

However, by Gödel’s second incompleteness theorem, from ZFC itself there is no proof
that ZFC is consistent—unless ZFC is inconsistent, in which case everything is provable
from ZFC (including the statement that ZFC is consistent).

We assume from now on that ZFC is consistent. This assumption itself states that some
sentences do not have a proof from ZFC; now it remains to find out which ones.

3.2. What is a model? Although a proof is a syntactic object, the usual method for show-
ing that a certain proof does not exist is semantic. A model of ZFC is a set over which the
relations = and ∈ are interpreted, and which satisfies all the axioms of ZFC.

Kurt Gödel proved his completeness theorem in his PhD thesis under Hahn in Vienna
in 1930.

Theorem 3.4. Gödel [4] A sentence φ is formally provable from a set of axioms Γ if and only
if φ holds true in every model of Γ.

From Gödel’s completeness theorem, a necessary and sufficient condition for the
nonexistence of a proof of a sentence ϕ from ZFC is the existence of a model of ZFC
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in which ϕ does not hold. In Section 3.5 the method of forcing for constructing models
of ZFC is briefly described.

3.3. Infinite cardinals. Recall the notion of an infinite cardinal. An infinite cardinal is
an ordinal which does not have a bijection with a smaller ordinal. The cardinality of a
set A, denoted by |A| is the unique cardinal number with which A has a bijection. For
two sets A,B, it holds that |A| ≤ |B| if and only if there is an injection from A to B if and
only if there is a surjection from B onto A. Any two infinite cardinals are comparable;
equivalently, for any two sets A,B, either there is a bijection from A to B or there is a
bijection from B to A. The infinite cardinals are well ordered, so every nonempty set of
infinite cardinals has a smallest member. All these facts about cardinals are ZFC theorems.

The cardinality of N is the smallest infinite cardinal, named ℵ0. Every infinite cardinal
has an immediate successor, and the immediate successor of ℵ0 is ℵ1, its immediate suc-
cessor is ℵ2 and so forth. Cantor proved that |R| > ℵ0 and conjectured that |R| = ℵ1. The
statement |R| = ℵ1 is known as the continuum hypothesis and was presented as the first
problem in Hilbert’s list of problems in 1900. An equivalent formulation of the contin-
uum hypothesis is that “every set A⊆R is either countable or equinumerous with R.”

In 1936, Gödel proved that the continuum hypothesis could not be formally refuted
from ZFC (see the 1940 monograph [6]), by providing a model of ZFC in which the
statement |R| = ℵ1 holds true.

In 1963, Paul Cohen invented the method of forcing for constructing models of ZFC,
and using forcing he constructed a model in which |R| = ℵ2, namely in which the CH is
false. Thus, Cohen showed that CH could not be proved from ZFC.

3.4. Cardinal invariants. A cardinal invariant is a definition of a cardinal number associ-
ated with a structure. The simplest example of a cardinal invariant is |R|—the cardinality
of the real line. Gödel’s and Cohen’s results showed that it is impossible to determine |R|
from the ZFC axioms.

There are many cardinal invariants associated withR (a good survey of such invariants
is [2]). We will concentrate on the following.

Definition 3.5. Suppose � is a σ-ideal over a perfect Polish space. Let cov(�) be the least
cardinality of a covering family �⊆�.

Claim 3.6. Suppose that � is reducible to �. Then cov(�)≤ cov(�).

Proof. Suppose that f : dom�→ dom� is a reduction. By Claim 2.3, for every covering
family � ⊆ � it holds that � := { f −1[Y] : Y ∈ �} is a covering family of �, and clearly
|�| ≤ |�|. �

3.5. The method of forcing and σ-ideals. Cohen’s forcing is a method for extending
a given model of ZFC to a larger model of ZFC which contains a new object. A good
analogy for forcing is extending a field to a larger field in which a given polynomial gains
a new root. The polynomial is a finite description of the new root with coefficients in the
old field. After adding a root of a polynomial to the field, one must add all its sums and
products with old members of the field to obtain a field.
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In forcing, it is a model of all ZFC which is extended. The description of the new object
is not finite, but is a directed set of partial descriptions, called forcing conditions, which
belong to the old model.

In Cohen’s original forcing (which was designed to produce a model with the negation
of CH) as well as in many other forcing notions, the forcing conditions are elements of
a σ-ideal over R. The new object which the forcing adds is a real number. The partial
description which is provided about the new real by a member of the ideal is that the real
avoids it. A Cohen real is added by the Cohen forcing, whose conditions are all closed and
nowhere dense subsets of R which belong to the ground mode, and thus a Cohen real is
a new real which avoids all ground model nowhere dense sets.

A later forcing, due to Solovay, adds a new real which avoids all ground model null
sets. Such a real is called a random real.

Recall that the real line is a union of two disjoint sets, R = A∪B, where A is meager
and B is null. A Cohen real falls always into B and into all translates of B, and thus makes,
in the extension, the set of old reals contained in a translate of a null set, and it is therefore
null. A random real does the opposite: it turns the set of old reals into a meager set.

Thus, starting from a model of CH and adding ℵ2 Cohen reals iteratively, one obtains
a model in which R is coverable by ℵ1 Lebesgue null sets, but is not coverable by fewer
than ℵ2 meager sets. Conversely, the iterative addition of ℵ2 random reals to a model of
CH produces a model in which R is coverable by ℵ1 meager sets but not by fewer than ℵ2

Lebesgue null sets.
Let � denote the σ-ideal of meager subsets ofR and let � denote the ideal of Lebesgue

null subsets of R. The facts in the previous paragraph tell us the following.

Theorem 3.7. If ZFC is consistent, there is no proof from ZFC that � is reducible to � and
there is no proof from ZFC that � is reducible to �.

Proof. Suppose there was a proof that � ≤�. Then by Claim 3.6 we have a proof that
cov(�)≤ cov(�). But then this inequality has to be true in all models of ZFC—contrary
to the existence of a model in which cov(�)= ℵ2 > ℵ1 = cov(�).

Similarly, the other direction is proved. �

3.6. Equality, incomparability, inequality, and irreversible inequality. Now comes the
main methodological point regarding the comparison of cardinal invariants.

Definition 3.8. Suppose that � and � are σ-ideals which are σ-generated by some defin-
able collection of closed subsets of a Polish space. Write

cov(�)≺ cov(�) (3.1)

if
(1) cov(�)≤ cov(�) in all models of ZFC,
(2) there is at least one model of ZFC in which cov(�) < cov(�).

This relation can be called “irreversible inequality” or “consistently strict inequality.”
We remark that apart from =, ≤, and ≺ there is a fourth relation between cardinal

invariants, which, for example, cov(�) and cov(�) satisfy: incomparability, namely that
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neither cov(�)≤ cov(�) nor cov(�)≤ cov(�) are provable in ZFC, or, equivalently, that
there are some models of ZFC in which cov(�) < cov(�) and other models in which
cov(�) < cov(�).

4. Covering numbers of convexity ideals

We return now from the short guided tour in mathematical logic to convexity ideals and
see what can be said about them in the expanded context that was set in the previous
section.

We now show that none of the reductions we proved in Section 2.3 are reversible. What
does this mean in practice? That whatever effort, ingenuity, or technique one may invest
in trying to prove, say, that �d ≤ �d+1, the attempt will not be successful. Why? Because
an acceptable proof can be transformed into a formal proof, and there is no such formal
proof—if ZFC is consistent.

Theorem 4.1. For every d ≥ 1, it holds that cov(�d+1)≺ cov(�d).

For establishing this, one should, for every d, provide a model in which cov(�d+1) <
cov(�d). Something better may be done.

Theorem 4.2 [10]. For every d ≥ 3, there is a model of set theory in which c > cov(�3) >
··· > cov(�d).

There is also a model [4] in which c > cov(�2) and a model in which cov(�2) > cov(I3).
We know that �d+1 ≤�(S) for all closed S⊆Rd, but it could still be the case that there

are two convexity ideals of closed subsets of Rd which are incomparable or satisfy the
relation ≺. However, we have no example of two incomparable convexity ideals. In other
words, we have no evidence that the set of all convexity ideals of closed subsets in Rd for
all d ≥ 1 is not linearly ordered by ≤.

Theorem 4.3 (Geschke [6]). For each d, there is a model of ZFC in which cov(Id+1) <
cov(�(S)) for all closed uncountably convex S⊆Rd.

Geschke’s proof utilizes a geometric property common to all convexity ideals in Rd to
separate them from �d+1.

The results quoted so far, show that Figure 2.2 is indeed the right figure for the relation
of irreversible inequality.

It is still open whether there may be in Rd a closed set whose convexity ideal is not
equivalent to �d′ for some d′ ≤ d. For all we know, inRd there may just be the d inequiva-
lent convexity ideals we have listed, which are linearly ordered by irreversible reducibility.

Even if there are convexity ideals in Rd which were not spotted yet, the following
weaker statement, phrased in the language of cardinal invariants and formal consistency,
may still be true.

Conjecture 4.4 (the dimension conjecture). There may be d, but no more than d different
uncountable convexity numbers of closed subsets of Rd in a single model of set theory.

In dimension d > 2, this conjecture is “open at both ends.” First, it is not known if one
can get all covering numbers of �1 through �d to be different than each other in a single
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model of ZFC. This is a problem in the technology of forcing. So at the moment only
d− 1 different numbers are attained for d > 2.

At the other end, there is no known classification of convexity ideals in Rd for d > 1.
This problem is geometric. Also, there is no upper bound on the number of different
covering numbers of convexity ideals in Rd for d > 2.

5. Convexity ideals inR2, Ramsey ideals, and functions ideals

The dimension conjecture has been proved for d = 2. The proof does not determine the
structure of convexity ideals in R2 under ≺. It utilizes the fact that convexity ideals in
R2 which are not equivalent to �1 are sandwiched between Ramsey ideals from above,
and ideals of continuous functions on 2N, and the ideal of σ-compact subsets ofNN from
below.

The important property of functions ideals is that their covering numbers are either
2ℵ0 or the immediate predecessor of 2ℵ0 ; the important property about Ramsey ideals
is that each of them is ≺ �1. Apart from settling the dimension conjecture for d = 2,
Ramsey ideals and functions ideals have very appealing properties and are related to both
analysis and graph theory. We will survey now the relations among those types of ideals.
A complete picture of what is known is presented in Figure 5.1.

We begin by introducing the players.

5.1. Ramsey ideals. We start by generalizing the definition of the ideal �2. Observe that
the two-place function ∆ is symmetric and satisfies that if ∆(x, y)= d and min{∆(x,x′),
∆(y, y′)} ≥ d, then ∆(x′, y′) = d. In particular, if parity(∆(x, y)) = i, i ∈ {0,1} and x′ is
sufficiently close to x, y′ sufficiently close to y, then parity(∆(x′, y′))= i as well. This is a
continuity condition, which we now state precisely.

Definition 5.1. For a topological space X let [X]2 denote the quotient of the product
topology on X2 \ {(x,x) : x ∈ X} over the equivalence relation (x, y)∼ (y,x).

A function c : [X]2 → {0,1} is called a continuous coloring if c is continuous with
respect to the topology on [X]2.

Definition 5.2. Suppose that c : [X]2 → {0,1} is a continuous coloring. A subset Y ⊆ X
is called c-homogeneous if c � [Y]2 is constant. Let �c be the σ-ideal σ-generated by all
c-homogeneous subsets of X .

We define cmin : [2N]2 → {0,1} by cmin(x, y) = parity(∆(x, y)). This is a continuous
coloring. Furthermore, the definition of �2 gives us immediately that

�cmin =�2. (5.1)

Fact 5.3. Suppose X is a Polish space and c : [X]2 → {0,1} is a continuous coloring. Then
�c is proper if and only if there is a perfect P ⊆ X so that �(P)≤�c.

Proof. One direction is trivial. For the other direction, suppose that �c is proper. Let
A be the union of all open sets which belong to �c. Then A is open and belongs itself
to �c. Let P = X \A. Clearly, P nonempty and perfect. The continuity of c implies that
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Figure 5.1

a closure of a c-homogeneous set is c-homogeneous, thus every c-homogeneous subset
of P is nowhere dense. Now the identity function on P is a reduction of �(P) to �c. �

From now on we will assume, by replacing a given c : [X]2 → {0,1} by c :� [P]2, that all
continuous colorings we consider satisfy that no open set is homogeneous.

Fact 5.4. Suppose X is a perfect Polish space and c : [X]2 → {0,1} has no open homoge-
neous set. Then �cmin ≤�c.

The proof is straightforward.

Theorem 5.5 [5]. There exists a continuous pair-coloring cmax : 2N → {0,1} so that for all
continuous pair-coloring c : X → {0,1} with no open homogeneous sets on some Polish space
X , it holds that

cov
(
�cmin

)≤ cov
(
�c
)≤ cov

(
�cmax

)
. (5.2)

It is interesting to point out that cmax is defined on a compact space.

Theorem 5.6. There is a model of ZFC in which cov(�cmax ) < 2ℵ0 . In particular, �cmax ≺�1

and consequently �c ≺�1 for every continuous pair-coloring c on a Polish space.

5.2. Functions ideals over the square. Let X be any infinite set. Let Func(X) be the ideal
generated over X2 by all graphs and inverses of graphs of functions from X to X .

A covering collection in Func(X) is a set � of functions from X to X so that for all
(x1,x2)∈ X2, there is f ∈� so that f (x1)= x2 or f (x2)= x1.

Theorem 5.7 (Sierpiński). For every infinite cardinalℵα+1, it holds that cov(Func(ℵα+1))=
ℵα and if α is limit, then cov(Func(ℵα))= ℵα.
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In particular, there are countably many functions fn : ℵ1 →ℵ1 so that for all α,β ∈ ℵ1,
there is some n so that fn(α)= β or fn(β)= α. Thus, the following holds.

Corollary 5.8. The CH implies that cov(Func(R))= ℵ0.

In the case CH holds, Func(R) is not contained in a proper σ-ideal over R.
The graph of a continuous function from R to R is, though, a nowhere dense subset

of R2. Thus the graphs and inverses of graphs of continuous real functions do generate a
proper σ-ideal over R2.

Definition 5.9. Suppose X is a metric space. Then Cont(X) is the σ-ideal which is σ-
generated over X2 by graphs and inverses of graphs of continuous functions from X to
X . Lip(X) is the σ-ideal which is σ-generated over X2 by graphs and inverses of graphs of
Lipschitz continuous functions.

Since Lip(X)⊆ Cont(X)⊆ Func(X) for every metric space X , one has trivially

cov
(

Lip(X)
)≥ cov

(
Cont(X)

)≥ cov
(

Func(X)
)
. (5.3)

Hence, by Sierpiński’s theorem we have the following important fact.

Fact 5.10. For every perfect Polish space X ,

(
cov

(
Cont(X)

))+ ≥max
{ℵ2,2ℵ0

}
. (5.4)

Proof. Since cov(Cont(X)) ≥ ℵ1, it holds that (cov(Cont(X)))+ ≥ ℵ2 for every perfect
Polish X . That (cov(Cont(X)))+ ≥ 2ℵ0 follows directly from Sierpiński’s theorem and
|X| = 2ℵ0 . �

The relation between functions ideals and convexity ideals is set via the following.

Theorem 5.11. Lip(2N) and �2 are equivalent.

By what we have seen so far, �2 plays three different roles: it is a convexity ideal in R2,
it is the bottom (with respect to reducibility) Ramsey ideal, and is also (equivalent to) the
Lipschitz ideal Lip(2N). We remark that �2 is actually isomorphic to the ideal Lip1,1/2(2N)
which is σ-generated over (2N)2 by all graphs of functions satisfying the Lipschitz con-
dition with Lipschitz constant 1 and all inverses of graphs of functions which satisfy the
Lipschitz condition with Lipschitz constant 1/2 (see [5]).

We quote the following result from [5].

Theorem 5.12. There is a model of ZFC in which cov(Cont(R))= ℵ1 and cov(Lip(R))=
ℵ2. Therefore Cont(R)≺ Lip(R).

We remark that by Steprāns’ [15] also the σ-ideal σ-generated over R2 by C1 func-
tions is not equivalent to �1. However, the σ-ideal which is σ-generated over R2 by twice
differentiable function is equivalent to �1 by the following result from [1].

Theorem 5.13 [1]. There exists a differentiable function f :R→R and an infinite perfect
set P ⊆ R such that the derivative of f is constantly 0 on P and no function which is twice
differentiable intersects f � P in infinitely many points.
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Since the derivative of f is 0 on P, no inverse of a differentiable function intersects
f � P in more than one point. Thus, f � P itself is a reduction of the σ-ideal σ-generated
overR2 by graphs of twice differentiable and inverses of graphs of differentiable functions
to the ideal of countable subsets of P.

5.3. σ-compact subsets of the irrationals. Finally, we denote the σ-ideal which is σ-
generated over NN by all compact subsets of NN by Comp(NN). The covering number of
this ideal is denoted by d.

The following crucial inequality does not follow from a reduction of Cont(2N) to
Comp(NN). In fact, it is known that no such definable reduction exists.

Theorem 5.14. d≤ cov(Cont(2ω)).

Proof. Rather than showing that there is some f that takes every cover of 2N × 2N by
continuous functions to a compact cover ofNN, we will show something weaker: that for
every cover of 2N by continuous functions, there is map F that takes the elements of the
cover to a compact cover of NN.

We utilize the fact that the subspace of 2N consisting of all sequences with infinitely
many 1’s is homeomorphic to NN. Via an identification of this subspace with NN, we
have NN ⊆ 2N and 2N \NN is countable, since there are only countably many eventually
zero sequences in 2N.

Suppose that { fα : α∈ I} is a set of continuous self-maps on 2N such that for all x, y ∈
2N there is some α∈ I so that either fα(x)= y or fα(y)= x.
Case 1. { fα(q) : q ∈ 2N \NN,α∈ I} ⊇NN. In this case, let F( f )= { f (q) : q ∈ 2N \NN}∩
NN for every continuous f : 2N→ 2N. Clearly,

⋃{F( fα) : α∈ I} =NN.
Case 2. There is some x ∈ NN so that x �= fα(q) for all α ∈ I and q ∈ 2N \NN. In this
case let F( f ) = f −1(x)∪ ({ f (x)} ∩NN) if f −1(x) ⊆ NN and let F( f ) = {x} otherwise.
For every continuous self map f of 2N, f −1(x) is a compact subset of 2N; in the case
f −1(x)⊆NN , f −1(x) is a compact subset ofNN and so is F( f )= f −1(x)∪ ({ f (x)}∩NN).
In the other case F( f ) is a singleton, and hence compact.

To see that
⋃{F( fα) : α∈ I} =NN just recall that for every y ∈ 2N, there is some α for

which fα(x)= y or fα(y)= x. �

Figure 5.1 summarizes the relations between the ideals we introduced.
The relation between every cardinal invariant in the figure to every cardinal invariant

in any line above it is irreversible inequality—with one exception, that of cov(Lip(R)).
Not all of the inequalities in this figure were proved by providing a reduction. A good
part of the inequalities were proved indirectly by more abstract means. For details see [5].

An inequality that was recently proved by Geschke, and which is not present in the
figure, is cov(Lip(R))≤ cov(�cmax ).

For each of the lines (1)–(4) in the figure there is a model of ZFC in which all cardinals
in that line are equal to ℵ1 and on the line above are equal to ℵ2, provided cov(Lip(R))
is removed from line (3). The difference between line (2) and line (6) is at most one
cardinal.

It is the inequality between d and cov(�cmin ) that enables the proof of Theorem 5.5.
Proofs can be found in [5].
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5.4. The dimension conjecture in R2. The following geometric theorem connects con-
vexity ideals in R2 to Ramsey ideals.

Theorem 5.15 [4]. For every closed, uncountably convex S ⊆ R2, either there is a perfect
P ⊆ S so that |c∩ P| < 3 for all convex c ⊆ S (and then �1 ≤ �(S)), or else then there is a
partition dom�(S)=⋃An so that An is homeomorphic to NN for each n and �(S) � An =
�cn for some continuous coloring cn : [An]2 → {0,1}.

By the last theorem, for every closed and uncountably convex S⊆R2,

cov
(
�2
)= cov

(
�cmin

)≤ cov
(
�(S)

)≤ cov
(
�cmax

)
. (5.5)

Namely, the convexity number of each closed uncountably convex subset ofR2 is sand-
wiched between lines (3) and (4) in the Figure 5.1. Since the cardinals in those lines are
either equal or that in line (4) is the successor of that in line (3), we see that there cannot
be more than two uncountable convexity numbers of closed subsets of R2.

On the other hand, since �2 and �1 are realized as the convexity ideal of some closed
subsets in the plane, and �2 ≺ �1, there are models in which two different uncountable
convexity numbers occur in R2.

Thus, the following holds.

Theorem 5.16. There are models of ZFC with two, but no models of ZFC with more than
two, uncountable convexity numbers of closed subsets of R2.

Let S ⊆ R2 be a closed set. A set P ⊆ S is called a 3-clique if for all distinct x1,x2,x3 ∈
P it holds that conv(x1,x2,x3) �⊆ S. If S ⊆ R2 contains a perfect 3-clique, then clearly
cov(�(S))= 2ℵ0 in all models of ZFC. The following is a characterization of nonexistence
of perfect 3-cliques by metamathematical means.

Theorem 5.17. Suppose S⊆R2 is closed. Then there is no perfect 3-clique P ⊆ S if and only
if cov(�(S))≺ 2ℵ0 .

6. Concluding remarks

We remark first that although cardinal invariants of the continuum are studied exten-
sively in set theory, most of the invariants that set theorists have studied have no con-
nection with Euclidean dimension. The study of convexity ideals and their relation to
Euclidean dimension is an atypical case in which both set-theoretic techniques and Eu-
clidean dimension play each a substantial role.

Second, since each of the σ-ideals that have been treated here is a subideal of the mea-
ger ideal, one may wonder whether reducibility between σ-ideals should not actually be
studied in the larger generality of all σ-subideals of the meager ideal. The fact is, though,
that classification of σ-subideals of the meager ideal is impossible. Even the classification
of all σ-subideals of the meager ideal that have particularly “nice” definitions is impos-
sible, for the following reason. Answering a question of Blass, who asked if all covering
numbers of σ-ideal which have a particularly simple definition could be classified [3],
Goldstern and Shelah [7] produced an uncountable list 〈�α : α < ω1〉 of very simply de-
fined σ-subideals of the meager ideal, called slalom ideals, with the following remarkable
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property: for every list 〈λα : α < ω1〉 of regular uncountable cardinals, there is a model
of ZFC in which cov(�α) = λα. This is a very strong negative result about classification.
Not only one cannot prove the existence of any reduction of �α to �β if α �= β, but even
conditional information is not possible: even if one knows all covering numbers of all �α

except for α= α0, still nothing can be deduced about cov(�α0 ).
In contrast to the chaos which rules the realm of all subideals of the meager ideal—as

the Goldstern-Shelah result exemplifies—the geometry ofRd carves out of the nonclassi-
fiable wealth of simple σ-subideals of the meager ideal a corner in which classification is
possible.

Finally, convexity ideals in R2 display another peculiar behavior: they all sit above the
Lipschitz functions ideal Lip(2N). This leaves a very narrow window for their covering
numbers: they can be either the continuum or its immediate successor. Still, they are not
reducible to �1. Thus, a natural problem arises.

Question 6.1. Among all nicely defined σ-subideals of the meager ideal which are not
reducible to �1, is there one with a largest covering number?

At the moment, �cmax is a candidate. Another candidate is the σ-ideal which is σ-
generated over R2 by all graphs and inverses of graphs of C1 real functions.

6.1. The final word on methodology. Formal independence over ZFC is a syntactic rela-
tion studied by logicians; why should a mathematician who works in analysis or in convex
geometry bother with it? There are several answers.

First, formal independence provides a tool for testing that a certain theorem is the best
possible. For instance, Theorem 5.13 (which was proved by analysts) cannot be improved
from twice differentiable functions to continuously differentiable functions because of
Steprāns’ consistency result [15].

Second, when reaching the limit of knowledge of what is true, using formal consistency
one can proceed to find out the broader picture of what is possibly true. The relation of
irreversible reducibility under which convexity ideal in Rd forms a nice pattern is such an
example. Formal independence over ZFC has created a situation in which one must look
at a variety of different models of ZFC rather than at a single one to fully understand a
phenomenon.

This way of looking at things is orthogonal to the philosophical quibble of what should
be true. To look at models in which the CH holds, or in which the CH fails, for the pur-
pose of finding out that a certain reduction may not exist, one does not need to have an
opinion on whether the CH should be accepted as true. (The information one gathers
this way, though, may help a mathematician in adopting a position as to what “should”
or “should not” be accepted as true. It is interesting to point out that Kurt Gödel, in his
1947 paper What is Cantor’s continuum problem [7], rejected the CH, 17 years before Co-
hen’s proof of the formal independence of CH, on the basis that it did not have “verifiable
consequences,” namely, that it had many consequences, none of which lead to easy proof
of “really true” facts. Later on it turned out that all the examples of consequences of CH
that Gödel quoted, were indeed independent of ZFC.)

Finally, formal independence and cardinal invariants provide a rich language for dis-
cussing small sets inRd, and enable the discovery of geometric properties ofRd which are
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not accessible otherwise. The dimension conjecture and its proof for d = 2 is one such ex-
ample, and the characterization of 3-cliques in a closed planar set (see Theorem 5.17) is
another.
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